Probabilistic Logic Programming and Bayesian
Networks *

Liem Ngo and Peter Haddawy
Department of Electrical Engineering and Computer Science
University of Wisconsin-Milwaukee

Milwaukee, WI 53201
{liem, haddawy} @cs.uwm.edu

Abstract

We present a probabilistic logic programming framework that allows the repre-
sentation of conditional probabilities. While conditional probabilities are the most
commonly used method for representing uncertainty in probabilistic expert systems,
they have been largely neglected by work in quantitative logic programming. We de-
fine a fixpoint theory, declarative semantics, and proof procedure for the new class
of probabilistic logic programs. Compared to other approaches to quantitative logic
programming, we provide a true probabilistic framework with potential applications in
probabilistic expert systems and decision support systems. We also discuss the relation-
ship between such programs and Bayesian networks, thus moving toward a unification
of two major approaches to automated reasoning.

To appear in Proceedings of the 1995 Asian Computing Science Conference,
Pathumthani, Thailand, December 1995.

*This work was partially supported by NSF grant IRI-9509165.

1 Introduction

Reasoning under uncertainty is a topic of great importance to many areas of Computer Sci-
ence. Of all approaches to reasoning under uncertainty, probability theory has the strongest
theoretical foundations. In the quest to extend the framwork of logic programming to
represent and reason with uncertain knowledge, there have been several attempts to add
numeric representations of uncertainty to logic programming languages [21, 6, 3, 11, 14,
15, 13]. Of these attempts, the only one to use probability is the work of Ng and Sub-
rahmanian [15]. In their framework, a probabilistic logic program is an annotated Horn
program. A typical example clause in a probabilistic logic program, taken from [15], is
path(X,Y) : [0.85,0.95] «— a(X,Y) : [1,1], which says that if the probability that a type A
connection is used lies in the interval [1,1] then the reliability of the path is between 0.85 and
0.95. As this example illustrates, their framework does not employ conditional probability,
which is the most common way to quantify degrees of influence in probabilistic reasoning
and probabilistic expert systems [18]. In [13] the authors allow clauses to be interpreted as
conditional probability statements, but they consider only the consistency of such programs,
and do not provide a query answering procedure.

Bayesian networks [18] have become the most popular method for representing and rea-
soning with probabilistic information [10]. An extended form of Bayesian networks, influence
diagrams, are widely used in decision analysis [18]. The strengths of causal relationships in
Bayesian networks and influence diagrams are specified with conditional probabilities. A
prominent feature of Bayesian networks is that they allow computation of posterior proba-
bilities and performance of systematic sensitivity analysis, which is important when the exact
probability values are hard to obtain. Bayesian networks are used as the main representation
and reasoning device in probabilistic diagnostic systems and expert systems.

Bayesian networks were originally presented as static graphical models: for a problem
domain the relevant random variables are identified, a Bayesian network representing the
relationships between the random variables is sketched, and probability values are assessed.
Inference is then performed using the entire domain model even if only a portion is relevant to
a given inference problem. Recently the approach known as knowledge-based model construc-
tion [22] has attempted to address this limitation by representing probabilistic information in
a knowledge base using schematic variables and indexing schemes and constructing a network
model tailored to each specific problem. The constructed network is a subset of the domain
model represented by the collection of sentences in the knowledge base. Approaches to this
area of research have either focused on practical model construction algorithms, neglecting
formal aspects of the problem [8, 4], or focused on formal aspects of the knowledge base rep-
resentation language, without presenting practical algorithms for constructing networks [19,
2]. In [16, 9], we propose both a theoretical framework and a procedure for constructing
Bayesian networks from a set of conditional probabilistic sentences.

The purpose of this paper is two-fold. First, we propose an extension of logic program-
ming which allows the representation of conditional probabilities and hence can be used to
write probabilistic expert systems. Second, we investigate the relationship between prob-
abilistic logic programs and Bayesian networks. While Poole [19] shows how to represent

a discrete Bayesian network in his Probabilistic Horn Abduction framework, in this paper
we address both sides of this relationship. First, we show how Bayesian networks can be
represented easily and intuitively by our probabilistic logic programs. Second, we present a
method for answering queries on the probabilistic logic programs by constructing Bayesian
networks and then propogating probabilities on the networks. We provide a declarative se-
mantics for probabilistic logic programs and prove that the constructed Bayesian networks
faithfully reflect the declarative semantics.

2 Syntax

Throughout this paper, we use Pr and sometimes Prp, Pr$ to denote a probability distribu-
tion; A, B, ... with possible subscripts to denote atoms; names with leading capital characters
to denote domain variables; names with leading small characters to denote constants and
P, q, ... with possible subscripts to denote predicates. We use a first order language con-
taining infinitely many variable symbols and finitely many constant, function and predicate
symbols. We use H B to denote the Herbrand base of the language, which can be infinite. For
convenience, we use comma instead of logical AND and semicolons to seperate the sentences
in a list of sentences.

Each predicate represents a class of similar random variables. In the probability models
we consider, each random variable can take values from a finite set and in each possible
realization of the world, that variable can have one and only one value. For example, the
variable neighborhood of a person X can have value bad, average, good and, in each possible
realization of the world, one and only one of these three values can be true; the others
must be false. We capture this property by requiring that each predicate have at least one
attribute representing the value of the corresponding random variable. By convention we
take this to be the last attribute. For example, the variable neighborhood of a person X can
be represented by a two-position predicate neighborhood(X,V)—the first position indicates
the person and the second indicates the type of that person’s neighborhood (bad, average
or good). We associate with each predicate a value integrity constraint statement.

Definition 1 The value integrity constraint statement associated with an m-ary pred-
icate p consists of the following first order sentences (1) p(X1,..., Xm-1,V) =V =01 V
VYV = (2) = p(Xa, o X1, 00)s p(Xay e Xm1,05), Ve, 5 0 1 <0 # 5 < iy owhere
n>1,m > 1 are two integers, vy, ..., v, are different constants, called the value constants,
denoting the possible values of the random variables corresponding to p, X1,..., X, _1 are
different variable names and each sentence is universally quantified over the entire sentence.
For convenience, we use EXCLUSIV E(p,v1,...,v,) to denote the above set of sentences.

