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Abstract

We present a probabilistic logic programming framework that allows the repre�
sentation of conditional probabilities� While conditional probabilities are the most
commonly used method for representing uncertainty in probabilistic expert systems�
they have been largely neglected by work in quantitative logic programming� We de�
�ne a �xpoint theory� declarative semantics� and proof procedure for the new class
of probabilistic logic programs� Compared to other approaches to quantitative logic
programming� we provide a true probabilistic framework with potential applications in
probabilistic expert systems and decision support systems� We also discuss the relation�
ship between such programs and Bayesian networks� thus moving toward a uni�cation
of two major approaches to automated reasoning�
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� Introduction

Reasoning under uncertainty is a topic of great importance to many areas of Computer Sci�
ence� Of all approaches to reasoning under uncertainty� probability theory has the strongest
theoretical foundations� In the quest to extend the framwork of logic programming to
represent and reason with uncertain knowledge� there have been several attempts to add
numeric representations of uncertainty to logic programming languages ���� �� 	� ��� �
�
��� �	�� Of these attempts� the only one to use probability is the work of Ng and Sub�
rahmanian ����� In their framework� a probabilistic logic program is an annotated Horn
program� A typical example clause in a probabilistic logic program� taken from ����� is
path
X�Y � � ������ ����� � a
X�Y � � ��� ��� which says that if the probability that a type A
connection is used lies in the interval ����� then the reliability of the path is between ���� and
����� As this example illustrates� their framework does not employ conditional probability�
which is the most common way to quantify degrees of in�uence in probabilistic reasoning
and probabilistic expert systems ����� In ��	� the authors allow clauses to be interpreted as
conditional probability statements� but they consider only the consistency of such programs�
and do not provide a query answering procedure�

Bayesian networks ���� have become the most popular method for representing and rea�
soning with probabilistic information ����� An extended form of Bayesian networks� in�uence
diagrams� are widely used in decision analysis ����� The strengths of causal relationships in
Bayesian networks and in�uence diagrams are speci�ed with conditional probabilities� A
prominent feature of Bayesian networks is that they allow computation of posterior proba�
bilities and performance of systematic sensitivity analysis� which is important when the exact
probability values are hard to obtain� Bayesian networks are used as the main representation
and reasoning device in probabilistic diagnostic systems and expert systems�

Bayesian networks were originally presented as static graphical models� for a problem
domain the relevant random variables are identi�ed� a Bayesian network representing the
relationships between the random variables is sketched� and probability values are assessed�
Inference is then performed using the entire domain model even if only a portion is relevant to
a given inference problem� Recently the approach known as knowledge�based model construc�
tion ���� has attempted to address this limitation by representing probabilistic information in
a knowledge base using schematic variables and indexing schemes and constructing a network
model tailored to each speci�c problem� The constructed network is a subset of the domain
model represented by the collection of sentences in the knowledge base� Approaches to this
area of research have either focused on practical model construction algorithms� neglecting
formal aspects of the problem ��� 
�� or focused on formal aspects of the knowledge base rep�
resentation language� without presenting practical algorithms for constructing networks ����
��� In ���� ��� we propose both a theoretical framework and a procedure for constructing
Bayesian networks from a set of conditional probabilistic sentences�

The purpose of this paper is two�fold� First� we propose an extension of logic program�
ming which allows the representation of conditional probabilities and hence can be used to
write probabilistic expert systems� Second� we investigate the relationship between prob�
abilistic logic programs and Bayesian networks� While Poole ���� shows how to represent
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a discrete Bayesian network in his Probabilistic Horn Abduction framework� in this paper
we address both sides of this relationship� First� we show how Bayesian networks can be
represented easily and intuitively by our probabilistic logic programs� Second� we present a
method for answering queries on the probabilistic logic programs by constructing Bayesian
networks and then propogating probabilities on the networks� We provide a declarative se�
mantics for probabilistic logic programs and prove that the constructed Bayesian networks
faithfully re�ect the declarative semantics�

� Syntax

Throughout this paper� we use Pr and sometimes PrP � P r
C
P to denote a probability distribu�

tion� A�B� � � �with possible subscripts to denote atoms� names with leading capital characters
to denote domain variables� names with leading small characters to denote constants and
p� q� � � � with possible subscripts to denote predicates� We use a �rst order language con�
taining in�nitely many variable symbols and �nitely many constant� function and predicate
symbols� We use HB to denote the Herbrand base of the language� which can be in�nite� For
convenience� we use comma instead of logical AND and semicolons to seperate the sentences
in a list of sentences�

Each predicate represents a class of similar random variables� In the probability models
we consider� each random variable can take values from a �nite set and in each possible
realization of the world� that variable can have one and only one value� For example� the
variable neighborhood of a person X can have value bad� average� good and� in each possible
realization of the world� one and only one of these three values can be true� the others
must be false� We capture this property by requiring that each predicate have at least one
attribute representing the value of the corresponding random variable� By convention we
take this to be the last attribute� For example� the variable neighborhood of a person X can
be represented by a two�position predicate neighborhood
X�V ��the �rst position indicates
the person and the second indicates the type of that person�s neighborhood 
bad� average
or good�� We associate with each predicate a value integrity constraint statement�

De�nition � The value integrity constraint statement associated with an m�ary pred�
icate p consists of the following �rst order sentences 	�
 p
X�� � � � �Xm��� V � � V � v� �
� � � � V � vn� 	�
 � p
X�� � � � �Xm��� vi�� p
X�� � � � �Xm��� vj���i� j � � � i �� j � n� where
n � ��m � � are two integers� v�� � � � � vn are di
erent constants� called the value constants�
denoting the possible values of the random variables corresponding to p� X�� � � � �Xm�� are
di
erent variable names and each sentence is universally quanti�ed over the entire sentence�
For convenience� we use EXCLUSIV E
p� v�� � � � � vn� to denote the above set of sentences�

