

Integrating Order Information and Event Relation for Script Event Prediction Zhongqing Wang, Yue Zhang and Ching-Yun Chang

EMNLP, 2017

Disha Jindal(djjindal@seas.upenn.edu) Feb-20-2019

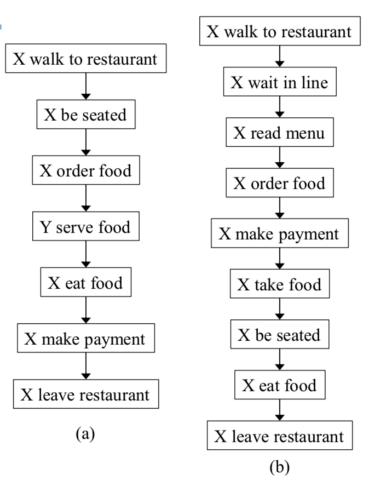
Motivation

Event chain:

Frequently recurring sequence of events with *partial orders*.

Script:

Participant Roles("customer", "waiter", and "table") + Event chain



Motivation

Challenges:

- Script knowledge is assumed to be part of the common ground.
- We do not mention events which can easily be inferred by the addressee.

"get me a piece of cake"

A text understanding system that does not have access to **script knowledge** will probably not be able to draw any inference or the series of events that took place.

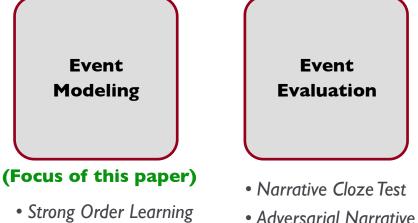
Problem Space

Event Extraction and Representation

- $\langle arg_{_{I}}, relation, arg_{_{2}} \rangle$
- $v(e_s, e_o, e_p)$

Script Representation

- Paraphrase Sets
- Narrative Chain
- Narrative Event Evolutionary Graph

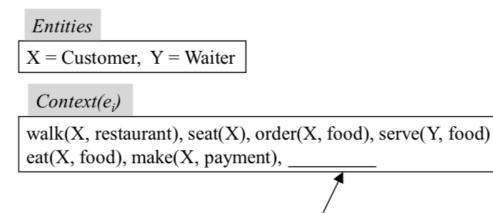


Combination

- Event Pair Learning Cloze Test
 - MCNC Test
 - Story Cloze Test

Problem

Given a chain of narrative events $e_1, e_2, ..., e_{n-1}$ and five candidate events, the task is to predict the most likely next event e_n



 $c_{1}: receive(X, response) \\ c_{2}: drive(X, mile) \\ c_{3}: seem(X) \\ c_{4}: discover(X, truth) \\ c_{5}: leave(X, restaurant)$?

Contents:

- Event and Candidate Extraction
- Previous work
- Novel aspects/contributions of this paper
- MemNet architecture
 - Event representation
 - Modeling Temporal Orders
 - Modeling Pairwise Event Relations
- Results and Analysis
 - Influence of different event structures
 - Influence of different network configurations
- Assumptions/Scope of Improvement
- Extensions/Thoughts

Event Extraction

Text: Robbers made a big score, fleeing after stealing more than \$300,000 from Wells Fargo armored-truck guards who were servicing the track's ATMs, the Police Department said. The two Wells Fargo guards reported they were starting to put money in the clubhouse ATM when a man with a gun approached and ordered them to lie down...

Entity mentions: {*Wells Fargo armored-truck guards, The two Wells Fargo guards, they,* ...}

Predicate events: service(x_0 , ATMs), report(x_0), put(x_0 , money, in clubhouse), lie+down(x_0), ...

- POS Tagging and Dependency Parsing (C&C tools)
- Phrase Structure Parsing and Coreference Resolution(OpenNLP3)

Event Extraction:

- Each time an entity is an argument to a verb
- Predicative adjectives where an entity is an argument to the verb be or become

John was upset \Rightarrow be(x_o, upset)

• To mitigate the over-emphasis on frequent predicates, filtered events by creating a stopevent list.