We use = as the identity relation on H B and always assume our theories include Clark’s
Equality Theory [12]. We denote by VAL(p) the set {vy,...,v,}. If A is an atom of predicate
p, we also use VAL(A) as equivalent to VAL(p). If A is the ground atom p(t1,...,tm-1,)
then val(A) denotes the value v and obj(A) denotes the random variable corresponding to

(p, tl, . 7tm—1)-

We require such a value integrity constraint for each predicate. The set of all the integrity
constraints is denoted by IC.

Example 1 The value integrity constraint for the predicate netghborhood is

EXCLUSIV E(neighborhood, bad, average, good) =

{< neighborhood(X,bad), neighborhood(X, average);

— neighborhood(X ,bad), neighborhood(X, good);

— neighborhood(X , average), neighborhood(X, good);

neighborhood(X,V) — V = bad V'V = averageV V = good}.

For a person, say named John, neighborhood(john, good) means the random variable neigh-
borhood of John, indicated in the language by obj(neighborhood(john, good)), is good, indi-
cated in the language by val(neighborhood(john, good)) = good. In any possible world, one
and only one of the following atoms is true: neighborhood(john,bad),

neighborhood(john, average), or neighborhood(john, good). V AL(neighborhood), or

V AL(neighborhood(john,bad)), is the set {bad,average, good}.

We have two kinds of constants. The value constants are declared by EXCLUSIVE
clauses and used as the last arguments of predicates. The non-value constants are used for
the other predicate arguments.

Definition 2 Let A be the ground atom p(ty,...,t,). We define Ext(A), the extension of
A, to be the set {p(t1,...,tm-1,v)|lv € VAL(p)}.

Example 2 In the burglary example, Ext(neighborhood(john,bad)) =
{neighborhood(john,bad), neighborhood(john,average), nerghborhood(john, good)}.

Let A be an atom. We define ground(A) to be the set of all ground instances of A. A
set of ground atoms {A;|1 < i < n}is called coherent if there do not exist any A; and A
such that j # j" and 0bj(A;) = 0bj(A;/) (and val(A;) # val(A;)).

Definition 3 A probabilistic sentence has the form Pr(Ag|A1,...,A,) = a where n >
0,0 < a <1, and A; are atoms. The sentence can have free variables and each free vari-
able is universally quantified over its entire scope. The meaning of such a sentence is: If
Pr(Bo|Bi,...,B,) =« is a ground instance of it then the conditional probability of obj(By)
achieving the value val(By) given obj(B;) having value val(B;),Vi:1 <1 <n, is a.

Let S be the sentence Pr(Ag|As,...,A,) = a. We use ante(S), the antecedent of S,
to denote the conjunction Ay A ... A A, and cons(S), the consequent of S, to denote Ag.
Sometimes, we use ante(S) as the set of conjuncts.

An alternative representation of the probability sentence Pr(Ag|Ay,..., A,) = ais Ag «—
Ay, .., A, - a, where « is a value associated with the entire sentence. We will stick with the
form in the definition but mention the alternative representation to highlight the resemblance
to quantitative logic program clauses. Notice that by using predicates with value attribute
and integrity constraints, we can explicitly represent 'negative facts’.

IC = EXCLUSIV E(neighborhood, bad, average, good)J
EXCLUSIV E(burglary, yes,no) U EXCLUSIV E(alarm, yes, no)J
EXCLUSIV E(tornado, yes, no)

PB ={ Pr(neighborhood(john, average)) = .4;

Pr(neighborhood(john,bad)) = .2; Pr(neighborhood(john, good)) = .4;
Pr(burglary(X, yes)|neighborhood(X, average)) = .4;

Pr(burglary(X, yes)|neighborhood(X, good)) = .2;

Pr(burglary(X, yes)|neighborhood(X, bad)) = .4;

Pr(alarm(X, yes)|burglary(X, yes)) = .98; Pr(alarm(X, yes)|burglary(X, no)) = .05;
Pr(alarm(X, yes)tornado(X, yes)) = .99; Pr(alarm(X, yes)[tornado(X, no)) = .15}

Figure 1: A Basic Probabilistic Logic Program.

2.1 Basic Probabilistic Logic Programs

Definition 4 A basic (probabilistic logic) program consists of two parts: the proba-
bilistic base PB is a finite set of probabilistic sentences and the set IC of value integrity
constraints for the predicates in the language.

Consider the following motivating example, which will be referred to throughout the
remainder of the paper. A burglary alarm could be triggered by a burglary or a tornado.
The likelihood of a burglary is influenced by the type of neighborhood one resides in. Figure
1 shows a possible basic probabilistic logic program for representing this example. We have
the following predicates: netghborhood, burglary, alarm, and tornado. The interpretation
of statements in [/C is similar to that of EXCLUSIV E(neighborhood,bad, average, good)

shown in a previous example.

2.2 Acyclic Probabilistic Bases

In this paper, major results are achieved for a class of programs characterized by acyclicity.
A probabilistic base PB is called acyclic if there is a mapping ordpg() from the set of ground
instances of atoms into the set of natural numbers such that (1) For any ground instance
Pr(Ao|A1, ..., An) = a of some sentence in PB, ordpp(Ag) > ordpp(A;),Vi:1 <i<n. (2)
If A and A" are two ground atoms such that A’ € Ext(A) then ordpg(A) = ordpp(A’).

The expressiveness of acyclic logic programs is demonstrated in [1]. We expect that prob-
abilistic logic programs with acyclic probabilistic bases will prove to have equal importance.
To the best of our knowledge, knowledge bases of conditional probabilisties containing loops
are considered problematic and all those considered in the literature are acyclic.

