

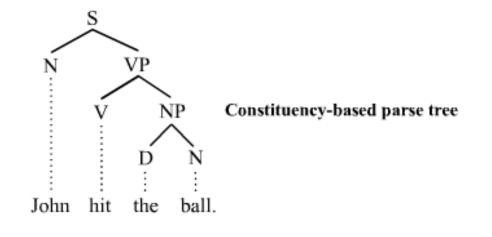
Structured Learning with Constrained Condition Models

Ming-Wei Chang, Lev Ratinov and Dan Roth

Presenter: Sihao Chen CIS-700 Spring 2020

Classification problems with structured, (usually) interdependent outputs

- Structured Prediction is everywhere in NLP
 Parsing
 - □ Sequence Labeling
 - E.g. Named Entity Recognition (NER)



In fact, not just in NLP...

У	U-ORG	0	U-PER	0	0	U-LOC
x	U.N	Official	Ekeus	heads	for	Baghdad

• Task: Identify Entities and Relations

• Sentence: "Tom married Mary in England"

- Entity Extraction: R_{12}
 - (Tom, person)
 - (Mary, person)
 - (England, *location*)
- Relation Extraction:
 - *Marry*(Tom, Mary)

The relation tag "marry" is constrained by the two entity labels for "Tom" and "Mary"

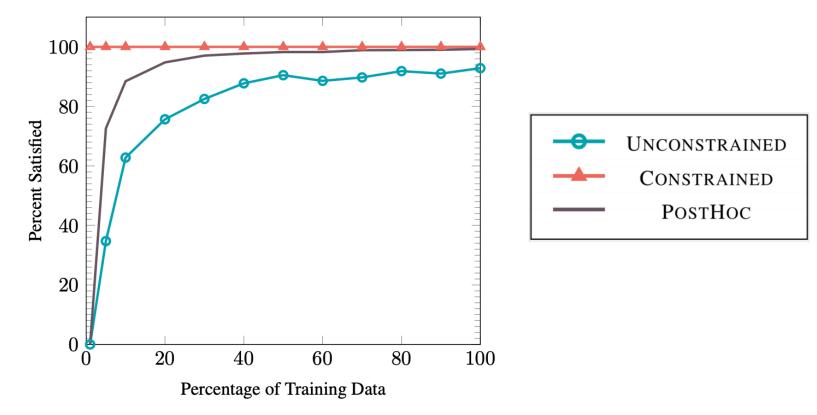
4

- Input: A sentence
- **Output**: A sequence representing its syntactic tree

Input:	John kissed Mary			
Gold Parse:	(S (NP XX) (VP XX (NP XX)))			
Invalid Parse:	(S (NP) (VP XX XX (NP XX))) 🗙			
	Empty phrase			

Example 2 – Syntactic Parsing

- Example model: A seq2seq parser (outputs the tree sequence from Left to Right)
- Only >90% of the outputs are valid (but not necessarily correct) parse trees
 - □ (When we <100% training data, it's even worse!)



- 1. Separate modeling and problem formulation from algorithms
- 2. Keep model simple, make expressive decisions via constraints
- 3. Expressive structured decisions can be supported by simply learned models
 - □ Do Global Inference on top of simple models

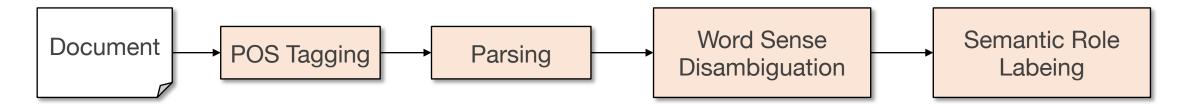
(As we will get into more detailed explanations in later slides)

Modeling

Inference

Learning

■ Let's revisit the pipeline example –



- Later stages can't go back and correct the previous results
- Easier to learn model for each individual task. Difficult to learn jointly.
- What if we impose constraints at decision time?