We use � as the identity relation on HB and always assume our theories include Clark�s
Equality Theory ����� We denote by V AL
p� the set fv�� � � � � vng� If A is an atom of predicate
p� we also use V AL
A� as equivalent to V AL
p�� If A is the ground atom p
t�� � � � � tm��� v�
then val
A� denotes the value v and obj
A� denotes the random variable corresponding to

p� t�� � � � � tm����
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We require such a value integrity constraint for each predicate� The set of all the integrity
constraints is denoted by IC�

Example � The value integrity constraint for the predicate neighborhood is
EXCLUSIVE�neighborhood� bad� average� good� �

f� neighborhood�X� bad�� neighborhood�X� average�	

� neighborhood�X� bad�� neighborhood�X� good�	

� neighborhood�X� average�� neighborhood�X� good�	

neighborhood�X� V �� V � bad� V � average� V � goodg�

For a person� say named John� neighborhood
john� good� means the random variable neigh�
borhood of John� indicated in the language by obj
neighborhood
john� good��� is good� indi�
cated in the language by val
neighborhood
john� good�� � good� In any possible world� one
and only one of the following atoms is true� neighborhood
john� bad��
neighborhood
john� average�� or neighborhood
john� good�� V AL
neighborhood�� or
V AL
neighborhood
john� bad��� is the set fbad� average� goodg�

We have two kinds of constants� The value constants are declared by EXCLUSIVE
clauses and used as the last arguments of predicates� The non�value constants are used for
the other predicate arguments�

De�nition � Let A be the ground atom p
t�� � � � � tm�� We de�ne Ext
A�� the extension of
A� to be the set fp
t�� � � � � tm��� v�jv � V AL
p�g�

Example � In the burglary example� Ext
neighborhood
john� bad�� �
fneighborhood
john� bad�� neighborhood
john� average�� neighborhood
john� good�g�

Let A be an atom� We de�ne ground
A� to be the set of all ground instances of A� A
set of ground atoms fAij� � i � ng is called coherent if there do not exist any Aj and Aj�

such that j �� j� and obj
Aj� � obj
Aj�� 
 and val
Aj� �� val
Aj�� ��

De�nition � A probabilistic sentence has the form Pr
A�jA�� � � � � An� � � where n �
�� � � � � �� and Ai are atoms� The sentence can have free variables and each free vari�
able is universally quanti�ed over its entire scope� The meaning of such a sentence is� If
Pr
B�jB�� � � � � Bn� � � is a ground instance of it then the conditional probability of obj
B��
achieving the value val
B�� given obj
Bi� having value val
Bi���i � � � i � n� is ��

Let S be the sentence Pr
A�jA�� � � � � An� � �� We use ante
S�� the antecedent of S�
to denote the conjunction A� 	 � � � 	 An and cons
S�� the consequent of S� to denote A��
Sometimes� we use ante
S� as the set of conjuncts�

An alternative representation of the probability sentence Pr
A�jA�� � � � � An� � � is A� �
A�� � � � � An � �� where � is a value associated with the entire sentence� We will stick with the
form in the de�nition but mention the alternative representation to highlight the resemblance
to quantitative logic program clauses� Notice that by using predicates with value attribute
and integrity constraints� we can explicitly represent �negative facts��

	



IC 	 EXCLUSIV E
neighborhood� bad� average� good��
EXCLUSIV E
burglary� yes� no� �EXCLUSIV E
alarm� yes� no��
EXCLUSIV E
tornado� yes� no�

PB 	 f Pr
neighborhood
john� average�� 	 ��

Pr
neighborhood
john� bad�� 	 ��
Pr
neighborhood
john� good�� 	 ��

Pr
burglary
X� yes�jneighborhood
X� average�� 	 ��

Pr
burglary
X� yes�jneighborhood
X� good�� 	 ��

Pr
burglary
X� yes�jneighborhood
X� bad�� 	 ��

Pr
alarm
X� yes�jburglary
X� yes�� 	 ���
Pr
alarm
X� yes�jburglary
X�no�� 	 ���

Pr
alarm
X� yes�jtornado
X� yes�� 	 ���
Pr
alarm
X� yes�jtornado
X�no�� 	 ���g

Figure �� A Basic Probabilistic Logic Program�

��� Basic Probabilistic Logic Programs

De�nition � A basic �probabilistic logic� program consists of two parts� the proba�
bilistic base PB is a �nite set of probabilistic sentences and the set IC of value integrity
constraints for the predicates in the language�

Consider the following motivating example� which will be referred to throughout the
remainder of the paper� A burglary alarm could be triggered by a burglary or a tornado�
The likelihood of a burglary is in�uenced by the type of neighborhood one resides in� Figure
� shows a possible basic probabilistic logic program for representing this example� We have
the following predicates� neighborhood� burglary� alarm� and tornado� The interpretation
of statements in IC is similar to that of EXCLUSIV E
neighborhood� bad� average� good�
shown in a previous example�

��� Acyclic Probabilistic Bases

In this paper� major results are achieved for a class of programs characterized by acyclicity�
A probabilistic base PB is called acyclic if there is a mapping ordPB
� from the set of ground
instances of atoms into the set of natural numbers such that 
�� For any ground instance
Pr
A�jA�� � � � � An� � � of some sentence in PB� ordPB
A�� � ordPB
Ai���i � � � i � n� 	�

If A and A� are two ground atoms such that A� � Ext
A� then ordPB
A� � ordPB
A���

The expressiveness of acyclic logic programs is demonstrated in ���� We expect that prob�
abilistic logic programs with acyclic probabilistic bases will prove to have equal importance�
To the best of our knowledge� knowledge bases of conditional probabilisties containing loops
are considered problematic and all those considered in the literature are acyclic�






� Fixpoint Semantics

��� The Relevant Atom Set

In this section� we consider the implications of the structure of basic probabilistic logic
programs� ignoring the probability values associated with the sentences� We view the prob�
abilistic sentence Pr
A�jA�� � � � � An� � � as the Horn clause A� � A�� � � � � An� Our purpose
is to determine the set of relevant atoms implied by a program� For normal logic programs�
�xpoint theory characterizes the semantics of a program by a �minimal� set of literals which
is the �xpoint of a transformation constructed from its syntactic structure� That set consists
of ground atoms that are considered true 
and their negations false�� and ground atoms that
are considered false 
and their negations true�� Usually� there are other atoms whose truth
values are unde�ned ���� Similarly� from a basic probabilistic logic program� we can obtain

sometimes partial� probabilistic information about some ground atoms�

Example � Consider the following basic program�

IC 	 EXCLUSIV E
p� true� false� �EXCLUSIV E
q� bad� average� good��
EXCLUSIV E
r� true� false� �EXCLUSIV E
s� true� false�

PB 	 f Pr
p
true�� 	 ��

Pr
q
good�jp
true�� 	 ��
Pr
q
good�jp
false�� 	 ��

Pr
r
true�js
true�� 	 ��
Pr
r
true�jr
true�� 	 �g

Using Bayes� rule� we can derive Pr
q
good�� � Pr
q
good� 	 p
true�� �
Pr
q
good�	p
false�� � Pr
q
good�jp
true��
Pr
p
true���Pr
q
good�jp
false��
Pr
p
false��
� �	 
 �
� �� 
 �� � �
�� We know partial information about Pr
q
bad�� and Pr
q
average��
because Pr
q
bad�� � Pr
q
average�� � � � Pr
q
good�� � ���� But we do not know any
probabilistic information about r
true�� r
false�� s
true� and s
false� 	independently
�

De�nition 	 Given a basic program P� The �xpoint operator TP is de�ned as a mapping
from �HB into �HB such that for all I � �HB� TP 
I� is the smallest set in �HB satisfying the
following properties� 	�
 if S is a ground instance of a sentence in P such that ante
S� is a
subset of I then cons
S� � TP 
I�� 	�
 if A � TP 
I� then Ext
A� � TP 
I��

The transformation TP produces only re�exive subsets ofHB� Such subsets are important
to us because when we know 
partial� probabilistic information about an atom A� we also
know 
partial� probabilistic information about each other atom in Ext
A�� A subset I of
HB is a re
exive subset if �A � I�Ext
A� � I� We consider the space of re�exive subsets
of HB� denoted by RHB�

Proposition � 	�
 RHB is a complete lattice w�r�t� the normal � relation� 	�
 TP is
monotonic on RHB� i�e� �I� I � � RHB � whenever I � I �� TP 
I� � TP 
I ���

We de�ne a simple iterative process for applying TP �

De�nition � Let � range over the set of all countable ordinals� The upward sequences fI�g
and I� are de�ned recursively by� 	�
 I� � fg� 	�
 If � is a limit ordinal� I� � 
��� I�� 	�
 If
� � � � �� I� � TP 
I��� 	�
 Finally� I� � 
�TP 
I���
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Example � Continuing the example �� the upward sequence fI�g is� I� � fg�
I� � fp
true�� p
false�g� I� � I� 
 fq
bad�� q
average�� q
good�g� I� � I���� � �� I� is the set
of all ground atoms whose 	partial
 probability information can be obtained from the program�

The upward sequence fI�g is a monotonic sequence of elements in RHB� It follows by
classical results of Tarski that the upward sequence converges to the least �xpoint�

Theorem � The upward sequence fI�g converges to lfp
TP � � I�� the least �xpoint in RHB�
Furthermore� if there are no function symbols in the language then the convergence occurs
after a �nite number of steps�

We call lfp
TP � the relevant set of atoms 	RAS
� RAS plays a similar role to well�founded
partial models ���� We use RAS to formalize the concept of possible worlds implied by a
program� Let � be a countable ordinal� An ��macro�world of the logic program P is a
maximal coherent subset of I�� A possible world is a maximal coherent subset of RAS�
We use PW to denote the set of possible worlds� We can see that there always exist possible
worlds for a program P�

Example 	 Continuing the previous example� there are two ��macro�worlds�
w�� � fp
true�g and w�� � fp
false�g� The possible worlds and also ��macro�worlds are
w�� � fp
true�� q
good�g�w�� � fp
true�� q
average�g�w�� � fp
true�� q
bad�g�
w�� � fp
false�� q
good�g�w�� � fp
false�� q
average�g�w�� � fp
false�� q
bad�g�

Let W be a possible world and A � W � Then W 
 IC derives �A���A� � Ext
A� and
A� �� A� So� W 
 IC represent a coherent assignment of values to the relevant random
variables�

� Combining Rules and Probabilistic Logic Programs

A basic probabilistic logic program will typically not be a complete speci�cation of a probabil�
ity distribution over the random variables represented by the atoms� One type of information
which may be lacking is the speci�cation of the probability of a variable given combinations
of values of two or more variables which in�uence it� For real�world applications� this type of
information can be di�cult to obtain� For example� for two diseases D� and D� and a symp�
tom S we may know Pr
SjD�� and Pr
SjD�� but not Pr
SjD��D��� Combining rules such
as generalized noisy�OR ��� ��� are commonly used to construct such combined in�uences�

We de�ne a combining rule as any algorithm that takes as input a 
possibly in�nite� set
of ground probabilistic sentences with the same consequent
fPr
A�jAi�� � � � � Aini

