
Global Reasoning over Database
Structures for Text-to-SQL Parsing
Ben Bogin, Matt Gardner, Jonathan Berant
Tel-Aviv University/Allen Institute for AI, 2019

George Tolkachev (georgeto@seas.upenn.edu)
February 19, 2020

2

Contents

• What is SQL?
• Problem setup
• Base model
• New contributions
• Experiments and results
• Shortcomings/limitations
• Potential for future work

3

A Brief Overview of SQL

• Stands for “Structured Query Language”
• Designed for querying data within a relational database

management system (relation = table)
• Relies on relational data model and uses relational algebra

(union, intersect, minus, etc.)
• DB schema

- Set of DB tables
- Set of columns for each table
- Set of foreign key-primary key column pairs

}DB Constants

4

A Simple Example

5

Problem Setup

Input:

• : question

• : query

• : DB schema
Goal: map question-schema
pairs to correct query
Must be able to generalize to
new schemas that were not
observed at training time

{(x(k), y(k), S(k))}N
k=1

x(k)

y(k)

S(k)

(x, S) y

S

6

Challenges
• Choice between DB constants can be ambiguous
• Same English word can refer to different DB constants based on context
• Queries can be complex/nested
• May require merging multiple tables

- Which tables to merge?
- How/on which attribute?

• Similar questions can map to different queries, depending on the schema
• Existing semantic parsers are auto-regressive

- DB constants are selected one at a time rather than as a set
- Local similarity function between words and DB constants
- How to take global context into account?

7

Example of a Complex Query

8

Base model: Top-down zero-shot semantic parser

• Top-down zero-shot semantic parser

• Input question encoded with a BiLSTM,
where hidden state is a contextualized representation
of word

• Output query decoded with another LSTM using a SQL
grammar

• Focus of this paper: decoding of DB constants
• Major drawback: parsing is auto-regressive

(x1, x2, . . . , x|x|)
ei

xi
y

GCN (Graph Convolutional Network)

10

Base Model Pseudocode
Input: schema , question

For every DB constant in :
Create , a learned embedding of
For every question word :

Compute local similarity score from learned embeddings of and
Define distribution
Using gating GCN, calculate relevance probability of as

Using encoder GCN, calculate initial representation of as
Apply GCN recurrence times; final representation of is
Using , compute an attention distribution over all words

Score for is

Output: DB constant with highest score (output distribution is softmax())

S x = (x1, x2, . . . , x|x|)
v S

rv v
xi

slink(v, xi) v xi
plink(v |xi) ∝ exp(slink(v, xi))

v pv = max
i

plink(v |xi)

v hv
(0) = pv ⋅ rv

L v hv = (pv ⋅ rv)(L)

hv αi xi
v sv = ∑

i

αislink(v, xi)

v sv {sv}v∈V

11

Example of Decoding

12

Contributions of Authors

• Learned gating GCN to estimate relevance probability
for each node
- Softly selects DB constants most likely to appear

in output query
• Re-ranking GCN to discriminatively re-evaluate top K

queries output by decoder based on global match
between question and DB schema
- Ensures that query covers all aspects of question

13

Base model vs. Global reasoning

Base
model:

Global
reasoning:

14

Global Gating
• Same input to gating GCN, but add new node to shorten paths between other nodes

- Initial embedding of randomly initialized

• Input to GCN at node is , a representation for DB constant and question

- ; represents concatenation
- : feed-forward network

- : weighted average of contextual representation of question words

• Calculate new relevance probability , which replaces original as new
input to encoder GCN

• In addition to usual decoding loss, add relevance loss:

- : subset of DB constants that appear in gold query

vglobal
vglobal

v gv
(0) = FF([rv; h̄v; pv)]

FF(⋅)
h̄v = ∑

i

plink(xi |v) ⋅ ei)

pglobal
v = σ(FF(gv

(L))) pv

− ∑
v∈𝒰y

log pglobal
v − ∑

v∉𝒰y

log(1 − pglobal
v)

𝒰y y

15

Discriminative Re-Ranking
• Purpose: score each candidate tuple and globally reason over each candidate query

• Re-ranker trained to minimize re-ranker loss, i.e. the negative log probability of gold query

• For each , compute logit

- : learned parameter vector

-

‣ Representation for sub-graph induced by the set

‣ representation used to score question-conditioned subgraph

- , where

‣ Representation for global alignment between question words and DB constants
‣ Goal: allow model to recognize attended words that are aligned with DB constants

but were not selected for

(x, S, ̂y) ̂y
y

̂y s ̂y = wTFF(f𝒰 ̂y
, ealign)

w
f𝒰 ̂y

= (FF(rv; h̄v))(L)vglobal

𝒰 ̂y

vglobal

ealign = [ei; ∑
v∈V

plink(v |xi) ⋅ ϕv] ϕv = fv
(L) if v ∈ 𝒰 ̂y and rv otherwise

𝒰 ̂y

16

Re-ranking GCN architecture

17

Experimental Setup

• Train and evaluate on SPIDER, a zero-shot semantic parsing dataset
with complex DBs
- 7,000/1,034/2,147 train/development/test examples

• For training the re-ranker, take K = 40 candidates from beam output
of the decoder
- At each training step, if beam contains gold query, calculate the

loss on the gold query and 10 random negative candidates
• At test time, re-rank top K = 10 candidates in the beam
• Remove either Global Gating or Re-Ranking functionalities and

observe how results change

18

Results
Model Accuracy

SyntaxSQLNet 19.7%

GNN 39.4%

Global-GNN 47.4%

Model Accuracy Beam Single Multi

GNN 40.7% - 52.2% 26.8%

Global-GNN 52.1% 65.9% 61.6% 40.3%

- No Global Gating 48.8% 62.2% 60.9% 33.8%

- No Re-Ranking 48.3% 65.9% 58.1% 36.8%

- No Relevance Loss 50.1% 64.8% 60.9% 36.6%

No Align Rep. 50.8% 65.9% 60.7% 38.3%

Query Re-Ranker 47.8% 65.9% 55.3% 38.3%

Oracle Relevance 56.4% 73.5% - -

Test set accuracy

Development set accuracy

19

Qualitative Analysis

• Coverage: query covers all relevant question words
• Precision: query only joins tables relevant to question

20

Shortcomings/Limitations

• This approach only deals with factual information and
doesn’t attempt to provide “reasons” for why one
query works and another doesn’t

• Some questions can be interpreted in multiple ways
even in global setting - how to deal with these
ambiguous cases?

• Doesn’t consider missing data (only takes into
account DB schema rather than contents)

21

Conclusions and Further Work

• Paying attention to the context of a token within a
question improves English-to-SQL translation

• Re-ranker is best at choosing DB constants, while
decoder can determine overall query structure

• A global model that selects both DB constants and
SQL tokens might further improve performance

• Would be interesting to explore reverse translation,
i.e. SQL to English