Ingredients

Example: Part-of-Speech tagging

Input *x*

x is the input sentence

Output Structure y

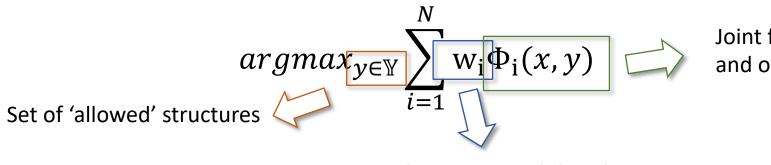
y is the output PoS tag sequence

- A list of Feature Extractors
 Φ_i(x, y)
- Inference

 \Box e.g. $argmax_y \sum_{i=1}^N w_i \Phi_i(x, y)$

Finding the "best" sequence of PoS tags

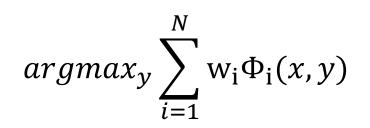
Inference is expressed as a maximization of a scoring function



Joint features on input and output

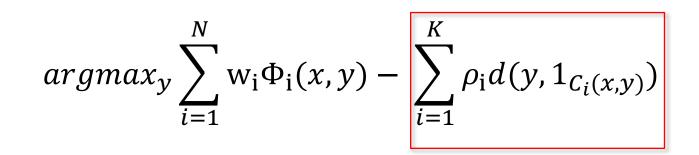
Weights, estimated thru. learning

- Labels *y_i* are interdependent. You can't greedily predict from left to right.
- When given an example x ∈ X, Inference requires looking at all y ∈ Y at decision time (for exact inference)
 - □ Exact inference is NP-hard in general
 - $\hfill\square$ Sometimes done through approximation. E.g. LP relaxation, Beam search, A*



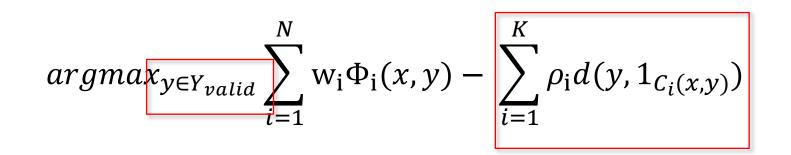
Given K "constraints" C_i for $i \in [1, K]$

Suppose we define a "violation function" $d(y, 1_{C_i(x,y)})$, which measures the degree to which the current output structure y violates the constraint C_i .



Before we get into explanation, there are still problems with the objective...

- Only expresses "soft" constraints, what about "hard" constraints?
 - □ (Technically you can do it by setting ρ to +∞, but that way "hard" constraints overshadow the "soft" ones)



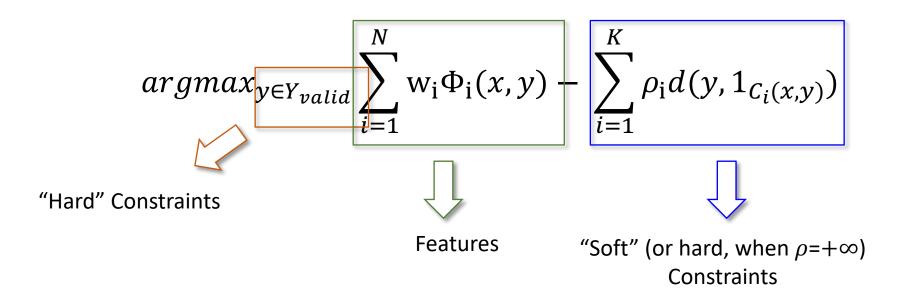
Before we get into explanation, there are still problems with the objective...

- Only expresses "soft" constraints, what about "hard" constraints?
 - \Box "Hard" constraints can be imposed directly on the output space $Y \rightarrow Y_{valid}$
 - □ E.g. can be formulated as an ILP problem

$$argmax_{y} \sum_{i=1}^{N} 1_{\{\Phi(x,y)\}} W_{i}$$

subject to C_{j} for $j \in [1, k]$

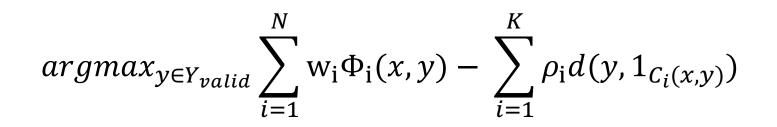
Constrained Conditional Model



Observation: The "soft" constraints term seems similar to the features term.