3 Fixpoint Semantics

3.1 The Relevant Atom Set

In this section, we consider the implications of the structure of basic probabilistic logic
programs, ignoring the probability values associated with the sentences. We view the prob-
abilistic sentence Pr(Ag|A1, ..., A,) = a as the Horn clause Ag «+— Aq,..., A,. Our purpose
is to determine the set of relevant atoms implied by a program. For normal logic programs,
fixpoint theory characterizes the semantics of a program by a 'minimal’ set of literals which
is the fixpoint of a transformation constructed from its syntactic structure. That set consists
of ground atoms that are considered true (and their negations false), and ground atoms that
are considered false (and their negations true). Usually, there are other atoms whose truth
values are undefined [7]. Similarly, from a basic probabilistic logic program, we can obtain
(sometimes partial) probabilistic information about some ground atoms.

Example 3 Consider the following basic program:

IC = EXCLUSIVE(p,true, false) U EXCLUSIV E(q, bad, average, good)J
EXCLUSIV E(r,true, false) U EXCLUSIV E(s,true, false)

PB ={ Pr(ptrue)) = 4;
Pr(g(good)|p(true))
Pr(r(true)|s(true))

.3; Pr(q(good)|p(false)) = .5;
.6; Pr(r(true)|r(true)) = 1}

bl

Using Bayes’ rule, we can derive Pr(q(good)) = Pr(q(good) A p(true)) +
Pr(q(good)Ap(false)) = Pr(q(good)|p(true))«Pr(p(true))+Pr(q(good)|p(false))+Pr(p(false))
= 3% .44 5.6 =.42. We know partial information about Pr(q(bad)) and Pr(g(average))
because Pr(q(bad)) + Pr(g(average)) = 1 — Pr(q(good)) = .58. But we do not know any
probabilistic information about r(true),r(false),s(true) and s(false) (independently).

Definition 5 Given a basic program P. The fixpoint operator Tp is defined as a mapping
from 2B into 2B such that for all I € 218 Tp(I) is the smallest set in 218 satisfying the
following properties: (1) if S is a ground instance of a sentence in P such that ante(S) is a

subset of I then cons(S) € Tp(I); (2) if A€ Tp(I) then Ext(A) C Tp(I).

The transformation Tp produces only reflexive subsets of HB. Such subsets are important
to us because when we know (partial) probabilistic information about an atom A, we also
know (partial) probabilistic information about each other atom in Fxt(A). A subset I of
HB is a reflexive subset if VA € I, Fxt(A) C 1. We consider the space of reflexive subsets
of HB, denoted by RHB.

Proposition 1 (1) RHB is a complete lattice w.r.t. the normal C relation. (2) Tp is
monotonic on RHB, i.e. YI,I' € RHB : whenever I C ', Tp(1) C Tp(Il').

We define a simple iterative process for applying T'p.

Definition 6 Let ¢ range over the set of all countable ordinals. The upward sequences {I,}
and I are defined recursively by: (1) Iy ={}. (2) If 7 is a limit ordinal, I, = U, 1,. (3) If
r=v+ 1,1, =Tp(l,). (4) Finally, I. =U,Tp(l,).

5

Example 4 Continuing the example 3, the upward sequence {1,} is: Iy = {},
I = {p(true),p(false)}, Iy = [U{q(bad), q(average), q(good)}, I, = [3,¥e > 2. Iy is the set

of all ground atoms whose (partial) probability information can be obtained from the program.

The upward sequence {I,} is a monotonic sequence of elements in RHB. It follows by
classical results of Tarski that the upward sequence converges to the least fixpoint.

Theorem 1 The upward sequence {1,} converges to lfp(Tp) = L., the least fixzpoint in RHB.
Furthermore, if there are no function symbols in the language then the convergence occurs
after a finite number of steps.

We call [fp(Tp) the relevant set of atoms (RAS). RAS plays a similar role to well-founded
partial models [7]. We use RAS to formalize the concept of possible worlds implied by a
program. Let ¢ be a countable ordinal. An (-macro-world of the logic program P is a
maximal coherent subset of [,. A possible world is a maximal coherent subset of RAS.
We use PW to denote the set of possible worlds. We can see that there always exist possible
worlds for a program P.

Example 5 Continuing the previous example, there are two 1-macro-worlds:

wyr = {p(true)} and w1y = {p(false)}. The possible worlds and also 2-macro-worlds are
wo1 = {p(true), q(good) }; wyy = {p(true), ¢(average)};wys = {p(true), ¢(bad)};

way = {p(false), q(good)}; wes = {p(false), qlaverage)}; wae = {p(false), ¢(bad)}.

Let W be a possible world and A € W. Then W U IC derives =A", VA" € Ext(A) and
A" #£ A. So, W U IC represent a coherent assignment of values to the relevant random
variables.

4 Combining Rules and Probabilistic Logic Programs

A basic probabilistic logic program will typically not be a complete specification of a probabil-
ity distribution over the random variables represented by the atoms. One type of information
which may be lacking is the specification of the probability of a variable given combinations
of values of two or more variables which influence it. For real-world applications, this type of
information can be difficult to obtain. For example, for two diseases Dy and D, and a symp-
tom S we may know Pr(S|Dy) and Pr(S|Ds) but not Pr(S|Dy, Dy). Combining rules such
as generalized noisy-OR [5, 20] are commonly used to construct such combined influences.
We define a combining rule as any algorithm that takes as input a (possibly infinite) set
of ground probabilistic sentences with the same consequent
{Pr(Ao|Ai1,..., Ain,) = a;|]l <7 < m(m may be infinite)} such that U2, {Aq,..., A}
is coherent and produces as output Pr(Ag|As,...,A,) = «, where A;,..., and A, are all
different and n is a finite integer. In addition to the standard purpose of combining rules, we
also use them as one kind of default rule to augment missing causes (a cause is an atom in
the antecedent). In this case, the antecedents of the output contain atoms not in the input
sentences. The set of output causes can be a proper subset of the set of input causes, in
which case the combining rule is performing a filtering and summarizing task.

