
Structured Learning with Constrained Condition
Models

Presenter: Sihao Chen
CIS-700 Spring 2020

Ming-Wei Chang, Lev Ratinov and Dan Roth



n Classification problems with structured, (usually) interdependent outputs

n Structured Prediction is everywhere in NLP
¨ Parsing
¨ Sequence Labeling

n E.g. Named Entity Recognition (NER)

n In fact, not just in NLP…

Structured Prediction

2

𝑦 U-ORG OO U-PER O O U-LOC

𝑥 U.N Official Ekeus heads for Baghdad



Example 1 – Entity & Relation Extraction

3Borrowed From Aditya Kashyap’s presentation earlier this semester. “A Linear Programming Formulation for Global Inference in Natural Language Tasks”



Example 2 – Syntactic Parsing

4

Input:

Gold Parse:

Invalid Parse:

(S (NP XX ) (VP XX (NP XX ) ) )

(S (NP ) (VP XX XX (NP XX ) ) )

Empty phrase

John kissed Mary

n Input: A sentence
n Output: A sequence representing its syntactic tree

“A General-Purpose Algorithm for Constrained Sequential Inference” Deutsch, Upadhyay, Roth. 2019



Example 2 – Syntactic Parsing

5“A General-Purpose Algorithm for Constrained Sequential Inference” Deutsch, Upadhyay, Roth. 2019

n Example model: A seq2seq parser (outputs the tree sequence from Left to Right)
n Only >90% of the outputs are valid (but not necessarily correct) parse trees

¨ (When we <100% training data, it’s even worse!)



Constrained Conditional Model – Three Motivations

1. Separate modeling and problem formulation from algorithms

2. Keep model simple, make expressive decisions via constraints

3. Expressive structured decisions can be supported by simply learned models 
¨ Do Global Inference on top of simple models

(As we will get into more detailed explanations in later slides)

6Tutorial from NAACL’13 “Predicting structures in NLP: Constrained Conditional Models” by Goldwasser, Srikumar, Roth

Modeling

Inference

Learning



Constrained Conditional Model – Three Motivations

7Tutorial from NAACL’13 “Predicting structures in NLP: Constrained Conditional Models” by Goldwasser, Srikumar, Roth

POS Tagging Parsing Word Sense
Disambiguation

Document Semantic Role
Labeing

n Let’s revisit the pipeline example –

n Later stages can’t go back and correct the previous results

n Easier to learn model for each individual task. Difficult to learn jointly.

n What if we impose constraints at decision time?



Ingredients of Structured Prediction

n Input 𝑥

n Output Structure 𝑦

n A list of Feature Extractors
Φ#(𝑥, 𝑦)

n Inference
¨ e.g. 𝑎𝑟𝑔𝑚𝑎𝑥! ∑"#$% w&Φ&(𝑥, 𝑦)

8

𝑥 is the input sentence

𝑦 is the output PoS tag sequence

Finding the ”best” sequence of PoS
tags

Ingredients Example: Part-of-Speech tagging



Structured Prediction - Inference

n Inference is expressed as a maximization of a scoring function

n Labels 𝑦$ are interdependent. You can’t greedily predict from left to right.

n When given an example 𝑥 ∈ 𝕏, Inference requires looking at all 𝑦 ∈ 𝕐 at decision
time (for exact inference)
¨ Exact inference is NP-hard in general
¨ Sometimes done through approximation. E.g. LP relaxation, Beam search, A*

9

𝑎𝑟𝑔𝑚𝑎𝑥%∈𝕐.
$()

*

w#Φ#(𝑥, 𝑦)

Set of ‘allowed’ structures

Weights, estimated thru. learning

Joint features on input
and output



Constrained Conditional Model

𝑎𝑟𝑔𝑚𝑎𝑥%.
$()

*

w#Φ#(𝑥, 𝑦) − .
$()

+

𝜌#𝑑(𝑦, 1,!(.))

Given 𝐾 “constraints” 𝐶$ for i ∈ [1, 𝐾]

Suppose we define a “violation function” 𝑑 𝑦, 1,! .,% , which measures the degree to
which the current output structure 𝑦 violates the constraint 𝐶$.