Key Question What's the benefit of separating features from constraints?

Benefit #1: Using Constraints as Supervision



- In scarce labeled data scenario, this becomes very important
- Constraints are more reliable. And more importantly we as human have a sense of "how reliable it is"
 - \Box The penalty parameter ρ can be set manually, doesn't have to be learned

$$argmax_{y \in Y_{valid}} \sum_{i=1}^{N} w_i \Phi_i(x, y) - \sum_{i=1}^{K} \rho_i d(y, 1_{C_i(x, y)})$$

Constraints can be more expressive

 \Box E.g. $C_i(x, y)$ can be written as first-order logic expression

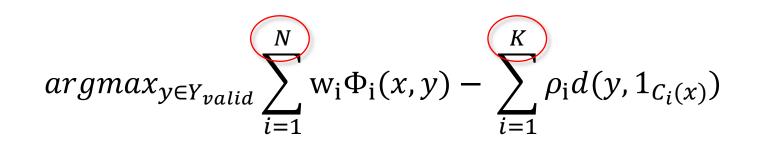
Constraints are more suitable for "defining the problem formulation", while features doesn't have to be "problem specific".

□ We've seen the same ideas from many previous presentations before

		AAAI'18
Question Answerin	ng as Global Reasoning over Sen	nantic Abstractions
Daniel Khashabi *	Tushar Khot Ashish Sabharwal	Dan Roth*
University of Pennsylvania danielkh@cis.upenn.edu	Allen Institute for Artificial Intelligence (AI2) tushark, ashishs@allenai.org	University of Pennsylvania danroth@cis.upenn.edu

$$argmax_{y \in Y_{valid}} \sum_{i=1}^{N} w_i \Phi_i(x, y) - \sum_{i=1}^{K} \rho_i d(y, 1_{C_i(x, y)})$$

- People usually model problems in the way that the feature functions Φ really only depend on x.
- The dependency on y is expressed via $C_i(x, y)$ as structural constraints



For most problems, the number of features N is fewer than the number of constraints K.

□ In such cases, using constraints as supervision is more efficient.

Also because p should always be positive, we could potentially speedup exact inference.

(E.g. by using A* search)

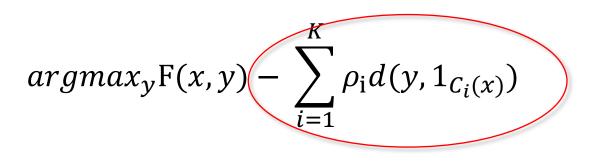
 $argmax_{y}F(x,y) + \sum_{i=1}^{n} \rho_{i}d(y,1_{C_{i}(x)})$ Replaced the term with a general notion of "collection of classifiers"

Introducing CCMs as a formalism that allows us to –

 $\hfill\square$ Learn simpler models than we would otherwise

□ Make decisions with expressive models, augmented by declarative constraints/knowledge

- Cast NLP problems as CCMs
 - Sequence Tagging (Hidden Markov Model + Global Constraints)
 - □ Semantic Role Labeling (Independent/Local classifiers + Global Constraints)



- Requires discrete optimization
- Naturally this is an Integer Linear Programming (ILP) problem

 $\hfill\square$ Every structured prediction inference is an ILP.

□ But it doesn't have to be solved as an ILP problem (e.g. if you don't need exact inference)

Quick Revisit - ILP

- Telfa Co. produces tables and chairs; wants to maximize profit
 - □ Each table makes \$8 profit, each chair makes \$5 profit.
 - □ A table requires 1 hour of labor and 9 sq. feet of wood
 - A chair requires 1 hour of labor and 5 sq. feet of wood
 - □ We have only 6 hours of work and 45sq. feet of wood
- Variables
 - Objective function

y₁: Number of tables manufactured y₂: Number of chairs manufactured

Constraints

Labor

Wood

Variable

 $y_1 + y_2 \leq 6$ $9y_1 + 5y_2 \leq 45$ $y_1, y_2 \geq 0$

 $\max_{y_1, y_2} 8y_1 + 5y_2$

y_1, y_2 integers

We cannot build fractional tables or chairs!