Example 6 Assume two diseases Dy, Dy and one symptom S, which are represented by
predicates dy,dy, and s, respectively. Also assume Dy, Dy and S have values normal and
abnormal. A program might contain only the following sentences:
Pr(s(abnormal)|dl(abnormal)) = .9, Pr(s(abnormal)|dl(normal)) = .15,

and Pr(s(abnormal)|d2(normal)) = .2. We can provide combining rules to construct from
the first and third sentences a new sentence of the form

Pr(s(abnormal)|dl(abnormal), d2(normal)) = a and from the second and third another new
sentence of the form Pr(s(abnormal)|dl(normal), d2(normal)) = 3, where o and 3 are two
numbers determined by the combining rule. The combining rules may also act as default
rules in augmenting the first and second sentences to achieve
Pr(s(abnormal)|dl(abnormal), d2(abnormal)) = o

and Pr(s(abnormal)|dl(normal), d2(abnormal)) = ', for some values o and 3'.

Definition 7 A (probabilistic logic) program is a triple (IC, PB,CR) , where (IC, PB)
is a basic probabilisitic logic program and CR is a set of combining rules. We assume that
for each predicate, there exists one corresponding combining rule in CR.

The combining rules usually depend on the meaning of the program. In [17], we discuss
the combining rules for interaction between effects of actions and persistence rules in planning
problems.

5 The Combined Relevant Probabilistic Base

With the addition of combining rules, the real structure of a program changes. In this section,
we consider the effect of combining rules on the relationships prescribed by the program.

Definition 8 Given a program P, let ¢ be a countable ordinal. The set of i-relevant
probabilistic sentences (i-RPB) is defined as the set of all ground instances S of some
probabilistic sentence in PB, such that all atoms in S are in 1,.

The «-RPB contains the basic relationships between atoms in [,. In the case of multi-
ple influences represented by multiple sentences, we need combining rules to construct the
combined probabilistic influence.

Definition 9 Given a program P. Let ¢ be a countable ordinal. The combined (-RPB
(-CRPB) is constructed by applying the appropriate combining rules to each mazimal set
of sentences {S;|¢ € I} (I maybe an infinite index set) in (-RPB which have the same
consequent and such that U;crante(S;) is coherent.

Combined -RPB’s play a similar role to completed logic programs. We assume that
each sentence in --CRPB describes all random variables which directly influence the random
variable in the consequent. We define a syntactic property of -CRPB which characterizes
the completeness of probability specification.

Definition 10 An «-CRPB is completely quantified if

(1) for all ground atoms A in I,, there exists at least one sentence in -CRPB with A in
the consequent; and

(2) for all ground sentences S in -CRPB we have the following property: Let S have the
form Pr(AglAy,..., Ay) = a, then for all i = 0,..,n, if val(A;) = v and v' € VAL(A;),v #
v, there exists another ground sentence S’ in «-CRPB such that S’ can be constructed from
S by replacing val(A;) by v' and a by some .

Definition 10 says that for each ground atom A we have a complete specification of the
probability of all possible values val(A) given all possible combinations of values of the atoms
that directly influence A. If we think of each obj(A) as representing a random variable in a
Bayesian network model then the definition implies that we can construct a link matrix for
each random variable in the model.

We call #-RPB the Relevant Probabilistic Base (RPB) and we call +-CRPB the Combined
Relevant Probabilistic Base (CRPB).

Example 7 Consider our burglary example and assume that the language contains only
one non-value constant john. RAS={ neighborhood(john,bad), neighborhood(john,average), neigh-
borhood(john,good), burglary(john,yes), burglary(john,no), alarm(john,true),

alarm(john,false), tornado(john,yes), tornado(john,no)}, and

RPB = {Pr(neighborhood(john,average))=.4; Pr(neighborhood(john,bad))=.2;
Pr(neighborhood(john,good))=.4; Pr(burglary(john,yes)|neighborhood(john,average))=.4;
Pr(burglary(john,yes)|neighborhood(john,good))=.2; Pr(burglary(john,yes)|neighborhood(john,bad))=.4;
Pr(alarm(john,yes)|tornado(john,yes))=.99; Pr(alarm(john,yes)|burglary(john,yes))=.98;
Pr(alarm(john,yes)|burglary(john,no))=.05; Pr(alarm(john,yes)|tornado(john,no))=.1}.

In the CRPB, the sentences in RPB with alarm as the consequent are transformed into
sentences specifying the probability of alarm conditioned on both burglary and tornado. The
other sentences in RPB remain the same in CRPB.

In conjunction with acyclicity property of probabilistic bases, we are interested in a class
of combining rules which is capable of transferring the acyclicity property of a PB to the
correspoding CRPB. Given a program P, we say a combining rule in CR is self-contained if
the generated sentence Pr(A|As,..., A,) = a from the input set

{Pr(A|Aa, ..., Amn,) =]l <7< m(m may be infinite)}
satisfies one additional property:

{Al, ce ,An} g UA’eExt(A){{Bih ce 7Bm} PT(A/|BZ'1, ceey Bml) = is in RPB}
Self-containedness seems to be a reasonable assumption on a combining rule: it does not
allow the generation of new atoms in the antecedent which are not ’'related’ to any atom
in the extension of the consequent. In order to generate a sentence with consequent A, a
self-contained combining rule may need to collect all the sentences which have an atom in
FExt(A) as consequent.

Example 8 The combining rule in the example 6 is not self-contained because the sentence
Pr(s(abnormal)|dl(abnormal), d2(abnormal)) = o' is constructed from a set of sentences

which do not contain the atom d2(abnormal). For this kind of diagnosis problem, generalized
noisy-OR rule [20] always assume that if a disease is in the abnormal state then there is a
probability 1 that the symptom is abnormal, that means Pr(s(abnormal)|d2(abnormal)) = 1.
In order to use self-contained combining rules, we need to write explicitly those sentences.

6 Model Theory

The semantics of a probabilistic program is characterized by the probability weights assigned
the ground atoms. That annotated approach is widely used in the related work [14, 15,
13]. Because of space limitation, we only show how to assign weights to ground atoms.
Details on annotated models can be found in the full paper.

6.1 Probabilistic Independence Assumption

In addition to the probabilitistic quantities given in the program, we assume some probabilis-
tic independence relationships specified by the structure of probabilistic sentences. Proba-
bilistic independence assumptions are used in all probability model construction work [22,
4, 8,19, 9] as the main device to construct a probability distribution from local conditional
probabilities. Unlike Poole [19] who assumes independence on the set of consistent “as-
sumable” atoms, we formulate the independence assumption in our framework by using the
structure of the sentences in (-CRPB. We find this approach more natural since the structure
of the +-CRPB tends to reflect the causal structure of the domain and independencies are
naturally thought of causally.

