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Motivation

Event chain: 
Frequently recurring sequence of 
events with partial orders.

Script:
Participant Roles(“customer”, “waiter”, and “table”) +
Event chain
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Motivation

Challenges:
• Script knowledge is assumed to be part of the common ground.
• We do not mention events which can easily be inferred by the addressee.

“get me a piece of cake”

A text understanding system that does not have access to script 
knowledge will probably not be able to draw any inference or the series of 

events that took place.
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Problem Space

Event
Modeling

Event
Evaluation

• ⟨arg1, relation, arg2⟩ 

• v(es, eo, ep) 
• Strong Order Learning

• Event - Pair Learning

• Combination 

Event
Extraction and
Representation

 (Focus of this paper)
• Narrative Cloze Test

• Adversarial Narrative 
Cloze Test

• MCNC Test

• Story Cloze Test

Script
Representation

• Paraphrase Sets

• Narrative Chain

• Narrative Event 
Evolutionary 
Graph
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Problem
Given a chain of narrative events e1, e2, ..., en−1 and five candidate events, the task is to 
predict the most likely next event en
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Contents:
• Event and Candidate Extraction
• Previous work
• Novel aspects/contributions of this paper
• MemNet architecture

• Event representation
• Modeling Temporal Orders 
• Modeling Pairwise Event Relations

• Results and Analysis
• Influence of different event structures 
• Influence of different network configurations

• Assumptions/Scope of Improvement
• Extensions/Thoughts
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Event Extraction

• POS Tagging and Dependency Parsing (C&C tools)

• Phrase Structure Parsing and Coreference Resolution(OpenNLP3)

Event Extraction:
• Each time an entity is an argument to a verb
• Predicative adjectives where an entity is an argument to the verb be or become 

John was upset ⇒ be(x0, upset) 

• To mitigate the over-emphasis on frequent predicates,  filtered events by creating a stopevent list.
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Candidate Extraction 
Input: Event Chain, 5 randomly ordered candidates, c0,…,c4
Output: Most Likely Candidate

Primary: G&C16 (Granroth-Wilding and Clark 2016)
• New York Times portion of the Gigaword 2003 corpus
• Training , Test , Development Split: {1,500,000; 10,000;1,000}

Second benchmark: C&J08 (Chambers and Jurafsky 2008)
• News stories from 2001 corpus
• Documents: 69, Multiple choice event chains: 346 

Candidate Extraction: 
• 1 is observed and 4 are sampled at random from elsewhere in the corpus.
• Protagonist is replaced by the protagonist of the current chain
• Other entities are replaced by randomly chosen entities from the same document as the current chain
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Previous SoTA: Event-Comp and RNN
Same event representation as that of MemNet which is v(es, eo, ep)

• Event-Comp 
• What Happens Next? Event Prediction Using a 

Compositional Neural Network Model by Granroth-Wilding 
and Clark 2016

• Pair-wise modeling
• Equal weightage to all event pairs 
• Does not consider temporal ordering of events. e.g. if, 

presented with (die, subj), it can suggest (live, subj) as the 
next event, simply because the two often co-occur

• RNN 
• Learning Statistical Scripts with LSTM Recurrent Neural 

Networks by Pichotta and Mooney 2016
• Sequence/Strong-order modeling 
• Does not consider event pair relations
• Given the flexible order of event chains, it overfits
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Contributions of this work

• Comparison 

• Between pair-based and sequence-based learning methods

• Paper introduces MemNet

• A novel dynamic memory network model, which combines the advantages 
of both LSTM temporal order learning and traditional event pair coherence 
learning

• Reported best results in the standard MCNC(multi-choice narrative cloze) test  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MemNet Architecture

Temporal 
order encoding 
of events  

Event 
Embedding 
Composition

Pair-wise relatedness score 
b\w candidate event 
& the context event chain 
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MemNet Architecture: Event Representation

• Set of events: events e1, e2, ..., en-1

• v(a0, a1, a2) 

• verb(subject, direct object, prepositional object)
• bring{John, Marry, to the restaurant} 

• Word vectors are trained using the skip-gram 
    model

• Event vectors are trained using composition
e(e) = tanh(We

v · e(v) + We
0 · e(a0) + 

                   We
1 · e(a1) + We

2 · e(a2) + be) 
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MemNet Architecture: Modeling Temporal Orders 