10



Constrained Conditional Model

𝑎𝑟𝑔𝑚𝑎𝑥%.
$()

*

w#Φ#(𝑥, 𝑦) − .
$()

+

𝜌#𝑑(𝑦, 1,!(.,%))

Before we get into explanation, there are still problems with the objective…

n Only expresses “soft” constraints, what about “hard” constraints?
¨ (Technically you can do it by setting 𝜌 to +∞, but that way “hard” constraints overshadow the 

“soft” ones)

11



Constrained Conditional Model

𝑎𝑟𝑔𝑚𝑎𝑥%∈1"#$!%.
$()

*

w#Φ#(𝑥, 𝑦) − .
$()

+

𝜌#𝑑(𝑦, 1,!(.,%))

Before we get into explanation, there are still problems with the objective…

n Only expresses “soft” constraints, what about “hard” constraints?
¨ “Hard” constraints can be imposed directly on the output space 𝑌 → 𝑌'()"*
¨ E.g. can be formulated as an ILP problem

𝑎𝑟𝑔𝑚𝑎𝑥! 2
"#$

%

1{,(.,!)}𝑊"

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐶2 𝑓𝑜𝑟 𝑗 ∈ [1, 𝑘]

12



Constrained Conditional Model

𝑎𝑟𝑔𝑚𝑎𝑥%∈1"#$!%.
$()

*

w#Φ#(𝑥, 𝑦) − .
$()

+

𝜌#𝑑(𝑦, 1,!(.,%))

Observation: The “soft”constraints term seems similar to the features term.

13

“Hard” Constraints

Features “Soft” (or hard, when 𝜌=+∞) 
Constraints

Key Question
What’s the benefit of separating features from constraints?



Benefit #1: Using Constraints as Supervision

14

𝑎𝑟𝑔𝑚𝑎𝑥%∈1"#$!%.
$()

*

w#Φ#(𝑥, 𝑦) − .
$()

+

𝜌#𝑑(𝑦, 1,!(.,%))

n In scarce labeled data scenario, this becomes very important

n Constraints are more reliable. And more importantly we as human have a sense of 
“how reliable it is”
¨ The penalty parameter 𝜌 can be set manually, doesn’t have to be learned



n Constraints can be more expressive
¨ E.g. 𝐶" 𝑥, 𝑦 can be written as first-order logic expression

n Constraints are more suitable for “defining the problem formulation”, while
features doesn’t have to be “problem specific”.
¨ We’ve seen the same ideas from many previous presentations before

Benefit #2: Separating “Modeling” from the “Problem”

15

𝑎𝑟𝑔𝑚𝑎𝑥%∈1"#$!%.
$()

*

w#Φ#(𝑥, 𝑦) − .
$()

+

𝜌#𝑑(𝑦, 1,!(.,%))



n People usually model problems in the way that the feature functions 𝚽 really only
depend on 𝒙.

n The dependency on 𝑦 is expressed via 𝐶$ 𝑥, 𝑦 as structural constraints

Benefit #2: Separating “Modeling” from the “Problem”

16

𝑎𝑟𝑔𝑚𝑎𝑥%∈1"#$!%.
$()

*

w#Φ#(𝑥, 𝑦) − .
$()

+

𝜌#𝑑(𝑦, 1,!(.,%))



Benefit #3: Efficiency

17

𝑎𝑟𝑔𝑚𝑎𝑥%∈1"#$!%.
$()

*

w#Φ#(𝑥, 𝑦) − .
$()

+

𝜌#𝑑(𝑦, 1,!(.))

n For most problems, the number of features 𝑁 is fewer than the number of
constraints 𝐾. 
¨ In such cases, using constraints as supervision is more efficient.

n Also because 𝜌 should always be positive, we could potentially speedup exact 
inference. 

(E.g. by using A* search)



CCM - Brief Summary

𝑎𝑟𝑔𝑚𝑎𝑥% F(𝑥, 𝑦) − .
$()

+

𝜌#𝑑(𝑦, 1,!(.))

n Introducing CCMs as a formalism that allows us to –
¨ Learn simpler models than we would otherwise
¨ Make decisions with expressive models, augmented by declarative constraints/knowledge

n Cast NLP problems as CCMs
¨ Sequence Tagging (Hidden Markov Model + Global Constraints)
¨ Semantic Role Labeling (Independent/Local classifiers + Global Constraints )

18

Replaced the term with a general
notion of “collection of classifiers”



Inference is challenging

19

𝑎𝑟𝑔𝑚𝑎𝑥%F(𝑥, 𝑦) − .
$()

+

𝜌#𝑑(𝑦, 1,!(.))

n Requires discrete optimization

n Naturally this is an Integer Linear Programming (ILP) problem
¨ Every structured prediction inference is an ILP.
¨ But it doesn’t have to be solved as an ILP problem (e.g. if you don’t need exact inference)



Quick Revisit - ILP

20NAACL’13 Tutorial “Predicting structures in NLP: Constrained Conditional Models” by Goldwasser, Srikumar, Roth



CCM example – Sequence Labeling

n Hidden Markov Model
¨ (Here 𝑦 would a a single label instead of structure)

𝑎𝑟𝑔𝑚𝑎𝑥% 𝑃 𝑦5 𝑃 x5|𝑦5 @
$()