Definition 11 Given a set P of ground probabilistic sentences, let A and B be two ground
atoms. We say A is influenced by B in P if (1) there exists a sentence S, an atom A’ in
Ext(A) and an atom B" in Ext(B) such that A" = cons(S) and B’ € ante(S) or (2) there
exists another ground p-atom C such that A is influenced by C in P and C s influenced by
B i P.

Assumption We assume that if Pr(A|A1,...,A,) = « is in «-CRPB then for all ground
atoms B which are not in Fxt(A) and not influenced by A in «-CRPB, A and B are proba-
bilistically independent given Aq,..., A,.

Example 9 Continuing the burglary example, alarm(john,yes) is probabilistically indepen-
dent of neighborhood(john, good) and neighborhood(john,bad) given burglary(john,yes)
and tornado(john,no).

Definition 12 (Consistent (-CRPB) A completely quantified :-CRPB is consistent if
(1) there is no atom in I, which is influenced by itself in .-CRPB and

(2) for all Pr(Ao|A1, ..., An) = a in -CRPB, > {a;|Pr(A}|A1,..., An) = a; € -CRPB and
0bj(Af) = 0bj(Ag)} = 1.

6.2 Possible World Semantics

In this section, we allow the language to contain function symbols. There are, in general,
infinitely many possible worlds, infinitely many -macro -worlds. We use an approach similar
to that of Poole [19] by assigning weights to only certain subsets of worlds.

Definition 13 (Rank of an atom) Let A be a ground atom in RAS. We define rank(A),
the rank of A, recursively by: (1) If A is not influenced (in CRPB) by any atom then
rank(A) =0, otherwise (2) rank(A) = sup{rank(B)|Pr(A|...,B,...) is in CRPB} 4+ 1.

Example 10 In the burglary example, rank(tornado(.,.)) = rank(neighborhood(.,.)) =0,
rank(burglary(.,.)) = 1 and rank(alarm(.,.) = 2.

The program with the following CRPB has an atom which cannot be assigned a finite
rank: CRPB = {Pr(q(true)|p(X,true)) = 1; Pr(p(X + 1,true)|p(X,true)) = 1}. We
cannot assign any finite rank to q(true) because rank(q(true)) > rank(p(X,true)), vV.X.

We can see that if CRPB has no cycles then rank is a well-defined mapping. The following
lemma will be useful in working with acyclic probabilistic bases.

Lemma 1 Given a program P with an acyclic probabilistic base. If the combining rules are
self-contained then the rank() function is well-defined.

In defining the sample space, we will not consider individual possible world but sets of
possible worlds characterized by formulae of specific forms.

Definition 14 Given a program P, we can determine the set of all possible worlds PW.
Assume that the rank function is well-defined. Let A be a ground atom in RAS. We denote
the set of all possible worlds containing A by W(A). We define the sample space wp to
be the smallest set consisting of (1) PW € wp; (2) YA € RAS such that rank(A) is finite,
W(A) €wp; (3) if W € wp then PW — W € wp; (4) if Wi, Wy are in wp, then Wi N Wy is

mn wp.

We consider the probability functions on the sample space wp. Let Pr be a probability
function on the sample space, we define Pr(Ay,..., A,), where Ay,..., A, are atoms in RAS
with finite ranks, as Pr(N%, W (A;)). We take a sentence of the form Pr(Ag|A41,...,A,) =«
as shorthand for Pr(Ag, A1,...,An) = a X Pr(A1,...,A,). We say Pr() satisfies a sentence
Pr(AolAs, ..., An) = aif Pr(Ag, A1, ..., Ay) = ax Pr(Ay, ..., A,) and Pr() satisfies CRPB
if it satisfies every sentence in C RPB.

Definition 15 A probability distribution induced by a program P is a probability
distribution on wp satisfying CRPB and the independence assumption implied by CRPB.

10

Example 11 Consider the following program:

e EXCLUSIV E(p,true, false) U EXCLUSIV E(q, bad, average, good)
PB { Pr(p(0,true)) = .4; Pr(p(0, false)) = .6;
Pr(q(good)|p(T, true)) = .3; Pr(g(good)|p(T, false)) = .b;
Pr(p(T + 1, true)|p(T, true)) = .999; Pr(p(T + 1, false)|p(T, true)) = .001
Pr(p(T + 1, true)|p(T, false)) = .002; Pr(p(T + 1, false)|p(T, false)) = .998}
CR =1{ Generalized — Noisy — OR}

We can imagine that p is a timed predicate with the first attribute indicating time. The last
four sentences represent persistence rules. We have Pr(W(p(0,true))) = .4, Pr(W(p(0, false))) =
6, Pr(W(p(1, true))) = (.999 x .4 +.002 x .6) = .4008, . ..

Theorem 2 Given a program P, if the CRPB is completely quantified and consistent then
there exists one and only one induced probability distribution.

The following theorem allows us to handle probability of conjunctions and disjunctions
in our framework.

Theorem 3 Given a program P. Any probability function on wp satisfying CRPB assigns
a weight to any formula of the form Vi_; N7_, Ai;, where n and m are finite integers and

rank(A;j) is finite, Vi, j.

7 Fixpoint Theory Revisited

We now extend the fixpoint theory to include the quantatitive information given in a pro-
gram. We have constructed in a previous section the transformation 7Tp and the upward
sequence {I,}. We associate with each I, a sample space and a probability distribution.

Definition 16 Given a program P, we can determine the set of possible worlds PW. Assume
that the rank function is well-defined and ¢ ts a finite ordinal. We define the sample space
wh to be the smallest set consisting of (1) PW € wp; (2) VA € I, such that rank(A) < ¢,
W(A) € wp; (3) if W € wp then PW — W € wp; (4) if Wi, Wy are in wp then Wi N Wy is

N Wp.
Proposition 2 If ¢ < 7 are two finite ordinals then wp C wp C wp.

