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Problem & Motivation

Automatic extraction of binary comparisons from text
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Problem & Motivation

Noun (A)

A has more C than B
A has less C than B

Noun (B) el Model B

A and B have similar C

N/A
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Property (C) C doesn’t apply to A or B
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Car > { Train has more speed than car
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Problem and Motivation — Reporting Bias

“John picked up his briefcase and
left for work.”

“The earthquake toppled the

wood buildings, but the steel ones
survived.”
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Contents:
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* Shortcomings and extensions
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Previous approaches (SoTA)
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Forbes & Choi (2017) introduce VERB PHYSICS
comparison dataset and establish baseline model
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Contributions of this work

* Achieve state-of-the-art performance on task
introduced by F&C

— Requires no additional annotation beyond training set

— Model allows zero-shot learning on unseen properties
and nouns

* |Introduces alternative formulation of task

— Provides baseline and dataset for this task
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Details of Contributions — Setup

Formalization — Supervised multiclass classification

P(L|O1, Oy, Property),L € {|<|,| > ||~}

Q

Description

Examples

First object in comparison Train Wood

O

Car

Second object in comparison Steel

Durable

Property @ Property being compared for O, O, Speed

II

Label of comparison (>, <, =)
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Details of Contributions — Setup

Assumptions

— Objects with similar word embeddings have similar properties

— A property can be represented as a set of pole adjectives

Durable Fragile

Similar
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Details of Contributions — Goals

e Learn projection for embeddings pair of nouns into vector
space containing embeddings for pole adjectives

* Predict closest pole

* Use labeled comparisons to train projections of pairs to be
near correct pole
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Details of Contributions — Model

Embedding of first comparison object (O))

Embedding of first comparison object (O,) ),)

Embedding for > adjective

Embedding for “similar”
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Embedding for < adjective
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Details of Contributions — Model

Property Commonsense Embedding (PCE) Model

Model Function — Softmax over “cosine similarity” between
projection of object pair and each comparison label

Concatenation

% P(L = s|Q) = softmaz(Rs - o((X ®Y)W))
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Details of Contributions — One Pole Model

Model receives only one adjective embedding input

* Receives only “<* adjective embedding

* Learns a projection for each of the other pole
embeddings
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Activation Projection

Function Matrix

Pole Adjectives

R. = o(R-W3)
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Details of Contribution - Comparison

PCE Network (Yang) Probabilistic Factor Graph (F&C)

No frames Dependency parsing to
Word embeddings identify frames, verbs, objects
Standard multiclass train Word embeddings

scheme Two-pass training scheme
Prediction scheme identical Message passing for

for seen and unseen objects predicting unseen pairs

Can predict unseen Cannot predict unseen
attributes attributes
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Details of Contributions - Four-way Model

Identical to standard formulation with additional class

P(L|Oy, 0,, Property), Le{| < |,| > ||~ |,|N/A |}

Is paper
more
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not apply

than
plastic?
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Details of Contributions - Four-way Model

|dentical three-way model with additional output for N/A in softmax

nhI = o(XW,)

— a,

layer
Ai=hi-R.+h;- R
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Details of Contributions — New Dataset

'_ PROPERTY COMMONSENSE
A shrimp | =g — New dataset for four-way
- < ‘ classification task
IS 1€SS ( ) n — 32 properties, 689 objects
fu rry — including proper nouns
than a — Properties and objects
o, 3 randomly permuted to generate
samples

— Hand-labeled by 1-labeler (.64
Cohen’s Kappa)
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Experimental Setup

e Set-up for all models and experiments
— ldentity activation function for all o
— Full-batch gradient descent using ADAM with no tuning
— Dropout before output (p=.5)

— gloVe (300d), word2vec (300d), LSTM (1024d)
embeddings

— Accuracy for evaluation
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Experiments

e Zero-shot learning: Make predictions on unseen class or attribute

— For this task, zero-shot learning means making predictions on unseen
property

Size

Weight

Speed
Rigidity
Strength
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Experiments

 Three-way classification task (VERB PHYSICS)
* Hold-one-out zero-shot learning on properties (VERB PHYSICS)
* Four-way classification task (PROPERTY COMMONSENSE)

VERB PHYSICS PROPERTY

Train 594

Test 6000

Total
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Results and Analysis

 PCE and PCE(one-pole) achieve SotA performance on 3-way

ta S k Model Overall Accuracy

Majority Baseline 0.51
F&C 0.70
PCE(one-pole) 0.75
PCE(LSTM) 0.76

e Establishes strong baseline for 4-way task

Model Overall Accuracy

Majority Baseline 0.51
PCE(gLoVe) 0.63
PCE(Word2Vec) and PCE(LSTM) 0.67
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Results and Analysis

Establishes a strong baseline for zero-shot learning task

Weight Size Strength rigidity
Emb-Similarity 0.37 0.53 0.48 0.43 0.35
PCE(one-pole) 0.73 0.71 0.67 0.53 0.34
PCE 0.74 0.73 0.70 0.62 0.58
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Conclusions

 Embeddings may help address reporting bias for other
commonsense knowledge tasks

* Learning projection of pairs of noun embeddings into
vector space containing adjective embeddings enables
generalization among properties and among nouns

e PROPERTY COMMON SENSE provides a harder (more
sparse) framework
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Shortcomings

» Difficult to identify ceiling of approach

* Loss uniform when prediction not equal to truth

e Datasets are biased

— Imbalanced with respect to objects and true labels

Dataset > ~~ < | N/A | Total
VERB PHYSICS 0.56 | 0.10 | .34 | 0.00 | 6594
PROPERTY COMMON SENSE | 0.18 | 0.25 | 0.18 | 0.39 | 3308
Dataset Component Density (Top 20%)
Properties 0.22
VERB PHYSICS
Nouns 0.54
PROPERTY Properties 0.22
COMMON SENSE Nouns 03
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Shortcomings

* Models highly sensitive to class imbalance

Confusion Matrix of PCE for Test Data
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True label

Confusion Matrix of PCE(word2vec) for Test Data
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Extensions and Improvements

 More extensive experiments on architecture
— Non-linear activation functions
— More feed-forward layers to learn projection
— Hyperparameter tuning

— Measure performance after up-sampling / down-sampling and using less
data

* Cost sensitive Loss
— Penalize > more than = when ground truth is <
— Fixed penalty for N/A

 Develop unbiased dataset with respect to nouns, properties, and
true labels
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