Candidate Extraction

Input: Event Chain, 5 randomly ordered candidates, c0,...,c4 Output: Most Likely Candidate

Primary: G&CI6 (Granroth-Wilding and Clark 2016)

- New York Times portion of the Gigaword 2003 corpus
- Training , Test , Development Split: {1,500,000; 10,000; 1,000}

Second benchmark: C&J08 (Chambers and Jurafsky 2008)

- News stories from 2001 corpus
- Documents: 69, Multiple choice event chains: 346

Candidate Extraction:

- I is observed and 4 are sampled at random from elsewhere in the corpus.
- Protagonist is replaced by the protagonist of the current chain
- Other entities are replaced by randomly chosen entities from the same document as the current chain

Penn Engineering

Previous SoTA: Event-Comp and RNN

Same event representation as that of MemNet which is $v(e_s, e_o, e_p)$

- Event-Comp
 - What Happens Next? Event Prediction Using a Compositional Neural Network Model by Granroth-Wildin and Clark 2016
 - Pair-wise modeling
 - Equal weightage to all event pairs
 - Does not consider temporal ordering of events. e.g. if, presented with (die, subj), it can suggest (live, subj) as the next event, simply because the two often co-occur
- RNN
 - Learning Statistical Scripts with LSTM Recurrent Neural Networks by Pichotta and Mooney 2016
 - Sequence/Strong-order modeling

Penn Engineering

- Does not consider event pair relations
- Given the flexible order of event chains, it overfits

X = Customer, Y = Waiter

$Context(e_i)$

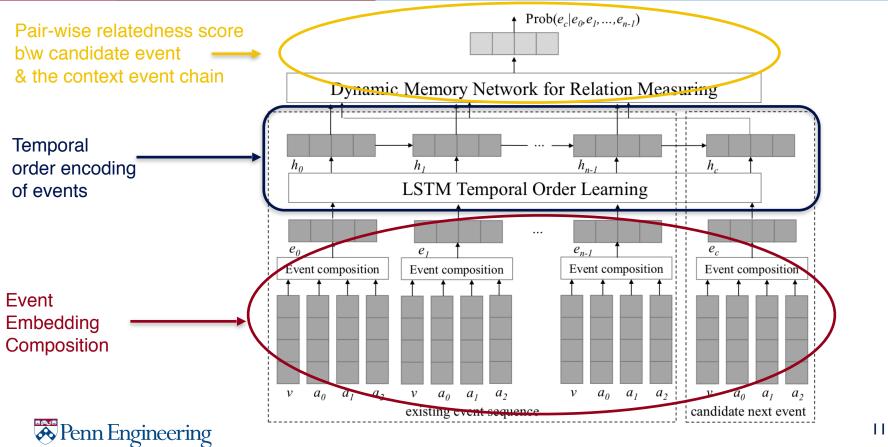
walk(X, restaurant), seat(X), order(X, food), serve(Y, food)
eat(X, food), make(X, payment), _____

 $c_1: \text{receive}(X, \text{response}) \\ c_2: \text{drive}(X, \text{mile}) \\ c_3: \text{seem}(X) \\ c_4: \text{discover}(X, \text{truth}) \\ c_5: \text{leave}(X, \text{restaurant})$?

Contributions of this work

- Comparison
 - Between pair-based and sequence-based learning methods
- Paper introduces MemNet
 - A novel dynamic memory network model, which combines the advantages of both LSTM temporal order learning and traditional event pair coherence learning
- Reported best results in the standard MCNC(multi-choice narrative cloze) test

