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A Brief Overview of SQL

• Stands for “Structured Query Language”
• Designed for querying data within a relational database 

management system (relation = table)
• Relies on relational data model and uses relational algebra 

(union, intersect, minus, etc.)
• DB schema

- Set of DB tables
- Set of columns for each table
- Set of foreign key-primary key column pairs

}DB Constants
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A Simple Example
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Problem Setup

Input: 

• : question

• : query

• : DB schema
Goal: map question-schema 
pairs  to correct query 
Must be able to generalize to 
new schemas  that were not 
observed at training time

{(x(k), y(k), S(k))}N
k=1

x(k)

y(k)

S(k)

(x, S) y
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Challenges
• Choice between DB constants can be ambiguous
• Same English word can refer to different DB constants based on context
• Queries can be complex/nested
• May require merging multiple tables

- Which tables to merge?
- How/on which attribute?

• Similar questions can map to different queries, depending on the schema
• Existing semantic parsers are auto-regressive

- DB constants are selected one at a time rather than as a set 
- Local similarity function between words and DB constants
- How to take global context into account?
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Example of a Complex Query
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Base model: Top-down zero-shot semantic parser

• Top-down zero-shot semantic parser

• Input question  encoded with a BiLSTM, 
where hidden state  is a contextualized representation 
of word 

• Output query  decoded with another LSTM using a SQL 
grammar

• Focus of this paper: decoding of DB constants
• Major drawback: parsing is auto-regressive

(x1, x2, . . . , x|x|)
ei

xi
y



GCN (Graph Convolutional Network)
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Base Model Pseudocode
Input: schema , question 

For every DB constant  in :
Create , a learned embedding of 
For every question word :

Compute local similarity score  from learned embeddings of  and 
Define distribution 
Using gating GCN, calculate relevance probability of  as 

Using encoder GCN, calculate initial representation of  as 
Apply GCN recurrence  times; final representation of  is 
Using , compute an attention distribution  over all words 

Score for  is 

Output: DB constant  with highest score  (output distribution is softmax( ))

S x = (x1, x2, . . . , x|x|)
v S

rv v
xi

slink(v, xi) v xi
plink(v |xi) ∝ exp(slink(v, xi))

v pv = max
i

plink(v |xi)

v hv
(0) = pv ⋅ rv

L v hv = (pv ⋅ rv)(L)

hv αi xi
v sv = ∑

i

αislink(v, xi)

v sv {sv}v∈V
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Example of Decoding
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Contributions of Authors

• Learned gating GCN to estimate relevance probability 
for each node
- Softly selects DB constants most likely to appear 

in output query
• Re-ranking GCN to discriminatively re-evaluate top K 

queries output by decoder based on global match 
between question and DB schema
- Ensures that query covers all aspects of question
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Base model vs. Global reasoning

Base 
model:

Global 
reasoning:
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Global Gating
• Same input to gating GCN, but add new node  to shorten paths between other nodes

- Initial embedding of  randomly initialized

• Input to GCN at node  is , a representation for DB constant and question

- ; represents concatenation
- : feed-forward network

- : weighted average of contextual representation of question words

• Calculate new relevance probability , which replaces original  as new 
input to encoder GCN

• In addition to usual decoding loss, add relevance loss: 

- : subset of DB constants that appear in gold query 

vglobal
vglobal

v gv
(0) = FF([rv; h̄v; pv)]

FF( ⋅ )
h̄v = ∑

i

plink(xi |v) ⋅ ei)

pglobal
v = σ(FF(gv

(L))) pv

− ∑
v∈𝒰y

log pglobal
v − ∑

v∉𝒰y

log(1 − pglobal
v )

𝒰y y
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Discriminative Re-Ranking
• Purpose: score each candidate tuple  and globally reason over each candidate query 

• Re-ranker trained to minimize re-ranker loss, i.e. the negative log probability of gold query 

• For each , compute logit 

- : learned parameter vector

-

‣ Representation for sub-graph induced by the set 

‣  representation used to score question-conditioned subgraph

- , where 

‣ Representation for global alignment between question words and DB constants
‣ Goal: allow model to recognize attended words that are aligned with DB constants  

but were not selected for 

(x, S, ̂y) ̂y
y

̂y s ̂y = wTFF(f𝒰 ̂y
, ealign)

w
f𝒰 ̂y

= (FF(rv; h̄v))(L)vglobal

𝒰 ̂y

vglobal

ealign = [ei; ∑
v∈V

plink(v |xi) ⋅ ϕv] ϕv = fv
(L) if v ∈ 𝒰 ̂y and rv otherwise

𝒰 ̂y
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Re-ranking GCN architecture



17

Experimental Setup

• Train and evaluate on SPIDER, a zero-shot semantic parsing dataset 
with complex DBs
- 7,000/1,034/2,147 train/development/test examples

• For training the re-ranker, take K = 40 candidates from beam output 
of the decoder
- At each training step, if beam contains gold query, calculate the 

loss on the gold query and 10 random negative candidates
• At test time, re-rank top K = 10 candidates in the beam
• Remove either Global Gating or Re-Ranking functionalities and 

observe how results change
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Results
Model Accuracy

SyntaxSQLNet 19.7%

GNN 39.4%

Global-GNN 47.4%

Model Accuracy Beam Single Multi

GNN 40.7% - 52.2% 26.8%

Global-GNN 52.1% 65.9% 61.6% 40.3%

- No Global Gating 48.8% 62.2% 60.9% 33.8%

- No Re-Ranking 48.3% 65.9% 58.1% 36.8%

- No Relevance Loss 50.1% 64.8% 60.9% 36.6%

No Align Rep. 50.8% 65.9% 60.7% 38.3%

Query Re-Ranker 47.8% 65.9% 55.3% 38.3%

Oracle Relevance 56.4% 73.5% - -

Test set accuracy

Development set accuracy
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Qualitative Analysis

• Coverage: query covers all relevant question words
• Precision: query only joins tables relevant to question
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Shortcomings/Limitations

• This approach only deals with factual information and 
doesn’t attempt to provide “reasons” for why one 
query works and another doesn’t

• Some questions can be interpreted in multiple ways 
even in global setting - how to deal with these 
ambiguous cases?

• Doesn’t consider missing data (only takes into 
account DB schema rather than contents)
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Conclusions and Further Work

• Paying attention to the context of a token within a 
question improves English-to-SQL translation

• Re-ranker is best at choosing DB constants, while 
decoder can determine overall query structure

• A global model that selects both DB constants and 
SQL tokens might further improve performance

• Would be interesting to explore reverse translation, 
i.e. SQL to English