We define the probability functions on the sample space wp induced by a program P by
replacing RAS by I, and CRPB by «-CRPB in the definitions of the previous section. We

call the corresponding induced probability function Pr,.

Theorem 4 [f « < 7 are two finite ordinals and W € wp then Pr (W) = Pr (W) =
Prp(W), where Prp() is the probability distribution induced by P and RAS.

So, as the upward sequence {I,} "converges” to [fp(Tp), {wp} converges to wp and Pr,()
"converges” to Prp(). Here, we use a "loose” definition of convergence: for any finite first
order formula F of ground finite rank atoms, there exists an integer n such that for all
¢ > n, the set W(F) of possible worlds satisfying F is an element of wp and Pr, (W (F)) =
Prp(W(F)).

11

8 Proof Theory

In this section, we define a proof theory which can be used to derive the probability of a
ground atom given a program. We will use ¢, with possible subscripts, to denote a goal
atom. We will use a process similar to the SL.D proof procedure with the only real difference
being in the handling of combining rules. We call this proof procedure probabilistic SLD
(p-SLD).

A query is a sentence of the form Pr(G4,...,G,) =7, where (; are atoms. The query is a
request to find all ground instances Gy A...AG’ of Gy A...AG,, such that Pr(G)A...ANG!)
can be determined from the program P and to return those probability values.

Definition 17 Suppose Pr(Gq,...,G,) =7 is a query, called Q, and S is the sentence
Pr(AolA1, ..., An) = «a in the program, and that the variables in Q) and S are standard-
ized apart. Let G; be the selected atom in). Assume that 0 is the most general unifier of
Ao and G;. The resolvent of) and S using (mgu) 0 on G; is the sentence

Pri....Gic1, Ay, oo A, Gy, .)0 =2

A p-SLD derivation of the initial query Q1 from a program P is a sequence ()1, 51, G, 01),
e (Qr, Sy, Gy 8,), ., where Yi > 1,5, is a renamed version of a sentence in P and Qi1
is the resolvent of (); and S; using 0; on the selected atom G;.

An p-SLD refutation of the query) is an n-step p-SLD derivation of the initial query ()
such that the resolvent of), and S, using 0, is the empty query. The combined substitution
0y ...0, is called the computed answer substitution.

The p-SLD refutation tree of the query @) is the set of all p-SLD refutations of the initial

query Q).

We need the concept of p-SLD refutation tree because before we can use the combining
rules to construct the sentences with an atom A as consequent in CRPB, all sentences with
consequent matching A in P need to be collected. Furthermore, we need to instantiate those
sentences to ground before applying the combining rules.

Example 12 For the sentence Pr(q(true)|r(X, true)) = .1, a combining rule needs to con-
sider all ground sentences Pr(q(true)|r(aq,true)) = .1, Pr(q(true)|r(az, true)) = .1,...,
where ay,aq, ... are all constants in the language.

Definition 18 The ground p-SLD refutation tree of the query Q) is the set of all ground
p-SLD refutations of the initial query (). A ground p-SLD refutation is obtained from a p-
SLD refutation by first applying the associated computed answer substitution to each formula
in the derivation and finally instantiating it to a possible ground instance.

Let @ be the query Pr(G) =?. The ground p-SLD refutation tree of () contains all the
necessary ground probabilistic sentences to construct the combined sentences in CRPB whose
consequents are ground instances of GG or of the selected atoms in the original refutation trees.
We apply the combining rules to it.

12

Definition 19 Let Q) be the query Pr(G) =?. The combined supporting set of) is the
set of ground probabilistic sentences constructed from the ground p-SLD refutation tree of ()
by the following procedure: for each A, a (ground) selected atom or ground instance of G
appearing in the tree, collect all (ground) sentences in it which have A as consequent and
apply the appropriate combining rule to construct the combined sentence.

The combining rules may generate new atoms which did not occur in the ground refuta-
tion tree, as in example 6. We need to apply the same process to these new atoms.

Definition 20 Let () be the query Pr(G) =?. The augmented combined supporting
set of () is constructed by augmenting the combined supporting set of () in the following
recursive way: starting from the combined supporting set of), for each atom A appearing
in that set, if there is no sentence (in that set) with A as consequent then augment it with
the augmented combined supporting set of the query Pr(A) =7.

Example 13 Continuing the example 11 with the query Q) : Pr(p(2,true)) =7. The p-SLD
refutation tree of () is the following set of p-SLD refutations:

{ { (Pr(p(2,true)) =7, Pr(p(t + 1, true)|p(t,true)) = .999, p(2, true), {t|1}),
(Pr(p(1,true)) =7 P (p(t + 1, true)|p(t, true)) = 999, p(1,true), {t|0}),
(Pr(p(0,true)) =7, Pr(p(0,true)) = .4, p(0, true), {}) }

{ (Pr(p(2,true)) =7, Pr(p(t + 1,true)|p(t,true)) = 999, p(2, true), {t|1}),
(Pr(p(1,true)) =7 Pr(p(t + 1,true)|p(t, false)) = .002, p(1,true), {t|0}),
(Pr(p(0, false)) =7, Pr(p(0, false)) = .6,p(0, false),{}) }

{ (Pr(p(2,true)) =7 Pr(p(t + 1,true)|p(t, false)) = .002, p(2,true), {t|1}),
(Pr(p(1, false)) =7, Pr(p(t + 1, false)|p(t, false)) = 998, p(1, false),{t|0}),
(Pr(p(0, false)) =7, Pr(p(0, false)) = .6,p(0, false), {}) b

{ (Pr(p(2,true)) =7 Pr(p(t + 1,true)|p(t, false)) = .002, p(2,true), {t|1}),
gPr(p(l Jalse)) =7, Pr(p(t + 1, false)|p(t, true)) = .001,p(1, false), {t|0}),

Pr(p(0,true)) =7 Pr(p(O true)) = .4, p(0,true), {}) 1}

The ground p-SLD refutation tree, the combined supporting set, and the augmented support-
ing set of () are also equal to the above set.

