

Extracting Commonsense Properties from Embeddings with Limited Human Guidance Yiben Yang, Larry Birnbaum, Ji-Ping Wang, Doug Downey ACL, 2018

Barry Plunkett (eplu@sas.upenn.edu) March 25, 2019

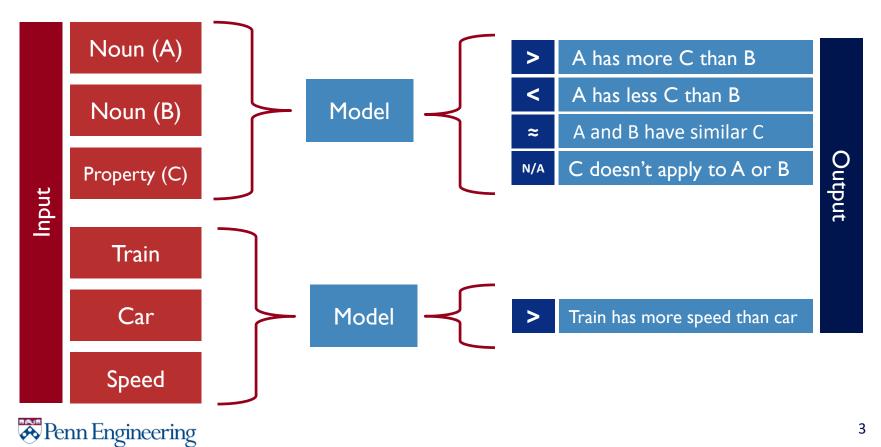
Problem & Motivation

Automatic extraction of binary comparisons from text

Is a train faster than a car?

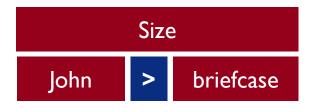
Is wood more durable than steel?

Problem & Motivation



Problem and Motivation – Reporting Bias

"John picked up his briefcase and left for work."

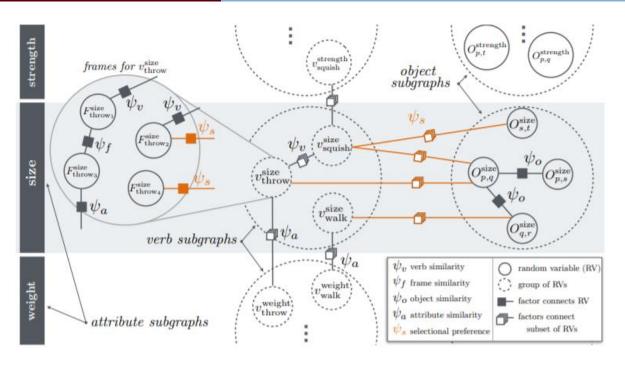


"The earthquake toppled the wood buildings, but the steel ones survived."

Contents:

- Previous approaches
- Contributions
 - SotA Performance on standard task
 - New task and baseline
- Conclusions
- Shortcomings and extensions

Previous approaches (SoTA)



Forbes & Choi (2017) introduce VERB PHYSICS comparison dataset and establish baseline model

Contributions of this work

- Achieve state-of-the-art performance on task introduced by F&C
 - Requires no additional annotation beyond training set
 - Model allows zero-shot learning on unseen properties and nouns
- Introduces alternative formulation of task
 - Provides baseline and dataset for this task

Details of Contributions – Setup

Formalization – Supervised multiclass classification

$$P(\mathbf{L}|\mathbf{O_1},\mathbf{O_2},\mathbf{Property}),\mathbf{L} \in \{ \boxed{<},\boxed{>},\boxed{\approx} \}$$

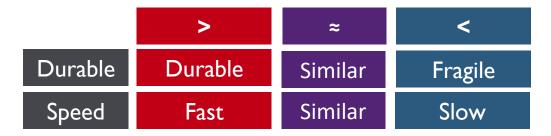
	Description	Examples		
Oı	First object in comparison	Train	Wood	
O ₂	Second object in comparison	Car	Steel	
Property	Property being compared for O_{1}, O_{2}	Speed	Durable	
L	Label of comparison (>, <, ≈)	>	<	

Details of Contributions – Setup

Assumptions

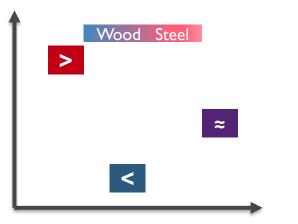
Objects with similar word embeddings have similar properties

