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Introduction: Logical vs Distributional Semantics
Logic-based representations:

+ Encompass negation, quantifiers, entities
+ Standardized inference mechanisms
- Coverage problems from manually constructed dictionaries
- Fail to capture graded aspect of meaning (binary)

Distributional models:

+ Contextual similarity -> semantic similarity
- Do not support logical inference
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Introduction: Logical vs Distributional Semantics
“The case for abandoning the categorical view of competence and adopting a 
probabilistic model is at least as strong in semantics as it is in syntax.” -- van 
Eijck and Lappin (2012)

“Meaning is about truth… Meaning is also about a community of speakers and 
how they use language” -- Beltagy et al. (2016)
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Task - Recognizing Textual Entailment (RTE)
Text T {entails, contradicts, neutral} Hypothesis H

Not logical entailment; labels provided by human annotators

SICK dataset
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Hybrid Approach
1) First-order logic: primary meaning representation
2) Distributional information: weights for logical rules
3) Markov Logic Networks (MLN): inference
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Example (3) -- Markov Logic Networks
Markov networks: undirected graphical 

models

MLNs construct Markov Networks based 

on weighted FOL formulas

Example: Two constants: Anna (A) and 

Bob (B)
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High-Level Architecture + Task Representation

[i]

[ii]

[i] high, [ii] low: Entailment
[i] low, [ii] high: Contradiction
[i] similar to [ii]: Neutral
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Parsing with Boxer
Rule-based semantic analysis system

Input: CCG parse

More information:
● Boxer: https://www.aclweb.org/anthology/W15-1841.pdf 
● CCGs: http://www.cs.tau.ac.il/~joberant/teaching/Talks/dor.pdf
● NDF: http://www.coli.uni-saarland.de/courses/incsem-12/neodavidsonian.pdf 
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Parsing with Boxer
Neo-Davidsonian framework (NDF)

Example: {An ogre loves a princess}NL

Note: this is not a 

rule! (no implication) 
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Domain Closure Assumption (DCA)
1 to 1 relationship between objects in domain and named 
constants of F, i.e.

There are no objects in the universe other than the 
named constants.

MLNs only handle finite set of constants
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Closed World Assumption (CWA)
Everything is false unless stated otherwise

Assign ground atoms low prior probabilities

Benefits:

● Entailment not a result of world knowledge
● Inference less sensitive to domain size
● Computational efficiency
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Multiple Parses
More robust to downstream errors

Generate two parses for both T and H -> T1, T2, H1, H2

Compute probabilities for all combinations of H given T:

T1, T2, H1, H2 (and ¬H1, ¬H2)

Thresholding classifier (in stage 3) trained to take in all 
resulting probabilities as features
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Knowledge Base Construction
What we have: modified meaning repr. from Boxer

What we want: weighted rules

3 Groups of rules:

1. Classified rules from MRR
2. Wordnet
3. PPDB
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Rules as Training Data
Convert MRR rules into textual rules (replace Boxer 
predicate with NL word)

Use {entailment, contradiction, neutral} labels on RTE 
task to derive labels for individual rules

[i] Entailment: All rules labeled entailment
[ii] Neutral: Compare against rules from [i] + manual 
annotation
[iii] Contradiction: Assume either T or H is negated
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Lexical Entailment Rule Classifier
Predict entailment between single words

Supervised classification with below features:

● Wordform: same lemma, same POS, etc
● WordNet: synonymy, antonymy, hypernymy, etc
● Distributional: histogram binning of cosines
● Asymmetric: use dependency space generated with 

distributional features
The idea is to generate features 

from the relationship between 

LHS and RHS
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More Info On Distributional Features
Preprocessing:

● BNC, ukWaC, and Wikipedia fed into Stanford CoreNLP
● Keep only content words {NN, VB, RB, JJ} appearing at least 1000 times

Bag of Words vectors:

● Skip-Gram Negative Sampling (window size: 20)