� � �ij� � i � m
m may be in�nite�g such that 
mi��fAi�� � � � � Aini
g

is coherent and produces as output Pr
A�jA�� � � � � An� � �� where A��� � � � and An are all
di�erent and n is a �nite integer� In addition to the standard purpose of combining rules� we
also use them as one kind of default rule to augment missing causes 
a cause is an atom in
the antecedent�� In this case� the antecedents of the output contain atoms not in the input
sentences� The set of output causes can be a proper subset of the set of input causes� in
which case the combining rule is performing a �ltering and summarizing task�
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Example � Assume two diseases D�� D� and one symptom S� which are represented by
predicates d�� d�� and s� respectively� Also assume D��D� and S have values normal and
abnormal� A program might contain only the following sentences�
Pr
s
abnormal�jd�
abnormal�� � ��� Pr
s
abnormal�jd�
normal�� � ����
and Pr
s
abnormal�jd�
normal�� � ��� We can provide combining rules to construct from
the �rst and third sentences a new sentence of the form
Pr
s
abnormal�jd�
abnormal�� d�
normal�� � � and from the second and third another new
sentence of the form Pr
s
abnormal�jd�
normal�� d�
normal�� � �� where � and � are two
numbers determined by the combining rule� The combining rules may also act as default
rules in augmenting the �rst and second sentences to achieve
Pr
s
abnormal�jd�
abnormal�� d�
abnormal�� � ��

and Pr
s
abnormal�jd�
normal�� d�
abnormal�� � ��� for some values �� and ���

De�nition 
 A �probabilistic logic� program is a triple hIC� PB�CRi � where hIC� PBi
is a basic probabilisitic logic program and CR is a set of combining rules� We assume that
for each predicate� there exists one corresponding combining rule in CR�

The combining rules usually depend on the meaning of the program� In ����� we discuss
the combining rules for interaction between e�ects of actions and persistence rules in planning
problems�

� The Combined Relevant Probabilistic Base

With the addition of combining rules� the real structure of a program changes� In this section�
we consider the e�ect of combining rules on the relationships prescribed by the program�

De�nition � Given a program P� let � be a countable ordinal� The set of ��relevant
probabilistic sentences 	��RPB
 is de�ned as the set of all ground instances S of some
probabilistic sentence in PB� such that all atoms in S are in I��

The ��RPB contains the basic relationships between atoms in I�� In the case of multi�
ple in�uences represented by multiple sentences� we need combining rules to construct the
combined probabilistic in�uence�

De�nition � Given a program P� Let � be a countable ordinal� The combined ��RPB
���CRPB� is constructed by applying the appropriate combining rules to each maximal set
of sentences fSiji � Ig 	I maybe an in�nite index set
 in ��RPB which have the same
consequent and such that 
i�Iante
Si� is coherent�

Combined ��RPB�s play a similar role to completed logic programs� We assume that
each sentence in ��CRPB describes all random variables which directly in�uence the random
variable in the consequent� We de�ne a syntactic property of ��CRPB which characterizes
the completeness of probability speci�cation�
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De�nition �� An ��CRPB is completely quanti�ed if
	�
 for all ground atoms A in I�� there exists at least one sentence in ��CRPB with A in

the consequent� and
	�
 for all ground sentences S in ��CRPB we have the following property� Let S have the

form Pr
A�jA�� � � � � An� � �� then for all i � �� ��� n� if val
Ai� � v and v� � V AL
Ai�� v ��
v�� there exists another ground sentence S� in ��CRPB such that S� can be constructed from
S by replacing val
Ai� by v� and � by some ���

De�nition �� says that for each ground atom A we have a complete speci�cation of the
probability of all possible values val
A� given all possible combinations of values of the atoms
that directly in�uence A� If we think of each obj
A� as representing a random variable in a
Bayesian network model then the de�nition implies that we can construct a link matrix for
each random variable in the model�

We call 
�RPB the Relevant Probabilistic Base 
RPB� and we call 
�CRPB the Combined
Relevant Probabilistic Base 
CRPB��

Example 
 Consider our burglary example and assume that the language contains only
one non�value constant john� RAS	f neighborhood
john�bad�� neighborhood
john�average�� neigh�

borhood
john�good�� burglary
john�yes�� burglary
john�no�� alarm
john�true��

alarm
john�false�� tornado
john�yes�� tornado
john�no�g� and

RPB 	 fPr
neighborhood
john�average��	��
 Pr
neighborhood
john�bad��	��


Pr
neighborhood
john�good��	��
 Pr
burglary
john�yes�jneighborhood
john�average��	��


Pr
burglary
john�yes�jneighborhood
john�good��	��
 Pr
burglary
john�yes�jneighborhood
john�bad��	��


Pr
alarm
john�yes�jtornado
john�yes��	���
 Pr
alarm
john�yes�jburglary
john�yes��	���


Pr
alarm
john�yes�jburglary
john�no��	���
 Pr
alarm
john�yes�jtornado
john�no��	��g�

In the CRPB� the sentences in RPB with alarm as the consequent are transformed into
sentences specifying the probability of alarm conditioned on both burglary and tornado� The
other sentences in RPB remain the same in CRPB�

In conjunction with acyclicity property of probabilistic bases� we are interested in a class
of combining rules which is capable of transferring the acyclicity property of a PB to the
correspoding CRPB� Given a program P� we say a combining rule in CR is self�contained if
the generated sentence Pr
AjA�� � � � � An� � � from the input set
fPr
AjAi�� � � � � Aini

� � �ij� � i � m
m may be in�nite�g
satis�es one additional property�
fA�� � � � � Ang � 
A��Ext	A
ffBi�� � � � � Bni

gj Pr
A�jBi�� � � � � Bini
� � �i is in RPBg�

Self�containedness seems to be a reasonable assumption on a combining rule� it does not
allow the generation of new atoms in the antecedent which are not �related� to any atom
in the extension of the consequent� In order to generate a sentence with consequent A� a
self�contained combining rule may need to collect all the sentences which have an atom in
Ext
A� as consequent�

Example � The combining rule in the example � is not self�contained because the sentence
Pr
s
abnormal�jd�
abnormal�� d�
abnormal�� � �� is constructed from a set of sentences
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which do not contain the atom d�
abnormal�� For this kind of diagnosis problem� generalized
noisy�OR rule ���� always assume that if a disease is in the abnormal state then there is a
probability � that the symptom is abnormal� that means Pr
s
abnormal�jd�
abnormal�� � ��
In order to use self�contained combining rules� we need to write explicitly those sentences�

� Model Theory

The semantics of a probabilistic program is characterized by the probability weights assigned
the ground atoms� That annotated approach is widely used in the related work ��
� ���
�	�� Because of space limitation� we only show how to assign weights to ground atoms�
Details on annotated models can be found in the full paper�

��� Probabilistic Independence Assumption

In addition to the probabilitistic quantities given in the program� we assume some probabilis�
tic independence relationships speci�ed by the structure of probabilistic sentences� Proba�
bilistic independence assumptions are used in all probability model construction work ����

� �� ��� �� as the main device to construct a probability distribution from local conditional
probabilities� Unlike Poole ���� who assumes independence on the set of consistent �as�
sumable� atoms� we formulate the independence assumption in our framework by using the
structure of the sentences in ��CRPB� We �nd this approach more natural since the structure
of the ��CRPB tends to re�ect the causal structure of the domain and independencies are
naturally thought of causally�

De�nition �� Given a set P of ground probabilistic sentences� let A and B be two ground
atoms� We say A is in
uenced by B in P if 	�
 there exists a sentence S� an atom A� in
Ext
A� and an atom B� in Ext
B� such that A� � cons
S� and B� � ante
S� or 	�
 there
exists another ground p�atom C such that A is in�uenced by C in P and C is in�uenced by
B in P�

Assumption We assume that if Pr
AjA�� � � � � An� � � is in ��CRPB then for all ground
atoms B which are not in Ext
A� and not in�uenced by A in ��CRPB� A and B are proba�
bilistically independent given A�� � � � � An�

Example � Continuing the burglary example� alarm
john� yes� is probabilistically indepen�
dent of neighborhood
john� good� and neighborhood
john� bad� given burglary
john� yes�
and tornado
john� no��

De�nition �� �Consistent ��CRPB� A completely quanti�ed ��CRPB is consistent if
	�
 there is no atom in I� which is in�uenced by itself in ��CRPB and
	�
 for all Pr
A�jA�� � � � � An� � � in ��CRPB�

P
f�ijPr
A�

�jA�� � � � � An� � �i � ��CRPB and
obj
A�

�� � obj
A��g � ��

�



��� Possible World Semantics

In this section� we allow the language to contain function symbols� There are� in general�
in�nitely many possible worlds� in�nitely many ��macro �worlds� We use an approach similar
to that of Poole ���� by assigning weights to only certain subsets of worlds�

De�nition �� �Rank of an atom� Let A be a ground atom in RAS� We de�ne rank
A��
the rank of A� recursively by� 	�
 If A is not in�uenced 	in CRPB
 by any atom then
rank
A� � �� otherwise 	�
 rank
A� � supfrank
B�jPr
Aj � � � � B� � � �� is in CRPBg� ��

Example �� In the burglary example� rank
tornado
�� ��� � rank
neighborhood
�� ��� � ��
rank
burglary
�� ��� � � and rank
alarm
�� �� � ��

The program with the following CRPB has an atom which cannot be assigned a �nite
rank� CRPB � fPr
q
true�jp
X� true�� � ��Pr
p
X � �� true�jp
X� true�� � �g� We
cannot assign any �nite rank to q
true� because rank
q
true�� � rank
p
X� true����X�

We can see that if CRPB has no cycles then rank is a well�de�nedmapping� The following
lemma will be useful in working with acyclic probabilistic bases�

Lemma � Given a program P with an acyclic probabilistic base� If the combining rules are
self�contained then the rank
� function is well�de�ned�

In de�ning the sample space� we will not consider individual possible world but sets of
possible worlds characterized by formulae of speci�c forms�

De�nition �� Given a program P� we can determine the set of all possible worlds PW�
Assume that the rank function is well�de�ned� Let A be a ground atom in RAS� We denote
the set of all possible worlds containing A by W 
A�� We de�ne the sample space 	P to
be the smallest set consisting of 	�
 PW � 	P � 	�
 �A � RAS such that rank
A� is �nite�
W 
A� � 	P � 	�
 if W � 	P then PW �W � 	P � 	�
 if W��W� are in 	P � then W� �W� is
in 	P �

We consider the probability functions on the sample space 	P � Let Pr be a probability
function on the sample space� we de�ne Pr
A�� � � � � An�� where A�� � � � � An are atoms in RAS
with �nite ranks� as Pr
�ni��W 
Ai��� We take a sentence of the form Pr
A�jA�� � � � � An� � �
as shorthand for Pr
A�� A�� � � � � An� � ��Pr
A�� � � � � An�� We say Pr
� satis�es a sentence
Pr
A�jA�� � � � � An� � � if Pr
A�� A�� � � � � An� � ��Pr
A�� � � � � An� and Pr
� satis�es CRPB
if it satis�es every sentence in CRPB�

De�nition �	 A probability distribution induced by a program P is a probability
distribution on 	P satisfying CRPB and the independence assumption implied by CRPB�

��



Example �� Consider the following program�

IC 	 EXCLUSIV E
p� true� false� �EXCLUSIV E
q� bad� average� good�
PB 	 f Pr
p
�� true�� 	 ��
Pr
p
�� false�� 	 ��


Pr
q
good�jp
T� true�� 	 ��
Pr
q
good�jp
T� false�� 	 ��

Pr
p
T � �� true�jp
T� true�� 	 ����
Pr
p
T � �� false�jp
T� true�� 	 ����
Pr
p
T � �� true�jp
T� false�� 	 ����
Pr
p
T � �� false�jp
T� false�� 	 ����g