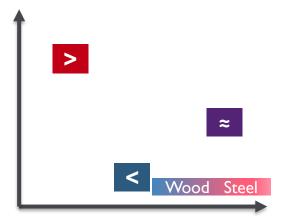
A property can be represented as a set of pole adjectives



Details of Contributions – Goals

- Learn projection for embeddings pair of nouns into vector space containing embeddings for pole adjectives
- Predict closest pole
- Use labeled comparisons to train projections of pairs to be near correct pole

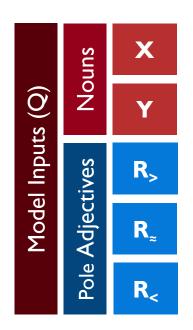




Details of Contributions – Model

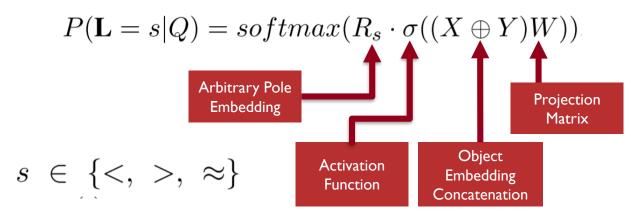
	Nouns	X	Embedding of first comparison object (O ₁)	Wood
SS (Q)	Š	Y	Embedding of first comparison object (O_2) O_2	Steel
Model Inputs	tives	R _{>}	Embedding for > adjective	Durable
Mode	Pole Adjectives	R _≈	Embedding for "similar"	Similar
	Pole	R _{<}	Embedding for < adjective	Fragile

Details of Contributions – Model

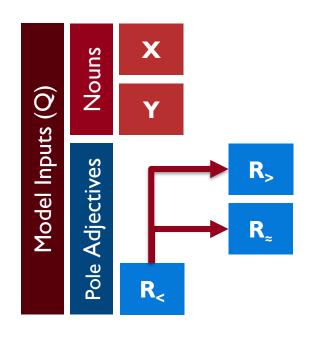


Property Commonsense Embedding (PCE) Model

Model Function – Softmax over "cosine similarity" between projection of object pair and each comparison label

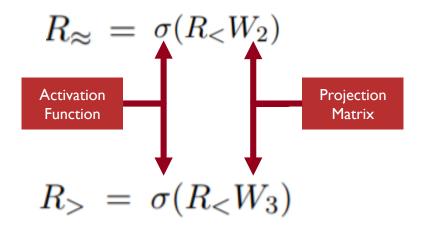


Details of Contributions – One Pole Model



Model receives only one adjective embedding input

- Receives only "<" adjective embedding
- Learns a projection for each of the other pole embeddings



Details of Contribution - Comparison

PCE Network (Yang)

- No frames
- Word embeddings
- Standard multiclass train scheme
- Prediction scheme identical for seen and unseen objects
- Can predict unseen attributes

Probabilistic Factor Graph (F&C)

- Dependency parsing to identify frames, verbs, objects
- Word embeddings
- Two-pass training scheme
- Message passing for predicting unseen pairs
- Cannot predict unseen attributes

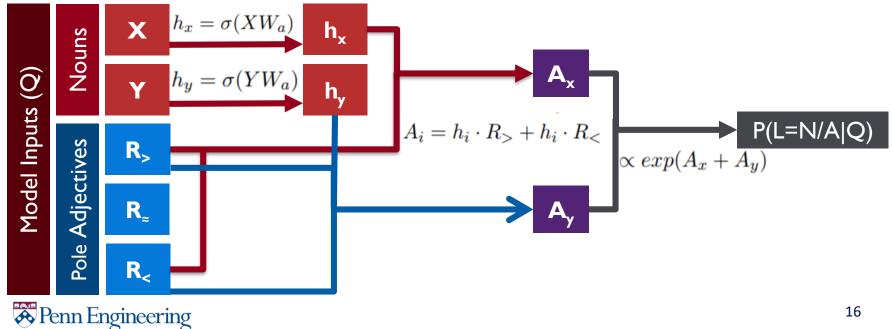
Details of Contributions - Four-way Model

Identical to standard formulation with additional class

more intelligent than plastic?

