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Introduction

• Task: Identify Entities and Relations

• Sentence: “Tom married Mary in England”

• Entity Extraction:
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Introduction

• Task: Identify Entities and Relations

• Sentence: “Tom married Mary in England”

• Entity Extraction:
• (Tom, person)
• (Mary, person)
• (England, location)

• Relation Extraction:
• Marry(Tom, Mary)
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The relation tag “marry" is 
constrained by the two entity 
labels for “Tom” and “Mary”
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Introduction

Prediction1

Prediction2

Predictionn

PREDICTIONS FROM VARIOUS TASKS

Natural Language 
Decisions

Question 
Answering

Coreference 
Resolution

Event 
Extraction

Causal 
Inference

Temporal 
Ordering

NER POS 
TaggingExample

5



Introduction

• These predictions must typically respect some constraints
§ Part of Speech (POS) Tagging:

Ø Sentence must have at least 1 verb
Ø Cannot have 3 consecutive verbs

§ Name Entity Resolution
Ø No two entities can overlap

• Efficient solutions for these type of problems have been given when 
the constraints are sequential.
• These solutions can be categorized into two different frameworks
• Learning Global Models: Ex. Variations of HMMs, conditional models, etc.
• Inference with Classifiers

POS 
Tagging

NER

We are going to focus on this
6



Introduction

• Typically, both these frameworks rely on dynamic programming à
works well with sequential data
• Many problems à structure is more general à computationally 

intractable inference
• This paper develops a novel inference with classifiers approach
• Studies a general setting à does not restrict to sequential data

• The problem is formulated as:
• Collection of discrete random variables 
• Binary relations
• Constraints on the binary relations
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Introduction

• Can contrast model in this approach to 
other sequential inference methods.
• However, a key difference:

• Other approaches: Model is learned globally, 
under constraints imposed by the domain

• The paper’s approach: 
• Predictors don’t need to be learned in the context 

of decision tasks
• It is related to the notion of the ability to decouple 

the learning (or some of it) from the final global 
decision

• Push the global decision to minimally violate 
constraints

8



Entity and Relation Recognition

• The model first learns a collection of “local” predictors:
• Entity Identifier
• Relation Identifier

• A global decision is produced that optimizes over:
üthe suggestions of the classifiers
üKnown constraints among them
üDomain or task specific constraints

• Brute force: 
• n entities in a sentence à O(n2) possible relations 
• If each variable (entity or relation) can take l values, la assignments, where a = n2
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Entity and Relation Recognition

• While evaluated on simultaneous learning of named entities and 
relations, this papers approach:
• Provides a significant improvement in the predictor’s accuracy
• Provides coherent solutions

• Coherent solutions: No inconsistencies among predictions (“stupid 
mistakes”)
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Joint Inference with General Constraint Structure [Roth&Yih’04,07,….]

Recognizing Entities and Relations

Slide courtesy of Roth & Srikumar: ILP formulations in Natural 
Language Processing
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Joint inference gives 
good improvement 

Key Questions: 
How to learn the model(s)? 
What is the source of the knowledge?

Models could be learned separately/jointly; constraints may come up only at decision time.
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good improvement 

Key Questions: 
How to learn the model(s)? 
What is the source of the knowledge?

An Objective function that  incorporates learned 

models with knowledge      (output constraints) 
A Constrained Conditional Model

Models could be learned separately/jointly; constraints may come up only at decision time.



The Relational Inference Problem

• Under weak assumptions, we can view the inference problem as an 
optimization problem, which aims to minimize the sum of the 
following:
• Assignment cost: The cost of deviating from the assignment      given by the 

classifiers.
• Let l is the label assigned to variable u with a probability                            
• The assignment cost is given by            = 

• Constraint cost: The cost imposed by breaking constraints between 
neighboring nodes.
• = 0 if                               , otherwise                        = 
• Similarly,        is used to force consistency of the second argument of a relation
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The Relational Inference Problem

• The overall cost function optimized, for a global labeling f of all 
variables is:

Assignment Cost

Constraint Cost

This 
combinatorial 
problem is 
computationally 
intractable
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A Computational Approach to Relational 
Inference
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A Computational Approach to Relational 
Inference
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Assignment Cost

Constraint Cost

Main Takeaway:
Increases coherent solutions and 
decreases inconsistent 
predictions
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A Computational Approach to Relational 
Inference

Main Takeaway:
Each entity or relation 
variable can be assigned only 
1 value
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A Computational Approach to Relational 
Inference

Main Takeaway:
Assures that the assignment to 
each entity or relation variable is 
consistent with respect to the 
assignment of neighboring 
variables
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A Computational Approach to Relational 
Inference

Main Takeaway:
Integral constraints on Binary 
Variables
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Linear Programming Relaxation (LPR) 

• To solve the ILP, a natural idea is to relax the integral constraints:

• If the solution returned is an integer solution, then it’s the solution to the ILP 
problem.
• If the solution returned is non-integer, then a lower bound to the cost is 

achieved

25



Linear Programming Relaxation (LPR) 

• Ways to deal with a non-integer solution:
• Rounding: Finds an integer point that is close to the non-integer solution

• Merit: Can be a good approximation to the optimal solution
• Demerit: Outcome may not even be a legal solution to the problem

• Branch & Bound:
• Divides the ILP problem into several LP problems
• Uses LPR to generate dual (upper and lower) bounds to reduce search space

Ø Suppose is fractional in a non-integer solution to the ILP                                                                 
it can be split into two sub problems:

1.
2.

• Cutting Plane:
• When a non-integer solution is given, it makes it infeasible
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Experiments

• The authors ran experiments on the problem of simultaneously 
recognizing entities and relations
• Dataset: Text Retrieval Collection (TREC) dataset : WSJ, AP,..
• Examples of constraints between relation variable
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Experiments

• 4 methods of evaluating the model:
• Basic:

• Only tests the entity and relation classifiers, which are trained independently
• The algorithm used to learn this : SNOW

• Learns sparse network of linear functions

• Pipeline:
• Typical strategy in solving complex NLP problems
• First trains an entity classifier on a different corpus in advance
• Uses the prediction of the entities along with local features in training the relation 

classifier
• Better performance for relation classifier when using predicted entities vs. using true 

entities

28

Entity 
Prediction

Relation 
Prediction

Evaluation

Entity 
Prediction

Relation 
Prediction

Evaluation



Experiments

• Linear Programming Approach: 
• Global inference procedure
• Takes as input:

• Constraints between entities and relations
• Output of the entity classifier
• Output of Relation classifier

• It could potentially change the prediction for both entity and relation classifier
• Omniscience (Unrealistic in practical settings):

• Tests the conceptual upper-bound of this entity/relation classification problem
• Assumes that:

• The entity classifier knows the correct relation labels
• The relation classifier knows the correct entity labels
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Results
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Results

• LP performs 
consistently 
better than basic 
and pipeline

• LP uses the 
learned model 
and an additional 
ILP inference on 
top of them, and 
therefore 
outperforms 
pipeline, which 
uses entity 
predictions as 
new features in 
learning 31



Results

• The results of the 
omniscient 
classifiers reveal 
that there is still 
room for 
improvement
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Results

• One of the more significant results à improvement in quality of 
predictions
• if the label of an active relation is predicted correctly, and if both its 

entities are also predicted correctly à coherent solution
• Quality of a decision à |coherent|/(|coherent| + |incoherent|)
• Pipeline and Basic à 5% to 25% incoherent, LP à 0%
• Another significant result à adding constraint not present during 

learning 
• One of the key motivations for this framework. 
• The ability to incorporate knowledge not present in training but only becomes 

available during testing

33



Conclusion

• Presented an LP approach for global inference:
• Works for non-sequential data
• Provides an efficient way of finding optimal solution
• Predictions are coherent

• This framework became known as the ILP formulation of NLP Problems 

• What it really is doing is abductive reasoning
• Observations: Sentence containing entities and relations
• Simple most likely explanation: Predictions from individual models followed by

Global inference
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