CR 	 f Generalized � Noisy �ORg

We can imagine that p is a timed predicate with the �rst attribute indicating time� The last
four sentences represent persistence rules� We have Pr
W 
p
�� true��� � �
� Pr
W 
p
�� false��� �
��� Pr
W 
p
�� true��� � 
���� � �
 � ����� ��� � �
���� � � �

Theorem � Given a program P� if the CRPB is completely quanti�ed and consistent then
there exists one and only one induced probability distribution�

The following theorem allows us to handle probability of conjunctions and disjunctions
in our framework�

Theorem � Given a program P� Any probability function on 	P satisfying CRPB assigns
a weight to any formula of the form �ni�� 	

m
j�� Aij� where n and m are �nite integers and

rank
Aij� is �nite� �i� j�

� Fixpoint Theory Revisited

We now extend the �xpoint theory to include the quantatitive information given in a pro�
gram� We have constructed in a previous section the transformation TP and the upward
sequence fI�g� We associate with each I� a sample space and a probability distribution�

De�nition �� Given a program P� we can determine the set of possible worlds PW� Assume
that the rank function is well�de�ned and � is a �nite ordinal� We de�ne the sample space
	�P to be the smallest set consisting of 	�
 PW � 	P � 	�
 �A � I� such that rank
A� � ��
W 
A� � 	�P � 	�
 if W � 	�P then PW �W � 	�P � 	�
 if W��W� are in 	�P then W� �W� is
in 	�P �

Proposition � If � 
 � are two �nite ordinals then 	�P � 	�P � 	P �

We de�ne the probability functions on the sample space 	�P induced by a program P by
replacing RAS by I� and CRPB by ��CRPB in the de�nitions of the previous section� We
call the corresponding induced probability function Pr��

Theorem � If � 
 � are two �nite ordinals and W � 	�P then Pr�
W � � Pr� 
W � �
PrP 
W �� where PrP 
� is the probability distribution induced by P and RAS�

So� as the upward sequence fI�g �converges� to lfp
TP �� f	�Pg converges to 	P and Pr�
�
�converges� to PrP 
�� Here� we use a �loose� de�nition of convergence� for any �nite �rst
order formula F of ground �nite rank atoms� there exists an integer n such that for all
� � n� the set W 
F � of possible worlds satisfying F is an element of 	�P and Pr�
W 
F �� �
PrP 
W 
F ���

��



� Proof Theory

In this section� we de�ne a proof theory which can be used to derive the probability of a
ground atom given a program� We will use G� with possible subscripts� to denote a goal
atom� We will use a process similar to the SLD proof procedure with the only real di�erence
being in the handling of combining rules� We call this proof procedure probabilistic SLD

p�SLD��

A query is a sentence of the form Pr
G�� � � � � Gn� ��� where Gi are atoms� The query is a
request to �nd all ground instances G�

�	 � � �	G
�

n of G�	 � � �	Gn such that Pr
G�

�	 � � �	G
�

n�
can be determined from the program P and to return those probability values�

De�nition �
 Suppose Pr
G�� � � � � Gn� �� is a query� called Q� and S is the sentence
Pr
A�jA�� � � � � An� � � in the program� and that the variables in Q and S are standard�
ized apart� Let Gi be the selected atom in Q� Assume that � is the most general uni�er of
A� and Gi� The resolvent of Q and S using 	mgu
 � on Gi is the sentence
Pr
� � � � Gi��� A�� � � � � An� Gi��� � � ��� ��

A p�SLD derivation of the initial query Q� from a program P is a sequence hQ�� S�� G�� ��i�
� � �� hQr� Sr� Gr� �ri� � � �� where �i � �� Si is a renamed version of a sentence in P and Qi��

is the resolvent of Qi and Si using �i on the selected atom Gi�
An p�SLD refutation of the query Q is an n�step p�SLD derivation of the initial query Q

such that the resolvent of Qn and Sn using �n is the empty query� The combined substitution
�� � � � �n is called the computed answer substitution�

The p�SLD refutation tree of the query Q is the set of all p�SLD refutations of the initial
query Q�

We need the concept of p�SLD refutation tree because before we can use the combining
rules to construct the sentences with an atom A as consequent in CRPB� all sentences with
consequent matching A in P need to be collected� Furthermore� we need to instantiate those
sentences to ground before applying the combining rules�

Example �� For the sentence Pr
q
true�jr
X� true�� � ��� a combining rule needs to con�
sider all ground sentences Pr
q
true�jr
a�� true�� � ��� P r
q
true�jr
a�� true�� � ��� � � ��
where a�� a�� � � � are all constants in the language�

De�nition �� The ground p�SLD refutation tree of the query Q is the set of all ground
p�SLD refutations of the initial query Q� A ground p�SLD refutation is obtained from a p�
SLD refutation by �rst applying the associated computed answer substitution to each formula
in the derivation and �nally instantiating it to a possible ground instance�

Let Q be the query Pr
G� ��� The ground p�SLD refutation tree of Q contains all the
necessary ground probabilistic sentences to construct the combined sentences in CRPB whose
consequents are ground instances of G or of the selected atoms in the original refutation trees�
We apply the combining rules to it�

��



De�nition �� Let Q be the query Pr
G� ��� The combined supporting set of Q is the
set of ground probabilistic sentences constructed from the ground p�SLD refutation tree of Q
by the following procedure� for each A� a 	ground
 selected atom or ground instance of G
appearing in the tree� collect all 	ground
 sentences in it which have A as consequent and
apply the appropriate combining rule to construct the combined sentence�

The combining rules may generate new atoms which did not occur in the ground refuta�
tion tree� as in example �� We need to apply the same process to these new atoms�

De�nition �� Let Q be the query Pr
G� ��� The augmented combined supporting
set of Q is constructed by augmenting the combined supporting set of Q in the following
recursive way� starting from the combined supporting set of Q� for each atom A appearing
in that set� if there is no sentence 	in that set
 with A as consequent then augment it with
the augmented combined supporting set of the query Pr
A� ���

Example �� Continuing the example �� with the query Q � Pr
p
�� true�� ��� The p�SLD
refutation tree of Q is the following set of p�SLD refutations�

f f hPr
p
�� true�� 	�� P r
p
t� �� true�jp
t� true�� 	 ����� p
�� true�� ftj�gi�
hPr
p
�� true�� 	�� P r
p
t� �� true�jp
t� true�� 	 ����� p
�� true�� ftj�gi�
hPr
p
�� true�� 	�� P r
p
�� true�� 	 ��� p
�� true�� fgi g


f hPr
p
�� true�� 	�� P r
p
t� �� true�jp
t� true�� 	 ����� p
�� true�� ftj�gi�
hPr
p
�� true�� 	�� P r
p
t� �� true�jp
t� false�� 	 ����� p
�� true�� ftj�gi�
hPr
p
�� false�� 	�� P r
p
�� false�� 	 ��� p
�� false�� fgi g


f hPr
p
�� true�� 	�� P r
p
t� �� true�jp
t� false�� 	 ����� p
�� true�� ftj�gi�
hPr
p
�� false�� 	�� P r
p
t� �� false�jp
t� false�� 	 ����� p
�� false�� ftj�gi�
hPr
p
�� false�� 	�� P r
p
�� false�� 	 ��� p
�� false�� fgi g


f hPr
p
�� true�� 	�� P r
p
t� �� true�jp
t� false�� 	 ����� p
�� true�� ftj�gi�
hPr
p
�� false�� 	�� P r
p
t� �� false�jp
t� true�� 	 ����� p
�� false�� ftj�gi�
hPr
p
�� true�� 	�� P r
p
�� true�� 	 ��� p
�� true�� fgi gg�

The ground p�SLD refutation tree� the combined supporting set� and the augmented support�
ing set of Q are also equal to the above set�

Proposition � Given a program P and an atom G� we can construct the augmented com�
bined supporting set PS of the query Pr
G� ��� If the rank
� function is well�de�ned
then the rank of each atom in PS can be determined by a simple recursive procedure� If
Pr
G� � � � PS then rank
G� � �
else rank
G� � supfrank
A�j
Pr
Gj � � � � A� � � �� � �� � PSg� ��

The probability of a ground atom G computed from the program P� PrCP 
G��
can be calculated from the augmented combined supporting set PS of the query Pr
G� ��
recursively�

If Pr
G� � � � PS then return PrCP 
G� � �
else if fG�� � � � � Gng is coherent� and let Gi be the atom with highest rank� PrCP 
G�� � � � � Gn� �P
f�� PrCP 
G�� � � � � Gi��� Gi��� � � � � Gn� A�� � � � � Am�j
Pr
GijA�� � � � � Am� � �� � PSg

else PrCP 
G�� � � � � Gn� � ��

�	



Example �� Continuing the example �� with the query Q � Pr
p
�� true�� ��� PrCP 
p
�� true�� �
�
�PrCP 
p
�� true�� � Pr
p
�� true�jp
�� true���PrCP 
p
�� true���Pr
p
�� true�jp
�� false���
PrCP 
p
�� false�� � ���� � �
 � ���� � �� � �
���� � � � �

Theorem 	 Given a program P with a well�de�ned rank
� and a ground atom G� If rank
G�
is �nite and CRPB is completely quanti�ed and consistent then 	�
 the probability of G
computed from the program P� PrCP 
G�� is equal to PrP 
G�� where PrP 
� is the probability
function induced by the logic program P� 	�
 the p�SLD procedure will return the value PrCP 
G�
which is equal to PrP 
G��

The condition that rank
G� be �nite can be assured by the acyclicity property of proba�
bilistic logic programs� We have soundness and completeness of p�SLD for acyclic programs�

Theorem � Given a program P with an acyclic probabilistic base and self�contained com�
bining rules� If CRPB is completely quanti�ed and consistent then p�SLD procedure is sound
and complete wrt �nite rank ground atoms�

As can be seen in the recursive de�nition of PrCP 
�� p�SLD can be easily extended to
evaluate the probability of a �nite conjunction of atoms� In fact� we can evaluate any �nite
formula of the form �i 	j Aij or 	i �j Aij� where the Aij are atoms of �nite rank by a simple
extension of p�SLD�

	 Local Maximum Entropy
 Negation As Failure For

Probabilistic Logic Programs

Negation�as�failure is used as a default rule in the SLDNF proof procedure� It allows us to
conclude that a ground atom A has the truth value false if all attempts to prove A fail� In
probabilistic logic programs� such default rules are desirable both to shorten the programs
and to facilitate reasoning on incompletely speci�ed programs� For these reasons we would
like to de�ne a probabilistic analogue to negation�as�failure�

Example �	 Consider the example �� It is obvious that we should be able to infer Pr
p
false�� �
��� Furthermore� we only know that Pr
q
average�jp
true�� � Pr
q
bad�jp
true�� � ��
and want to have some default rule to temporarily assign a probability value to each of
Pr
q
bad�jp
true�� and Pr
q
average�jp
true���

A popular principle for assigning missing probability values is the maximum entropy
principle� We propose the local maximum entropy rule as a form of negation�as�failure for
probabilistic logic programs�

De�nition �� Given a program P and its corresponding CRPB� Let A be an atom in RAS
and V AL
A� � fv�� � � � � vng� The local maximum entropy rule �LME� can be applied to
A in the following situation� If Pr
AjA�� � � � � Ak� � � is a sentence in CRPB such that the set

