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Problem & Motivation

Automatic extraction of binary comparisons from text

Is a train 

faster 

than a 

car? 

Is wood 

more 

durable 

than 

steel?
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Problem & Motivation
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Problem and Motivation – Reporting Bias

“John picked up his briefcase and 

left for work.” John

“The earthquake toppled the 

wood buildings, but the steel ones 

survived.”

Size

briefcase>

wood

Durable

steel<
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Contents:

• Previous approaches

• Contributions

– SotA Performance on standard task

– New task and baseline

• Conclusions

• Shortcomings and extensions
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Previous approaches (SoTA)

Forbes & Choi (2017) introduce VERB PHYSICS 
comparison dataset and establish baseline model
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Contributions of this work

• Achieve state-of-the-art performance on task 
introduced by F&C

– Requires no additional annotation beyond training set

– Model allows zero-shot learning on unseen properties 
and nouns

• Introduces alternative formulation of task

– Provides baseline and dataset for this task
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Details of Contributions – Setup

Formalization – Supervised multiclass classification
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Property
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Details of Contributions – Setup

Assumptions

– Objects with similar word embeddings have similar properties

– A property can be represented as a set of pole adjectives

Skyscraper

Highrise

Hut

Cabin

> ≈ <

Durable

Fast

Durable Similar Fragile

Speed Similar Slow
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Details of Contributions – Goals

• Learn projection for embeddings pair of nouns into vector 
space containing embeddings for pole adjectives

• Predict closest pole
• Use labeled comparisons to train projections of pairs to be 

near correct pole

>
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Details of Contributions – Model

X Embedding of first comparison object (O1)
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Embedding of second comparison object (O2)

Embedding for > adjective

Embedding of first comparison object (O2)
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Details of Contributions – Model
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Model Function – Softmax over “cosine similarity” between 

projection of object pair and each comparison label
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Property Commonsense Embedding (PCE) Model
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Details of Contributions – One Pole Model
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Model receives only one adjective embedding input

• Receives only “<“ adjective embedding

• Learns a projection for each of the other pole 

embeddings

Activation 

Function

Projection 

Matrix
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Details of Contribution - Comparison

• No frames

• Word embeddings

• Standard multiclass train 

scheme

• Prediction scheme identical

for seen and unseen objects

• Can predict unseen

attributes

• Dependency parsing to

identify frames, verbs, objects

• Word embeddings

• Two-pass training scheme

• Message passing for 

predicting unseen pairs

• Cannot predict unseen 

attributes

Probabilistic Factor Graph (F&C)PCE Network (Yang)
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Details of Contributions - Four-way Model

Identical to standard formulation with additional class

Property does 

not apply

Is paper 

more 

intelligent 

than 

plastic?
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Details of Contributions - Four-way Model

Identical three-way model with additional output for N/A in softmax
layer
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Details of Contributions – New Dataset

PROPERTY COMMONSENSE
– New dataset for four-way 

classification task

– 32 properties, 689 objects 
including proper nouns

– Properties and objects 
randomly permuted to generate 
samples

– Hand-labeled by 1-labeler (.64 
Cohen’s Kappa)

A shrimp

is less (<) 

furry 

than a 

lion.
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Experimental Setup

• Set-up for all models and experiments

– Identity activation function for all σ

– Full-batch gradient descent using ADAM with no tuning

– Dropout before output (p=.5)

– gLoVe (300d), word2vec (300d) , LSTM (1024d) 
embeddings

– Accuracy for evaluation
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Experiments

• Zero-shot learning: Make predictions on unseen class or attribute
– For this task, zero-shot learning means making predictions on unseen 

property

Size

Speed

Rigidity

Strength

Weight

Test SetTrain Set
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Experiments

• Three-way classification task (VERB PHYSICS)

• Hold-one-out zero-shot learning on properties (VERB PHYSICS)

• Four-way classification task (PROPERTY COMMONSENSE)

Train

Test

Total

594

6000

6594

1819

1489

3308

PROPERTYVERB PHYSICS



21

Results and Analysis

• PCE and PCE(one-pole) achieve SotA performance on 3-way 
task

• Establishes strong baseline for 4-way task

Model Overall Accuracy

Majority Baseline 0.51

F&C 0.70

PCE(one-pole) 0.75

PCE(LSTM) 0.76

Model Overall Accuracy

Majority Baseline 0.51

PCE(gLoVe) 0.63

PCE(Word2Vec) and PCE(LSTM) 0.67
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Results and Analysis

Establishes a strong baseline for zero-shot learning task

Model Weight Size Strength rigidity speed

Emb-Similarity 0.37 0.53 0.48 0.43 0.35

PCE(one-pole) 0.73 0.71 0.67 0.53 0.34

PCE 0.74 0.73 0.70 0.62 0.58
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Conclusions

• Embeddings may help address reporting bias for other 
commonsense knowledge tasks

• Learning projection of pairs of noun embeddings into 
vector space containing adjective embeddings enables 
generalization among properties and among nouns

• PROPERTY COMMON SENSE provides a harder (more 
sparse) framework
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Shortcomings

• Difficult to identify ceiling of approach

• Loss uniform when prediction not equal to truth

• Datasets are biased
– Imbalanced with respect to objects and true labels

Dataset Component Density (Top 20%)

VERB PHYSICS
Properties 0.22

Nouns 0.54

PROPERTY 
COMMON SENSE

Properties 0.22

Nouns 0.3
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Shortcomings

• Models highly sensitive to class imbalance
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Extensions and Improvements

• More extensive experiments on architecture
– Non-linear activation functions
– More feed-forward layers to learn projection
– Hyperparameter tuning
– Measure performance after up-sampling / down-sampling and using less 

data

• Cost sensitive Loss
– Penalize > more than ≈ when ground truth is <
– Fixed penalty for N/A

• Develop unbiased dataset with respect to nouns, properties, and 
true labels