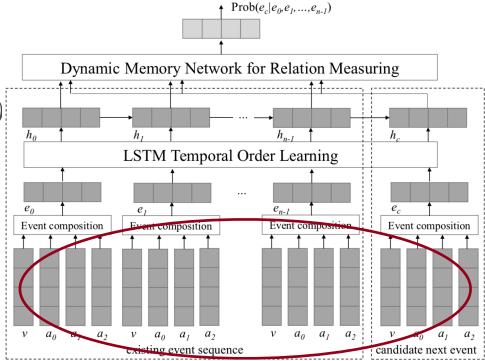
MemNet Architecture



MemNet Architecture: Event Representation

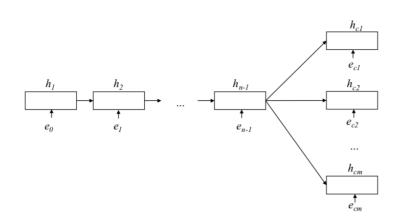
- Set of events: events $e_1, e_2, ..., e_{n-1}$
 - v(a₀, a₁, a₂)
 - verb(subject, direct object, prepositional object)
 - bring{John, Marry, to the restaurant}
- Word vectors are trained using the skip-gram model
- Event vectors are trained using composition $e(e) = tanh(W_e^v \cdot e(v) + W_e^0 \cdot e(a_0) + W_e^0 \cdot e(a_0)$

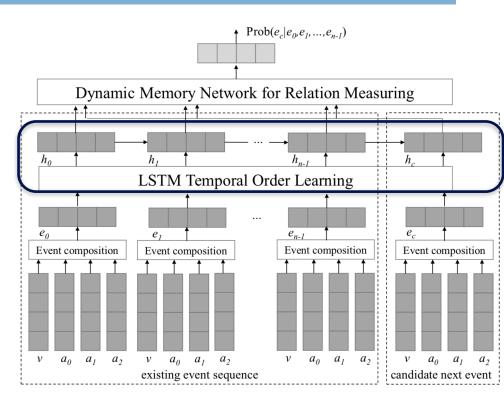
 $W_e^1 \cdot e(a_1) + W_e^2 \cdot e(a_2) + b_e)$



MemNet Architecture: Modeling Temporal Orders

- Set of event candidates: e_c^1 , e_c^2 , ..., e_c^m
- Initial hidden state is randomly initialized
- $h_c = LSTM(e(e_c), h_{n-1})$





MemNet Architecture: Modeling Pairwise Event Relations

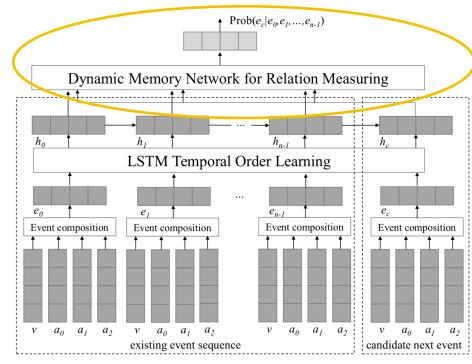
I. Siamese Network

$$s_i = \text{sigmoid}(W_{si}h_i + W_{sc}h_c + b_s),$$
$$s = \frac{\sum_{i=1}^{n-1} s_i}{\sum_{i=1}^{n-1} s_i}$$

n-1

Problem: Equal importance to each event on the chain

Events: "wait in queue", "getting seated" and "order food" Candidate: "eat food"

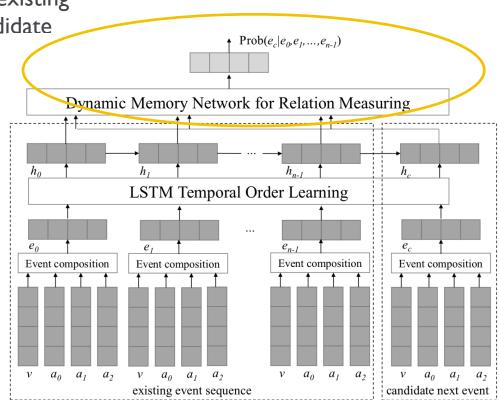


2. **Attention**: Relative importance of each existing event according to the subsequent event candidate

$$s_i = \text{sigmoid}(W_{si}h_i + W_{sc}h_c + b_s)$$
$$u_i = \tanh(W_{ei}h_i + W_ch_c + b_u)$$
$$\alpha_i = \frac{\exp(u_i)}{\sum_j \exp(u_j)}$$
$$n-1$$

 $s = \sum_{i=1}^{n-1} \alpha_i \cdot s_i$

Renn Engineering



MemNet Architecture: Modeling Pairwise Event Relations

3. Deep Memory Network

- Refines event weight and event relations by recurrently modeling more abstract representations of the scenario to infer deep semantic information.
- Multiple dynamic computational layers (hops)
- \bullet Consolidated representation of context event chain is represented by h
- h and h are integrated to deduce a deeper representation of the full event chain hypothesis
- The intuition is that it triggers an iterative attention process which allows the model to condition its attention on the inputs and the result of previous iterations.