6

𝑃 𝑦$ 𝑦$7) 𝑃(𝑥$|𝑦$)

n Models the joint probability 𝑃 𝑥, 𝑦 under independence assumptions (next
prediction only looks at previous prediction)

n Only captures local relationships

21



CCM example – Sequence Labeling

n Hidden Markov Model
¨ (Here 𝑦 would a a single label instead of structure)

𝑎𝑟𝑔𝑚𝑎𝑥% 𝑃 𝑦5 𝑃 x5|𝑦5 @
$()

6

𝑃 𝑦$ 𝑦$7) 𝑃(𝑥$|𝑦$)

n Step #1 – Represent the objective in ILP formulation –
¨ You don’t have to read this too carefully…

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒.
%∈1

𝜆8,%1{%&(%} +.
$()

;7)

.
%∈1

.
%'∈1

𝜆$,%,%'1{%!(% ∧ %!()(%'}

22(Learned parameters)



CCM example – Sequence Labeling

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒.
%∈1

𝜆8,%1{%&(%} +.
$()

;7)

.
%∈1

.
%'∈1

𝜆$,%,%'1{%!(% ∧ %!()(%'}

n Step #2: Come up with constraints according to the problem
n Let’s take Part-of-Speech tagging as example again…

¨ Constraint #1: Unique label for each word

2
!∈4

1{!!#!} = 1

23



CCM example – Sequence Labeling

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒.
%∈1

𝜆8,%1{%&(%} +.
$()

;7)

.
%∈1

.
%'∈1

𝜆$,%,%'1{%!(% ∧ %!()(%'}

n Step #2: Come up with constraints according to the problem
n Let’s take Part-of-Speech tagging as example again…

¨ Constraint #2: There must be at least one verb in the sentence

1{!!#"'567"} +2
"#$

89$

2
!∈4

1{!#$%#! ∧ !##"'567"} ≥ 1

24



CCM example – Sequence Labeling

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒.
%∈1

𝜆8,%1{%&(%} +.
$()

;7)

.
%∈1

.
%'∈1

𝜆$,%,%'1{%!(% ∧ %!()(%'}

Subject to:

2
!∈4

1{!!#!} = 1

1{!!#"'567"} +2
"#$

89$

2
!∈4

1{!#$%#! ∧ !##"'567"} ≥ 1

25

……

You can write many
declarative constraints like

this, as ‘prior knowledge’ for
the problem

(1 PoS tag per word)

(>= 1 verb)



CCM – Empirical Evaluation

n Citation Field Parsing

26



CCM – Empirical Evaluation

n Citation Field Parsing – Constraints used

27



CCM – Empirical Evaluation

n Results
¨ With small amount of training examples

Supervision from constraints > Supervision from examples

28



CCM – Hard vs. Soft Constraints

n Soft-constraints work better when there’s sufficient training data

29

All Constraints are hard
(𝜌 = +∞)

Constraints are not perfect! Some training examples will violate the constraints.



CCM in 2020? Challenges? Opportunities?

n We try to solve everything in Neural Networks these days.

n From a pure inference perspective, declarative constraints are almost always good
to have

n What are the challenges in incorporating constraints in NN training?
¨ If we want to do inference based training, how do we write a differentiable 𝑑(𝑦, 1;# . )

30



31



Incorporating declarative constraints in NN

n For a NN, suppose have a set of named neurons, for which you know their semantic
implications (with respect to the problem).

n You can write declarative constraints in the form of first-order logic expressions
over the named neurons.

n This is analogous to 𝐶$ and 𝑑(𝑦, 1,! . ) we saw in CCM.

n The challenge here is to make 𝑑(𝑦, 1,! . ) differentiable.

32



Incorporating declarative constraints in NN

n Idea: Use T-norm fuzzy logic to represent 𝑑(𝑦, 1,! . )

¨ differentiable distance functions to measure “how much a
constraint is violated”

33

(Looks exactly like CCM, doesn’t it?)



Incorporating declarative constraints in NN

n Example: Machine Reading Comprehension (SQuAD)
¨ Consider the attention layer over words in paragraph and question

34

Rule 1: If a word in question and a word
in paragraph is related in ConceptNet,

their attention should be aligned

Rule 2: (Softer version of Rule 1 which
also takes model prediction into account)



Results

35



Conclusion

n CCM is a framework that augments simpler, (linear) models with expressive
declarative constraints.

n Declarative constraints can not only be used at decision time, it can also be viewed
as a form of supervision for learning.

n (Li and Srikumar, 2019) is a good attempt in using declarative constraints to drive
learning in Neural Networks

n Separating models from problem formulation seems to be a key intuition that we
keep re-visiting in this class.

36