 $\max_{\vec{y}} z = \vec{c} \cdot \vec{y}$
subject to $\mathbf{A}\vec{y} \leq \vec{b}$
 y_i integer for all i

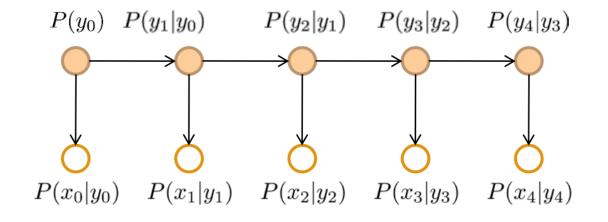
Hidden Markov Model

 \Box (Here y would a a single label instead of structure)

$$argmax_{y} P(y_{0})P(x_{0}|y_{0}) \prod_{i=1}^{T} P(y_{i}|y_{i-1})P(x_{i}|y_{i})$$

Models the joint probability P(x, y) under independence assumptions (next prediction only looks at previous prediction)

Only captures local relationships



Hidden Markov Model

 \Box (Here y would a a single label instead of structure)

$$argmax_{y} P(y_{0})P(x_{0}|y_{0}) \prod_{i=1}^{T} P(y_{i}|y_{i-1})P(x_{i}|y_{i})$$

■ Step #1 – Represent the objective in ILP formulation –

 \Box You don't have to read this too carefully...

$$\begin{aligned} maximize \sum_{y \in Y} \lambda_{o,y} \mathbf{1}_{\{y_o = y\}} + \sum_{i=1}^{n-1} \sum_{y \in Y} \sum_{y' \in Y} \lambda_{i,y,y'} \mathbf{1}_{\{y_i = y \land y_{i-1} = y'\}} \\ \lambda_{0,y} = \log(P(y)) + \log(P(x_0|y)) \\ \lambda_{i,y,y'} = \log(P(y|y')) + \log(P(x_i|y)) \end{aligned}$$

$$(\text{Learned parameters}) \checkmark \lambda_{i,y,y'} = \log(P(y|y')) + \log(P(x_i|y))$$

$$Maximize \sum_{y \in Y} \lambda_{o,y} \mathbf{1}_{\{y_o = y\}} + \sum_{i=1}^{n-1} \sum_{y \in Y} \sum_{y' \in Y} \lambda_{i,y,y'} \mathbf{1}_{\{y_i = y \land y_{i-1} = y'\}}$$

- **Step #2**: Come up with constraints according to the problem
- Let's take Part-of-Speech tagging as example again...

□ Constraint #1: Unique label for each word

$$\sum_{y \in Y} 1_{\{y_0 = y\}} = 1$$

$$Maximize \sum_{y \in Y} \lambda_{o,y} \mathbf{1}_{\{y_o = y\}} + \sum_{i=1}^{n-1} \sum_{y \in Y} \sum_{y' \in Y} \lambda_{i,y,y'} \mathbf{1}_{\{y_i = y \land y_{i-1} = y'\}}$$

- **Step #2**: Come up with constraints according to the problem
- Let's take Part-of-Speech tagging as example again...
 - □ Constraint #2: There must be at least one verb in the sentence

$$1_{\{y_0 = 'verb'\}} + \sum_{i=1}^{n-1} \sum_{y \in Y} 1_{\{y_{i-1} = y \land y_i = 'verb'\}} \ge 1$$

$$Maximize \sum_{y \in Y} \lambda_{o,y} \mathbf{1}_{\{y_o = y\}} + \sum_{i=1}^{n-1} \sum_{y \in Y} \sum_{y' \in Y} \lambda_{i,y,y'} \mathbf{1}_{\{y_i = y \land y_{i-1} = y'\}}$$

Subject to:

(1 PoS tag per word)

$$\sum_{y \in Y} 1_{\{y_0 = y\}} = 1$$

You can write many declarative constraints like this, as 'prior knowledge' for the problem

$$(>= 1 \text{ verb}) \qquad \qquad 1_{\{y_0 = 'verb'\}} + \sum_{i=1}^{n-1} \sum_{y \in Y} 1_{\{y_{i-1} = y \land y_i = 'verb'\}} \ge 1$$

Citation Field Parsing

(a) [<u>AUTHOR</u> Lars Ole Andersen .] [<u>TITLE</u> Program analysis and specialization for the C programming language .] [<u>TECH-REPORT</u> PhD thesis ,] [<u>INSTITUTION</u> DIKU , University of Copenhagen ,] [<u>DATE</u> May 1994 .]

(b) [<u>AUTHOR</u> Lars Ole Andersen . Program analysis and] [<u>TITLE</u> specialization for the] [<u>EDITOR</u> C] [<u>BOOKTITLE</u> Programming language] [<u>TECH-REPORT</u> . PhD thesis ,] [<u>INSTITUTION</u> DIKU , University of Copenhagen , May] [<u>DATE</u> 1994 .]

Citation Field Parsing – Constraints used

Table 1 The list of constraints used in the citations domain. Some constraints are relatively difficult to represents in traditional models

Citations

Start	The citation can only start with author or editor.			
AppearsOnce	Each field must be a consecutive list of words, and can appear at most once in a citation.			
Punctuation	State transitions must occur on punctuation marks.			
BookJournal	The words proc, journal, proceedings, ACM are JOURNAL or BOOKTITLE.			
Date	Four digits starting with 20xx and 19xx are DATE.			
Editors	The words ed, editors correspond to EDITOR.			
Journal	The word <i>journal</i> are <i>JOURNAL</i> .			
Note	The words note, submitted, appear are NOTE.			
Pages	The words pp., pages correspond to PAGE.			
TechReport	The words tech, technical are TECH_REPORT.			
Title	Quotations can appear only in titles.			
Location	The words CA, Australia, NY are LOCATION.			

Results

- □ With small amount of training examples
 - Supervision from constraints > Supervision from examples

# labeled	Supervised		Semi-supervised		
samples	HMM	HMM ^{CCM}	HMM	HMM ^{CCM}	
Citations					
5	58.48	71.64 (31.69 %)	64.55	77.65 (36.96 %)	
10	63.37	75.44 (32.94 %)	69.86	81.51 (38.67 %)	
20	70.78	81.15 (35.49 %)	75.35	85.11 (39.61 %)	
300	86.69	93.92 (54.29 %)	87.89	94.32 (53.07 %)	

Soft-constraints work better when there's sufficient training data

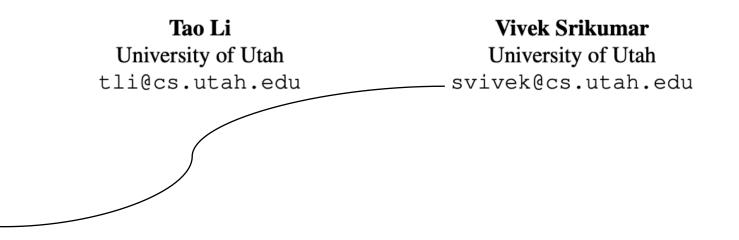
Table 6 Comparison of using hard and soft constraints in	Training samples	5	10	20	300
semi-supervised learning	(a)-Citations				
	· /				
	semi-HMM ^{CCM}	77.65	81.51	85.11	94.32
	semi-HMM $_{\infty}^{CCM}$	78.18	81.11	85.16	92.80
All Constraints are hard	(b)-Advertisement				
$(ho=+\infty)$	semi-HMM ^{CCM}	70.79	75.40	77.56	82.00
	semi-HMM $_{\infty}^{CCM}$	69.91	73.46	75.25	79.59

Constraints are not perfect! Some training examples will violate the constraints.

CCM in 2020? Challenges? Opportunities?