Proposition 3 Given a program P and an atom G, we can construct the augmented com-
bined supporting set PS of the query Pr(G) =7. If the rank() function is well-defined
then the rank of each atom in PS can be determined by a simple recursive procedure: If
Pr(G) = a € PS then rank(G) =0

else rank(G) = sup{rank(A)|(Pr(G|...,A,...) =a) € PS} + 1.

The probability of a ground atom G computed from the program P, Pr§(G),
can be calculated from the augmented combined supporting set PS of the query Pr(G) =7
recursively:

If Pr(G) = a € PS then return Pr&(G) = a
else if {G,. .., G} is coherent, and let G; be the atom with highest rank, Pr9(Gy, ..., G,) =
S{ax Pr&(Gr, ..., G, Gy oo, Gy Ary o A [(Pr(G A .. AL) = a) € PS)
else Pri(Gy,...,G,) = 0.

13

Example 14 Continuing the example 11 with the query Q : Pr(p(2,true)) =7. Pr&(p(0,true)) =
4 Pr&(p(1,true)) = Pr(p(1,true)|p(0, true))x Pr8(p(0,true))+Pr(p(1, true)|p(0, false))x
Pr&(p(0, false)) = .999 x .4 +.002 x .6 = .4008;. ...

Theorem 5 Given a program P with a well-defined rank() and a ground atom G If rank(G)
is finite and CRPB is completely quantified and consistent then (1) the probability of G
computed from the program P, PrS((G), is equal to Prp(G), where Prp() is the probability
function induced by the logic program P. (2) the p-SLD procedure will return the value Pr%(G)
which is equal to Prp(G).

The condition that rank((G) be finite can be assured by the acyclicity property of proba-
bilistic logic programs. We have soundness and completeness of p-SLD for acyclic programs.

Theorem 6 Given a program P with an acyclic probabilistic base and self-contained com-
bining rules. If CRPB is completely quantified and consistent then p-SLD procedure is sound
and complete wrt finite rank ground atoms.

As can be seen in the recursive definition of Pr$(), p-SLD can be easily extended to
evaluate the probability of a finite conjunction of atoms. In fact, we can evaluate any finite
formula of the form V; A; A;; or A; V; A;;, where the A;; are atoms of finite rank by a simple
extension of p-SLD.

9 Local Maximum Entropy: Negation As Failure For
Probabilistic Logic Programs

Negation-as-failure is used as a default rule in the SLDNF proot procedure. It allows us to
conclude that a ground atom A has the truth value false if all attempts to prove A fail. In
probabilistic logic programs, such default rules are desirable both to shorten the programs
and to facilitate reasoning on incompletely specified programs. For these reasons we would
like to define a probabilistic analogue to negation-as-failure.

Example 15 Consider the example 3. It is obvious that we should be able to infer Pr(p(false)) =
6. Furthermore, we only know that Pr(q(average)|p(true)) + Pr(q(bad)|p(true)) = .7
and want to have some default rule to temporarily assign a probability value to each of

Pr(q(bad)|p(true)) and Pr(q(average)|p(true)).

A popular principle for assigning missing probability values is the mazimum entropy
principle. We propose the local mazimum entropy rule as a form of negation-as-failure for
probabilistic logic programs.

Definition 21 Given a program P and its corresponding CRPB. Let A be an atom in RAS
and VAL(A) = {v1,...,v,}. Thelocal maximum entropy rule (LME) can be applied to
A in the following situation: If Pr(A|Ay,..., Ax) = « is a sentence in CRPB such that the set

14

V = {val(A)|Pr(A'|A1,...,Ax) = o € CRPB and obj(A’) = obj(A)} has m,0 < m < n,
elements and 3, the sum of all o in those sentences, is < 1 then augment CRPB with the
following set of sentences { Pr(A'|A1, ..., Ar) = (1=03)/(n—m)|A" € Ext(A) and val(A’) €
-V

Example 16 Continuing the previous example, the LME rule would assign .6 to Pr(p(false))
and .35 to Pr(q(average)|p(true)) and Pr(q(bad)|p(true)).

We incorporate LME into the p-SLD proof procedure and call the new procedure p-
SLDLME by generalizing the concept of derivation and other dependent concepts. Details
are given in the full paper.

10 Bayesian Networks Construction

10.1 Baysian networks

Bayesian networks [18] are finite directed acyclic graphs. Each node in a Bayesian network
represents a random variable, which can be assigned values from a fixed finite set. A link
represents the relationship, either causal or relevance, between random variables at both
ends. Usually, a link from random variable A to a random variable B says that A causes B.
Associated with each node A is a link matrix, which contains the conditional probabilities
of random variable A receiving specific values given each combination of values of A’s par-
ents. The Bayesian network formalism is an efficient approach to representing probabilistic
structures and calculating posterior probabilities of random variables given a set of evidence.

In our query procedure, we will not only find the probability value of, say, a random
variable but its posterior probability after observing a set of evidence.

Definition 22 A set of evidence F is a set of atoms s.t. ground(FE) is coherent.

We do that by first constructing from the program the portion of the Bayesian network related
to the query. On the constructed network, we can use available propogation procedures to
update the probabilities taking into account the set of evidence.

Notice that, in our framework, an atom A represents the fact that the random variable
denoted by 0bj(A) receiving the value val(A) and VAL(A) is the set of all possible values

of that random variable.

Definition 23 Given a program P and a set of evidence E. A complete ground query is
a query of the form Pr(G) =7, where G is an atom, the last argument of G is a variable and
it ts the only variable in GG. The meaning of such a query is: find the posterior probability
distribution of 0bj(G). If VAL(G) = {vy1,...,v,} then the answer to such a query is a vector
a=(a,...,ap), where 0 < a; < 1,3°% o = 1 and «; is the posterior probability of obj(G)
receiving the value v;.

A complete query is a query of the form Pr(G) =7, where the last arqgument of G is a
variable and the other arguments may also contain variables. The meaning of such a query
is: find all ground instances G’ of G such that the complete ground query Pr(G') =7 has an
answer and return those answers.