Experiments: Parameters

- Optimizer: AdaGrad
- Regularization: L2
- Word vectors dimension: 300
- LSTM hidden layer size: 128
- Memory network threshold(μ) : 0.1

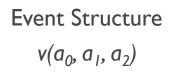
Results: Comparison with other models

Chambers and Jurafsky (2008): Event pair relations based on PMI	Method	G&C16	C&J08
Jans et al. (2012): Event pair relations	PMI	30.52	30.92
based on skip bigram probabilities.	Bigram	29.67	25.43
Granroth and Clark(2016): Event pair relat based on scores using a Siamese network	ions Event-Comp	49.57	43.28
Diskette and Massau (0010). Madalad	RNN	45.74	43.17
Pichotta and Mooney (2016): Modeled event chains	MemNet	55.12	46.67

Analysis: Impact of Different Event structures

- It shows the relative importance of each component.
- It demonstrates the "central role of the verb" in denoting an event.

Method	Acc. (%)	
MemNet	54.36	
-verb	42.63	
$-(a_0, a_1)$	52.32	
$-(a_0)$	53.43	
-(<i>a</i> ₁)	53.57	
$-(a_2)$	54.02	



Analysis: Impact of Different Modules

Influence of Temporal Order	Method	Acc. (%)
-LSTM(51.72) vs MemNet(54.36)	MemNet	54.36	/
-Attention, -LSTM(48.26) vs -Attention(50.76)	-Hop	52.03	_
Influence of Event-Pair Modeling	-Attention	50.76	
LSTM-only(46.72) vs -Attention, -LSTM(48.26)	-LSTM	51.72	
	-Hop,-LSTM	50.65	
Influence of Attention	-Attention,-LSTM	48.26	Granroth and Clark(2016)
-Attention(50.76) vs -Hop(52.03)	LSTM-Only	46.72	Pichotta and Mooney(2016)
-Attention, -LSTM(48.26) vs -Hop, -LSTM(50.65)			

Influence of Multi-Hop Deep Memory Network

-Hop(52.03) vs MemNet(54.36)

-Hop, -LSTM(50.65) vs -LSTM(51.72)

Conclusions

- Calculated event pair relation using LSTM hidden states having encoded temporal orders.
- A dynamic memory network to automatically induce event weights for events.
- Outperformed SoTA event pair models and event chain models

Assumptions/Scope of Improvement

- Narrative order is same as that of temporal order
- The dataset used is noisy due to the automatic extraction process and the random sampling of confounders
 - Dataset quality assurance by human annotation
 - Random Sampling can be replaced by some sort of adversarial technique such as SWAG.
- Word embedding are trained using the *Skip-gram* algorithm. More expressive contextual models might give better results
- This paper uses Narrative chain representation for event prediction. There are other representations such as narrative event graphs which claim to capture dense connection information and semantic relations among events

Extensions/Thoughts...

What all can it predict ?

We got seated, and had to wait for 20 minutes. Then, the waiter brought the ... We ordered, and had to wait for 20 minutes. Then, the waiter brought the ...

I ordered a medium sirloin steak with fries. Later, the waiter brought ...

- steak I had ordered,
- the steak,
- our food, or
- it.

Kevin was **robbed** by Robert, <u>but</u> the police mistakenly **arrested** <u>him</u>.

Extensions/Thoughts...

- Do these systems model and infer structurally simpler events?
 - Verb based events enough?
 - More semantic abstraction?
 - Discourse markers
 - Disambiguation of semantic frames
 - Shallow linguistic Features, Semantic features, Script Features and Temporal Features
- To what extent do we have to provide the the explicit syntactic dependencies as a mediating representation for these event-inferring systems?
- Extrinsic Evaluation?
 - Narrative generation system.
 - Coreference Resolution
 - APT(Advanced Persistent Threats) attack: Where a user takes a sequence a actions to make a consistent attack. Might help in improving accuracy of network defense.