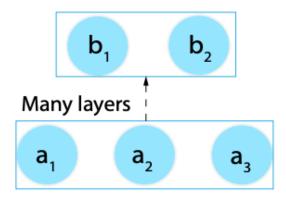
- We try to solve everything in Neural Networks these days.
- From a pure inference perspective, declarative constraints are almost always good to have
- What are the challenges in incorporating constraints in NN training?
 If we want to do inference based training, how do we write a differentiable d(y, 1_{Ci}(x))

Augmenting Neural Networks with First-order Logic



Incorporating declarative constraints in NN

- For a NN, suppose have a set of named neurons, for which you know their semantic implications (with respect to the problem).
- You can write declarative constraints in the form of first-order logic expressions over the named neurons.
- This is analogous to C_i and $d(y, 1_{C_i(x)})$ we saw in CCM.
- The challenge here is to make $d(y, 1_{C_i(x)})$ differentiable.



- Idea: Use T-norm fuzzy logic to represent $d(y, 1_{C_i(x)})$
 - □ differentiable distance functions to measure "how much a constraint is violated"

Constrained Neural Layers Our goal is to augment the computation of y so that whenever Z is true, the pre-activated value of y increases if the literal Y is not negated (and decreases if it is). To do so, we define a *constrained neural layer* as

$$y = g\left(\mathbf{W}\mathbf{x} + \rho d\left(\mathbf{z}\right)\right). \tag{1}$$

(Looks exactly like CCM, doesn't it?)

AntecedentDistance $d(\mathbf{z})$ $\bigwedge_{i}^{i} Z_{i}$ $\max(0, \sum_{i} z_{i} - |Z| + 1)$ $\bigvee_{i}^{i} Z_{i}$ $\min(1, \sum_{i} z_{i})$ $\neg \bigvee_{i}^{i} Z_{i}$ $\max(0, 1 - \sum_{i} z_{i})$ $\neg \bigwedge_{i}^{i} Z_{i}$ $\min(1, N - \sum_{i} z_{i})$

Table 1: Distance functions designed using the Łukasiewicz T-norm. Here, |Z| is the number of antecedent literals. z_i 's are upstream neurons associated with literals Z_i 's.

Incorporating declarative constraints in NN

Example: Machine Reading Comprehension (SQuAD) □ Consider the attention layer over words in paragraph and question

- $K_{i,j}$ word p_i is related to word q_j in Concept-Net via edges {Synonym, DistinctFrom, *IsA*, *Related }*.
- $\overleftarrow{A}_{i,j}$ unconstrained model decision that word q_i best matches to word p_i .
- $\overleftarrow{A}'_{i,j}$ constrained model decision for the above alignment.

 $R_1: \quad \forall i, j \in C, \ K_{i,j} \to \overleftarrow{A}'_{i,j}.$ $R_2: \quad \forall i, j \in C, \ K_{i,j} \land \overleftarrow{A}_{i,j} \to \overleftarrow{A}'_{i,j}.$

Rule 1: If a word in question and a word in paragraph is related in ConceptNet, their attention should be aligned

Rule 2: (Softer version of Rule 1 which also takes model prediction into account)

Results

%Train	L-DAtt	$+N_1$	$+N_2$	$+N_3$	$+N_{2,3}$
1%	61.2	64.9	63.9	62.5	64.3
2%	66.5	70.5	69.8	67.9	64.3 70.2
5%	73.4	76.2	76.6	74.0	76.4
10%	78.9	80.1	80.4	79.3	80.3
100%	87.1	86.9	76.6 80.4 87.1	87.0	86.9

Table 3: Impact of constraints on L-DAtt network. Each score represents the average accuracy on SNLI test set among 3 random runs. For both N_1 and N_2 , we set $\rho = (8, 8, 8, 8, 4)$ for the five different percentages. For the noisy constraint N_3 , $\rho = (2, 2, 1, 1, 1)$.

- CCM is a framework that augments simpler, (linear) models with expressive declarative constraints.
- Declarative constraints can not only be used at decision time, it can also be viewed as a form of supervision for learning.
- (Li and Srikumar, 2019) is a good attempt in using declarative constraints to drive learning in Neural Networks
- Separating models from problem formulation seems to be a key intuition that we keep re-visiting in this class.