15

Q*-PROCEDURE

BEGIN
{ Build the network that supports the evidence }
NET:= {};

FOR i:=1 TO number_of_elements_in_E DO
temp := BUILD-NET(the i element E; of E, NET);

{ Extend the network to support the ground instances of the query }

SUBSS := BUILD-NET (G, NET);

UPDATE(NET,E);

{ Output posterior probabilities }

FOR each 6 in SUBSS output the probability values at node 0bj(G8);
END.

Figure 2: Query processing procedure.

10.2 Bayesian Network Construction Procedure

Because of space limitation, we drop the details which can be found in the full paper. In
this section, we present a query answering algorithm, (*-procedure, for answering complete
queries. We only consider self-contained combining rules. This assumption allows us to omit
the augmentation step, which was presented in the p-SLD proof procedure.

Assume that we are given a program P, a set of evidence E and a complete query Pr(G) =
7. @)*-procedure has the following two main steps: build the supporting Bayesian network
for {A} U (ground(E) N RAS) by a backward chaining process similar to Prolog engine and
calculate the posterior probability using the set of evidence E and any available procedure
[18]. @Q*-procedure is more complex than SLDNF because it needs to collect all relevant
sentences before combining rules can be used.

The pseudo code for Q)*-procedure is shown in Figure 2. It simply makes calls to BUILD-
NET function, which builds the supporting network of an atom, with atoms in E and G
as successive arguments. The FOR loop constructs the supporting network for the set of
evidence and the final BUILD-NET call augments the constructed network with support-
ing network of ground instances of the query. UPDATE() is any probability propogation
algorithm on Bayesian networks. BUILD-NET receives as input an atom, whose support-
ing network needs to be explored. It updates the NET, which might have been partially
built. The returning value of the function is the set of substitutions for input atom to get
all corresponding ground instances in the resulting network.

10.3 The soundness and completeness of ()*-procedure

In @)*-procedure, we do not address the problem of termination. We expect that the tech-
niques for assuring termination of Prolog programs could be applied to Q)*-procedure.

Theorem 7 (Soundness) Given a program P. If CRPB is completely quantified then ()*-
procedure is sound wrt complete queries.

16

Theorem 8 (Soundness and Completeness) Given a program P with an allowed and
acyclic PB. If CRPB is completely quantified then QQ*-procedure s sound and complete wrt
complete ground queries and ground finite set of evidence.

11 Related Work

In a related paper [16] we present a temporal variant of our logic. We describe the ap-
plication of this framework to representing probabilistic temporal processes and projecting
probabilistic plans.

Poole [19] expresses an intention similar to ours: “there has not been a mapping between
logical specifications of knowledge and Bayesian network representations ..”. He provides
such a mapping using probabilistic Horn abduction theory, in which knowledge is repre-
sented by Horn clauses and the independence assumption of Bayesian networks is explicitly
stated. His work is developed along a different track than ours, however, by concentrating
on using the theory for abduction. Our approach has several advantages over Poole’s. We
do not impose as many constraints on our representation language as he does. Probabilis-
tic dependencies are directly represented in our language, while in Poole’s language they
are indirectly specified through the use of special predicates in the rules. Our probabilistic
independence assumption is more intuitively appealing since it reflects the causality of the
domain.

References

[1] K. R. Apt and M. Bezem. Acyclic programs. New Generation Computing, pages 335
363, Sept 1991.

[2] F. Bacchus. Using first-order probability logic for the construction of Bayesian networks.
In Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence, pages
219-226, July 1993.

[3] H. A. Blair and V. S. Subrahmanian. Paraconsistent logic programming. Theoretical
Computer Science, pages 3554, 1987. 68.

[4] J.S. Breese. Construction of belief and decision networks. Computational Intelligence,

8(4):624-647, 1992.

[5] F.J. Diez. Parameter adjustment in bayes networks. the generalized noisy or-gate. In
Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence, pages
99-105, Washington, D.C., July 1993.

[6] M. C. Fitting. Bilattices and the semantics of logic programming. Journal of Logic
Programming, (11):91-116, 1988.

[7] A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general
logic programs. JACM, pages 620-650, July 1991.

17

[3]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R.P. Goldman and E. Charniak. A language for construction of belief networks. IEEFE
Transactions on Pattern Analysis and Machine Intelligence, 15(3):196-208, March 1993.

P. Haddawy. Generating Bayesian networks from probability logic knowledge bases.
In Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, pages
262-269, Seattle, July 1994.

D. Heckerman and M.P. Wellman. Bayesian networks. Communications of the ACM,
38(3):27-30, March 1995.

M. Kifer and V. S. Subramahnian. Theory of generalized annotated logic programs and
its applications. Journal of Logic Programming, pages 335-367, 12 1992.

J. W. Lloyd. Foundation of Logic Programming. Second edition. Springer-Verlag, 1987.

Raymond Ng. Semantics and consistency of empirical databases. In Proceedings of the
1993 International Conference on Logic Programming, pages 812-826, 1993.

Raymond Ng and V. S. Subrahmanian. A semantical framework for supporting sub-
jective and conditional probability in deductive databases. In Proceedings of the 1991
International Conference on Logic Programming, pages 565-580, 1991.

Raymond Ng and V. S. Subrahmanian. Probabilistic logic programming. Information
and Computation, (2):150-201, 1992.

L. Ngo, P. Haddawy, and J. Helwig. A theoretical framework for context-sensitive tem-
poral probability model construction with application to plan projection. In Proceedings
of the Eleventh Conference on Uncertainty in Artificial Intelligence, pages 419-426, Au-
gust 1995.

Liem Ngo and Peter Haddawy. Plan projection as deduction and plan generation as
abduction in a context-sensitive temporal probability logic. In Submitted to AIPS, 1995.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, CA, 1988.

D. Poole. Probabilistic horn abduction and bayesian networks. Artificial Intelligence,
64(1):81-129, November 1993.

S. Srinivas. A generalization of the noisy-or model. In UAI-93, pages 208-217, July
1993.

van Emden M. H. Quantitative deduction and its fixpoint theory. Journal of Logic
Programmaing, pages 37-53, 4 1986.

M.P. Wellman, J.S. Breese, and R.P. Goldman. From knowledge bases to decision
models. The Knowledge Engineering Review, 7(1):35-53, 1992.

18