• Set of event candidates:  e1
c , e2

c , ..., em
c

• Initial hidden state is randomly initialized

• hc = LSTM(e(ec ), hn−1 )
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MemNet Architecture: Modeling Pairwise Event Relations  

1. Siamese Network

Problem: Equal importance to each event on the chain 

Events: “wait in queue”, “getting seated” and “order food”
Candidate: “eat food”
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MemNet Architecture: Modeling Pairwise Event Relations  

2.  Attention: Relative importance of each existing 
event according to the subsequent event candidate 
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MemNet Architecture: Modeling Pairwise Event Relations  

3. Deep Memory Network
• Refines event weight and event relations by recurrently modeling more abstract representations of the scenario to infer deep semantic information. 

• Multiple dynamic computational layers (hops)

• Consolidated representation of context event chain is represented by h
e

• h
c 
and h

e 
are integrated to deduce a deeper representation of the full event chain hypothesis

• The intuition is that it triggers an iterative attention process which allows the model to condition its attention on the inputs and the result of previous 
iterations. 

• Convergence: |v
t+1−vt| < μ
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Experiments: Parameters

• Optimizer:  AdaGrad 
• Regularization: L2
• Word vectors dimension: 300 
• LSTM hidden layer size: 128 
• Memory network threshold(μ) : 0.1
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Results: Comparison with other models 

Chambers and Jurafsky (2008): 
Event pair relations based on PMI 

Jans et al. (2012): Event pair relations 
based on skip bigram probabilities.

Granroth and Clark(2016): Event pair relations 
based on scores using a Siamese network

Pichotta and Mooney (2016): Modeled 
event chains 
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Analysis: Impact of Different Event structures 

• It shows the relative importance of each component. 
• It demonstrates the “central role of the verb” in denoting an event.

Event Structure
v(a0, a1, a2) 
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Analysis: Impact of Different Modules 

Influence of Temporal Order

-LSTM(51.72) vs MemNet(54.36)

-Attention, -LSTM(48.26) vs -Attention(50.76) 

Influence of Event-Pair Modeling

LSTM-only(46.72) vs -Attention, -LSTM(48.26)

Influence of Attention

-Attention(50.76) vs -Hop(52.03) 

-Attention, -LSTM(48.26) vs -Hop, -LSTM(50.65)   

Influence of Multi-Hop Deep Memory Network

-Hop(52.03)  vs MemNet(54.36)

-Hop, -LSTM(50.65) vs -LSTM(51.72)

Granroth and Clark(2016)

Pichotta and Mooney(2016)
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Conclusions

• Calculated event pair relation using LSTM hidden states having 
encoded temporal orders.

• A dynamic memory network to automatically induce event 
weights for events. 

• Outperformed SoTA event pair models and event chain models
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Assumptions/Scope of Improvement

• Narrative order is same as that of temporal order

• The dataset used is noisy due to the automatic extraction process and the random sampling 
of confounders
• Dataset quality assurance by human annotation
• Random Sampling can be replaced by some sort of adversarial technique such as SWAG.

• Word embedding are trained using the Skip-gram algorithm.  More expressive contextual models 
might give better results

• This paper uses Narrative chain representation for event prediction. There are other 
representations such as narrative event graphs which claim to capture dense connection 
information and semantic relations among events
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Extensions/Thoughts…

We got seated, and had to wait for 20 minutes. Then, the waiter brought the ... 
We ordered, and had to wait for 20 minutes. Then, the waiter brought the ...

I ordered a medium sirloin steak with fries. Later, the waiter brought ... 
• steak I had ordered, 
• the steak, 
• our food, or 
• it. 

Kevin was robbed by Robert, but the police mistakenly arrested him. 

What all can it predict ?
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Extensions/Thoughts…
• Do these systems model and infer structurally simpler events? 

• Verb based events enough?
• More semantic abstraction?

• Discourse markers
• Disambiguation of semantic frames 
• Shallow linguistic Features,  Semantic features, Script Features and Temporal Features

• To what extent do we have to provide the the explicit syntactic dependencies as a mediating 
representation for these event-inferring systems?

• Extrinsic Evaluation? 
• Narrative generation system.
• Coreference Resolution
• APT(Advanced Persistent Threats) attack:  Where a user takes a sequence a actions to make a 

consistent attack. Might help in improving accuracy of network defense.


