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Problem & Motivation (I)

* Current neural networks
are good at pattern
recognition but not
reasoning.

* E.g.: The networks can
detect the spheres, but not
operate on relations
between spheres and cubes
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Q: Do the block in front of the
tiny yellow cylinder and the
tiny thing that is to the right
of the large green shiny object
have the same color? A: No



Problem & Motivation (2)

* Transparency and
interpretability

* As opposed to elusive
black-box architectures

* E.g.: What about the
network’s behavior

explains the answer
“NO”7
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Problem & Motivation (3)

* NNs are generally tabula
rasa (i.e. clean slate, minimal
priors, very versatile), which
is often compensated with
big-data.

* E.g.: How can we teach what
a sphere is by using fewer
images!

* Goal: faster learning
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Motivation

* A compositional model

— that can reason about relations with its
inductive biases

— that is interpretable/transparent
— that learns quickly (requires less data)

— that achieves better results
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Task & Evaluation

e CLEVR Visual Question Answering
Dataset

e Natural language questions about
images.

E.g. “ Are any objects gold? A: yes”
E.g. “What color ball is close to
the small purple cylinder? A: gray”

e 700k examples w/ 28 possible
answers
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Previous approaches

e Generally a mix of CNN+LSTM
® Modular approaches such as Module Networks
(Andreas et al., 2016)

- not fully differentiable!

e Can’t count: Counting and aggregation skills tend
challenging for previous models (Santoro et al.,, 2017;

Hu et al., 2017; Johnson et al., 2017b)
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Contributions

* Memory, Attention, and Composition
(MAC) cell

-

MAC cell

o=y

* A cell deliberately designed to capture -«
an elementary, yet general-purpose
reasoning step, inspired by computers

* State-of-the-art accuracy and
efficiency on CLEVR

* Discussion of significance of inductive
biases

mi;
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Model - Network Overview

Similar to RNNs

\ A % (2) MAC Recurrent Network (p cells)
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Model - The MAC Cell Architecture

e Control, Read, and Write units
— Control and memory hidden states. (e

* The control unit successively attends to
different parts of the task (i.e. question)

* The read unit extracts information from
knowledge base (i.e. image), guided by
control.

* The write unit integrates the retrieved
information into the memory state, yielding
the new intermediate result (reasoning)

* Inspired by computer architecture!
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Model - The Read Unit

* Retrieves information using KB and memory
* Uses this information and the control state to generate attention
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Model - The Control Unit

previous
control

Uses previous control state and the task question to apply
attention over question words to generate new control state
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Model - The Write Unit
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RelLU Softmax

= answer

* Integrates the retrieved information into the memory state
* Control decides the gating (i.e. maintaining previous memory)
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Results

® SotA in all categories in CLEVR

o Overall, count, exist, compare attribute, compare numbers...
e Nonetheless, many models perform well on CLEVR

o High 90s in many categories

Model Overall Count Exist Compare Attribute
Previous SotA 97.7 94.3 99.3 99.3
MAC 98.9 97.1 99.5 99.5

% Penn Engineering



Analysis - Learning Efficiency

Accuracy as a function of training data:

x Training Curve Accuracy / Dataset Size (out of 700k)
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Analysis - Interpretability 129

there

is

a

123 large

yellow

o matte

gaior object

is ;

the | doe§

matte i it

s d the
(o}

same

}he shape

right i

Of the

e red

Epe rubber

n thing

front that

of is

the Ieof;
tin

bluz H:: |a:2§

block Japs

metallic

object

[ )
()
J

& Penn Engineering



Analysis - Interpretability

* Model performs well on questions collected through crowdsourcing (that are
not in original CLEVR dataset)

Q: What is the shape of Q: What color is the Q: What color ball is Q: What color block is Q: Are any objects gold?
the large item, mostly object that is a different  close to the small purple  farthest front? A: purple A: yes /
occluded by the metallic  size? A: purple / cylinder? A: gray v/ v

cube? A: sphere /

]
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Analysis - Interpretability

* Counting: On which words does the model focus first?

123456
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Conclusions and Future Work

State-of-the-art accuracy and efficiency for VQA

Inductive biases can
— improve accuracy (halved error on CLEVR)
— increase efficiency - more significant given other models’ accuracy

Apply this model to different tasks
— Other evaluations needed - many models perform well

* Further analysis of the distinguishing qualities of this model
— How useful is the computer-architecture?
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