Details of Contributions - Four-way Model

Identical three-way model with additional output for N/A in softmax layer



Details of Contributions – New Dataset

A shrimp is less (<) furry than a lion.

PROPERTY COMMONSENSE

- New dataset for four-way classification task
- 32 properties, 689 objects including proper nouns
- Properties and objects
 randomly permuted to generate
 samples
- Hand-labeled by 1-labeler (.64
 Cohen's Kappa)

Experimental Setup

- Set-up for all models and experiments
 - Identity activation function for all σ
 - Full-batch gradient descent using ADAM with no tuning
 - Dropout before output (p=.5)
 - gLoVe (300d), word2vec (300d), LSTM (1024d)
 embeddings
 - Accuracy for evaluation

Experiments

- Zero-shot learning: Make predictions on unseen class or attribute
 - For this task, zero-shot learning means making predictions on unseen property

Train Set Size Speed Rigidity Strength

Experiments

- Three-way classification task (VERB PHYSICS)
- Hold-one-out zero-shot learning on properties (VERB PHYSICS)
- Four-way classification task (PROPERTY COMMONSENSE)

	VERB PHYSICS	PROPERTY
Train	594	1819
Test	6000	1489
Total	6594	3308

Results and Analysis

PCE and PCE(one-pole) achieve SotA performance on 3-way

task

Model	Overall Accuracy
Majority Baseline	0.51
F&C	0.70
PCE(one-pole)	0.75
PCE(LSTM)	0.76

Establishes strong baseline for 4-way task

Model	Overall Accuracy
Majority Baseline	0.51
PCE(gLoVe)	0.63
PCE(Word2Vec) and PCE(LSTM)	0.67

Results and Analysis

Establishes a strong baseline for zero-shot learning task

Model	Weight	Size	Strength	rigidity	speed
Emb-Similarity	0.37	0.53	0.48	0.43	0.35
PCE(one-pole)	0.73	0.71	0.67	0.53	0.34
PCE	0.74	0.73	0.70	0.62	0.58

Conclusions

- Embeddings may help address reporting bias for other commonsense knowledge tasks
- Learning projection of pairs of noun embeddings into vector space containing adjective embeddings enables generalization among properties and among nouns
- PROPERTY COMMON SENSE provides a harder (more sparse) framework

Shortcomings

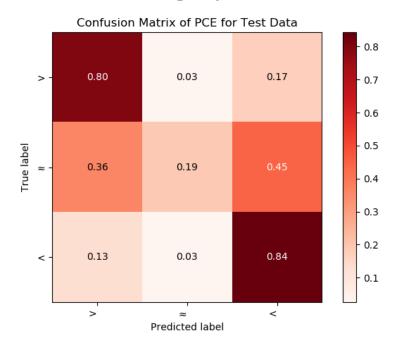
- Difficult to identify ceiling of approach
- Loss uniform when prediction not equal to truth
- Datasets are biased
 - Imbalanced with respect to objects and true labels

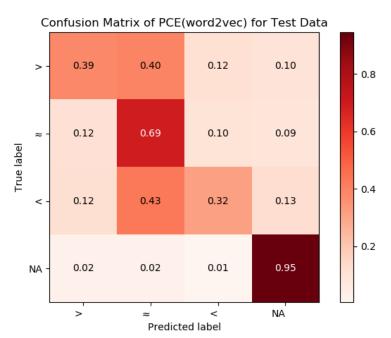
Dataset	>	a	<	N/A	Total
VERB PHYSICS	0.56	0.10	.34	0.00	6594
PROPERTY COMMON SENSE	0.18	0.25	0.18	0.39	3308

Dataset	Component	Density (Top 20%)
VERB PHYSICS	Properties	0.22
VERD PHYSICS	Nouns	0.54
PROPERTY COMMON SENSE	Properties	0.22
	Nouns	0.3

Shortcomings

Models highly sensitive to class imbalance





Extensions and Improvements

- More extensive experiments on architecture
 - Non-linear activation functions
 - More feed-forward layers to learn projection
 - Hyperparameter tuning
 - Measure performance after up-sampling / down-sampling and using less data
- Cost sensitive Loss
 - Penalize > more than ≈ when ground truth is <
 - Fixed penalty for N/A
- Develop unbiased dataset with respect to nouns, properties, and true labels