�




V � fval
A��jPr
A�jA�� � � � � Ak� � � � CRPB and obj
A�� � obj
A�g has m� � 
 m 
 n�
elements and �� the sum of all � in those sentences� is � � then augment CRPB with the
following set of sentences fPr
A�jA�� � � � � Ak� � 
�����
n�m�jA� � Ext
A� and val
A�� �
�V g�

Example �� Continuing the previous example� the LME rule would assign �� to Pr
p
false��
and ��� to Pr
q
average�jp
true�� and Pr
q
bad�jp
true���

We incorporate LME into the p�SLD proof procedure and call the new procedure p�
SLDLME by generalizing the concept of derivation and other dependent concepts� Details
are given in the full paper�

�� Bayesian Networks Construction

���� Baysian networks

Bayesian networks ���� are �nite directed acyclic graphs� Each node in a Bayesian network
represents a random variable� which can be assigned values from a �xed �nite set� A link
represents the relationship� either causal or relevance� between random variables at both
ends� Usually� a link from random variable A to a random variable B says that A causes B�
Associated with each node A is a link matrix� which contains the conditional probabilities
of random variable A receiving speci�c values given each combination of values of A�s par�
ents� The Bayesian network formalism is an e�cient approach to representing probabilistic
structures and calculating posterior probabilities of random variables given a set of evidence�

In our query procedure� we will not only �nd the probability value of� say� a random
variable but its posterior probability after observing a set of evidence�

De�nition �� A set of evidence E is a set of atoms s�t� ground
E� is coherent�

We do that by �rst constructing from the program the portion of the Bayesian network related
to the query� On the constructed network� we can use available propogation procedures to
update the probabilities taking into account the set of evidence�

Notice that� in our framework� an atom A represents the fact that the random variable
denoted by obj
A� receiving the value val
A� and V AL
A� is the set of all possible values
of that random variable�

De�nition �� Given a program P and a set of evidence E� A complete ground query is
a query of the form Pr
G� ��� where G is an atom� the last argument of G is a variable and
it is the only variable in G� The meaning of such a query is� �nd the posterior probability
distribution of obj
G�� If V AL
G� � fv�� � � � � vng then the answer to such a query is a vector

� � 
��� � � � � �n�� where � � �i � ��

Pn
i�� �i � � and �i is the posterior probability of obj
G�

receiving the value vi�
A complete query is a query of the form Pr
G� ��� where the last argument of G is a

variable and the other arguments may also contain variables� The meaning of such a query
is� �nd all ground instances G� of G such that the complete ground query Pr
G�� �� has an
answer and return those answers�

��



Q�
�PROCEDURE

BEGIN
f Build the network that supports the evidence g
NET
� fg	
FOR i
�� TO number of elements in E DO

temp 
� BUILD�NET�the ith element Ei of E� NET�	
f Extend the network to support the ground instances of the query g
SUBSS 
� BUILD�NET �G� NET�	
UPDATE�NET�E�	
f Output posterior probabilities g
FOR each � in SUBSS output the probability values at node obj�G��	

END�

Figure �� Query processing procedure�

���� Bayesian Network Construction Procedure

Because of space limitation� we drop the details which can be found in the full paper� In
this section� we present a query answering algorithm� Q��procedure� for answering complete
queries� We only consider self�contained combining rules� This assumption allows us to omit
the augmentation step� which was presented in the p�SLD proof procedure�

Assume that we are given a program P� a set of evidence E and a complete query Pr
G� �
�� Q��procedure has the following two main steps� build the supporting Bayesian network
for fAg 
 
ground
E� �RAS� by a backward chaining process similar to Prolog engine and
calculate the posterior probability using the set of evidence E and any available procedure
����� Q��procedure is more complex than SLDNF because it needs to collect all relevant
sentences before combining rules can be used�

The pseudo code for Q��procedure is shown in Figure �� It simply makes calls to BUILD�
NET function� which builds the supporting network of an atom� with atoms in E and G
as successive arguments� The FOR loop constructs the supporting network for the set of
evidence and the �nal BUILD�NET call augments the constructed network with support�
ing network of ground instances of the query� UPDATE
� is any probability propogation
algorithm on Bayesian networks� BUILD�NET receives as input an atom� whose support�
ing network needs to be explored� It updates the NET� which might have been partially
built� The returning value of the function is the set of substitutions for input atom to get
all corresponding ground instances in the resulting network�

���� The soundness and completeness of Q��procedure

In Q��procedure� we do not address the problem of termination� We expect that the tech�
niques for assuring termination of Prolog programs could be applied to Q��procedure�

Theorem 
 �Soundness� Given a program P� If CRPB is completely quanti�ed then Q��
procedure is sound wrt complete queries�

��



Theorem � �Soundness and Completeness� Given a program P with an allowed and
acyclic PB� If CRPB is completely quanti�ed then Q��procedure is sound and complete wrt
complete ground queries and ground �nite set of evidence�

�� Related Work

In a related paper ���� we present a temporal variant of our logic� We describe the ap�
plication of this framework to representing probabilistic temporal processes and projecting
probabilistic plans�

Poole ���� expresses an intention similar to ours� �there has not been a mapping between
logical speci�cations of knowledge and Bayesian network representations ���� He provides
such a mapping using probabilistic Horn abduction theory� in which knowledge is repre�
sented by Horn clauses and the independence assumption of Bayesian networks is explicitly
stated� His work is developed along a di�erent track than ours� however� by concentrating
on using the theory for abduction� Our approach has several advantages over Poole�s� We
do not impose as many constraints on our representation language as he does� Probabilis�
tic dependencies are directly represented in our language� while in Poole�s language they
are indirectly speci�ed through the use of special predicates in the rules� Our probabilistic
independence assumption is more intuitively appealing since it re�ects the causality of the
domain�
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