Dependency Vectors:

● Extract tuples from Stanford Collapsed CC Dependency graphs
● Build vector space with (lemma/POS) as rows and (relation, context/POS) 

as columns

Cosine similarity in either space as features
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Extension to Phrases
Many of rules from MRR have multiple words (phrases)
e.g. little boy -> child

1. Compositional model
2. Greedy word aligner

○ Find pairs of words from LHS/RHS most similar in distributional space
○ Compute base features based on results of alignment
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More Info On Compositional Model
Preprocessing:

● BNC, ukWaC, and Wikipedia fed into Stanford CoreNLP
● Keep certain dependencies {amod, nsubj, dobj, pobj, acomp} and combine 

governor and dependent words into phrases
● Governor and dependent among 50K most frequent words in corpus’
● Word representation:

○ Vector: contexts
○ Several Matrices: for each dependent type
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Rule Group 2: WordNet
Substring matching with T+H pair and WordNet to find 
relevant rules

Represent as logical rules
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Rule Group 2: PPDB
Substring matching with T+H pair and PPDB to find 
relevant rules

Rule-based translation of PPDB rules to logical rules:

1. (Assume conjunction of positive atoms in PPDB)
2. Break down PPDB rule into predicates
3. Add Boxer meta-predicates based on Boxer parse of 

T+H pair

Rule-based binding of variables in LHS to RHS:

1. Manually define paraphrase rule templates for PPDB
2. Existentially quantify unbound RHS variables 
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Rule Group 3: Handcoded Rules
Handful of manually added rules

For SICK dataset, lexical rules where one side is 
“nobody”  
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Weight “Learning”
Weights from different sources may be on different 
scales

Grid search to find appropriate scale factors
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Final Entailment Rules Classifier
10 fold cross validation on annotated training set

Logistic regression with L2 regularization

Other models tried: Decision Trees, SVMs (various 
kernels)
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MLN Construction
What we have:

1. Task representation
2. Weighted rules

What we want:

1. Markov Logic Network
2. Inference: an entailment prediction

More information:
● MLNs: https://homes.cs.washington.edu/~pedrod/papers/mlj05.pdf 
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MLN Construction
Given [i] constants Anna (A) and Bob 
(B) and [ii] input formulas

1. Generate all ground atoms 
(nodes in graph)

2. Connect two nodes if co-occur 
in grounding of input formula

Note: Each clique corresponds 

to grounding of a rule.
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MLN Inference
Variable assignment assigns {T,F} to 
each node -> a “world”

Variable assignment makes 
underlying ground rules true or false

Clique potential: function that 
assigns a value to each clique

Compute probability of a world F

T

T

TT

T

T

F
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Inference on Complex Formulas
Probability of a formula: Sum of probabilities 
of possible worlds that satisfy it

Problem: Current MLN implementations only 
support probabilities of ground atoms

Naive fix: Add complex formula to MLN with 
brand new ground atom with infinite weight

Problem: Backwards implication intractable

Better idea: Compute partition Z with and 
without H

⅀
X
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How CWA optimizes queries
H (query) equivalent to disjunction of all possible queries

Any ground atoms NOT inferred from T or T ∧ KB are false

In practice, eliminates O(cv) behavior from # of ground clauses of H
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Final MLN Classifier
Learn thresholds for probability of ¬H1 and ¬H2

SVM classifier with LibSVM’s default parameters.
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Evaluation: Entailment Rules Classifier
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Evaluation: Entire System

31



Limitations
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● Low usage of distributional models
● Rule-based approach for determining coreference
● Weights for inference rules not dependent on context
● Robinson Resolution does not handle duplicate words
● No general algorithm for when to extend a rule
● Manual annotation of training data for Entailment Rule Classifier

○ Assumption about contradiction pairs in SICK dataset specifically
● Rule-based PPDB features
● Extra hand coded rules



Thank you!
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