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Structured Prediction @@

m Classification problems with structured, (usually) interdependent outputs

] . . . A
m Structured Prediction is everywhere in NLP N VP
| N
0 Parsing vV NP Constituency-based parse tree
O Sequence Labeling D/\N

m E.g. Named Entity Recognition (NER)

John hit the ball.

m In fact, not justin NLP...
y | uorRé 0o UPER O 0  ULOC

X ‘ U.N Official Ekeus heads for Baghdad
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Example 1 — Entity & Relation Extraction @ [,

* Task: Identify Entities and Relations
E, E, Es
* Sentence: “Tom married Mary in England”

* Entity ExtracW ‘ -

The relation tag “marry" is
* (Tom, person) constrained by the two entity
e (Mary, person) labels for “Tom” and “Mary”
* (England, location) < 4

* Relation Extraction:
* Marry(Tom, Mary)

Borrowed From Aditya Kashyap’s presentation earlier this semester. “A Linear Programming Formulation for Global Inference in Natural Language Tasks” 3



Example 2 — Syntactic Parsing

\

® Input: A sentence
B Output: A sequence representing its syntactic tree

Input: John kissed Mary
Gold Parse: (S (NP XX ) (VP XX (NP XX ) D) )

Invalid Parse: (S (NP ) (VP XX XX (NP XX ) ) ) X

Empty phrase

“A General-Purpose Algorithm for Constrained Sequential Inference” Deutsch, Upadhyay, Roth. 2019



Example 2 — Syntactic Parsing @@

m Example model: A seq2seq parser (outputs the tree sequence from Left to Right)
m Only >90% of the outputs are valid (but not necessarily correct) parse trees

O (When we <100% training data, it’s even worse!)

—©— UNCONSTRAINED
—h— CONSTRAINED
— PosTHOC

Percent Satisfied

0 0 20 40 60 80 100

Percentage of Training Data

“A General-Purpose Algorithm for Constrained Sequential Inference” Deutsch, Upadhyay, Roth. 2019 5



Constrained Conditional Model — Three Motivations @:;,

1. Separate modeling and problem formulation from algorithms Modeling

2. Keep model simple, make expressive decisions via constraints Inference

3.  Expressive structured decisions can be supported by simply learned models
[0 Do Global Inference on top of simple models

Learning

(As we will get into more detailed explanations in later slides)

Tutorial from NAACL' 13 “Predicting structures in NLP: Constrained Conditional Models” by Goldwasser, Srikumar, Roth 6



Constrained Conditional Model — Three Motivations

&

7

\

m Let’s revisit the pipeline example —

Document

4

A 4

POS Tagging

A 4

Parsing

A 4

Word Sense
Disambiguation

m Later stages can’t go back and correct the previous results

A 4

Semantic Role
Labeing

m Easier to learn model for each individual task. Difficult to learn jointly.

m What if we impose constraints at decision time?

Tutorial from NAACL' 13 “Predicting structures in NLP: Constrained Conditional Models” by Goldwasser, Srikumar, Roth

7



Ingredients of Structured Prediction @\C,

Ingredients Example: Part-of-Speech tagging
m |Inputx x is the input sentence
m QOutput Structure y y is the output PoS tag sequence

m A list of Feature Extractors
Di(x,y)

m Inference Finding the "best” sequence of PoS
O e.g. argmaxy, )= 1W1CI) (x,7) tags



Structured Prediction - Inference @ (,

A

m Inference is expressed as a maximization of a scoring function

Joint features on input
argmaxyey) ) wii(x,y) | T2 and output

Set of ‘allowed’ structures @ t=1 @

Weights, estimated thru. learning

m Labels y; are interdependent. You can’t greedily predict from left to right.

m When given an example x € X, Inference requires looking at all y € Y at decision
time (for exact inference)
0 Exact inference is NP-hard in general
0 Sometimes done through approximation. E.g. LP relaxation, Beam search, A*



Constrained Conditional Model @:;,

N
argmax, z w;D;(x,y)
i=1

Given K “constraints” C; fori € [1, K]

Suppose we define a “violation function” d(y, 1Ci(x,y)) , Which measures the degree to
which the current output structure y violates the constraint C;.

10



Constrained Conditional Model @:;,

N K
argmax,, 2 wi P (x,y) — 2 pid (Y, 1Ci(x,y))
J =1

1=1

Before we get into explanation, there are still problems with the objective...

m Only expresses “soft” constraints, what about “hard” constraints?

O (Technically you can do it by setting p to +o0, but that way “hard” constraints overshadow the
“soft” ones)

11



Constrained Conditional Model @ 7

A

2

L

K
argmaxyEYvalid F qu)l(x' Y) _ z pld(y' 1Ci(x,y))
=1 =1

Before we get into explanation, there are still problems with the objective...

m Only expresses “soft” constraints, what about “hard” constraints?
O “Hard” constraints can be imposed directly on the output space Y — Y, 414
O E.g. can be formulated as an ILP problem

N
argmax,, 2 Lo, ynWi

i=1
subject to Cj for j € [1, k]

12



Constrained Conditional Model @

7
\

N K
argmaxyey.,,;iq Z Wi(bi(x» 3’) T 2 pid(y' 1Ci(x,y))
i=1 i=1

“Hard” Constraints @ @

Features “Soft” (or hard, when p=+0)
Constraints

Observation: The “soft”constraints term seems similar to the features term.

Key Question
What’s the benefit of separating features from constraints?

13



Benefit #1: Using Constraints as Supervision @:;,

N K
argmaxyEYvalid 2 qu)l(x' y) _ z pld(y' 1Ci(x,y))
=1 =1

l l

m In scarce labeled data scenario, this becomes very important

m Constraints are more reliable. And more importantly we as human have a sense of
“how reliable it is”
O The penalty parameter p can be set manually, doesn’t have to be learned

14



Benefit #2: Separating “Modeling” from the “Problem” @\z},

N K
argmaxyEYvalid 2 qu)l(x' y) T z pld(y' 1Ci(x,y))
i=1 =1

m Constraints can be more expressive
O E.g. C;(x,y) can be written as first-order logic expression

m Constraints are more suitable for “defining the problem formulation”, while
features doesn’t have to be “problem specific”.
[0 We’'ve seen the same ideas from many previous presentations before

AAAI’18

Question Answering as Global Reasoning over Semantic Abstractions

Daniel Khashabi * Tushar Khot  Ashish Sabharwal Dan Roth*
University of Pennsylvania  Allen Institute for Artificial Intelligence (AI2)  University of Pennsylvania
danielkh@cis.upenn.edu tushark, ashishs@allenai.org danroth@cis.upenn.edu

15




Benefit #2: Separating “Modeling” from the “Problem” @@,

N K
argmaxyey, o, ) WP | pid¥ 1)
i=1 =1

m People usually model problems in the way that the feature functions @ really only
depend on x.

m The dependency on y is expressed via C;(x, y) as structural constraints

16



Benefit #3: Efficiency @L

argmaxervalid é qu)l(x' y) o é ld(y' 1Ci(X'))
i=1 =1

m For most problems, the number of features N is fewer than the number of

constraints K.
O In such cases, using constraints as supervision is more efficient.

m Also because p should always be positive, we could potentially speedup exact
inference.

(E.g. by using A* search)

17



CCM - Brief Summary @@

K
argmax @ 2 pid(Y, 1c,x))
i=1

Replaced the term with a general
notion of “collection of classifiers”

m Introducing CCMs as a formalism that allows us to —
[0 Learn simpler models than we would otherwise
O Make decisions with expressive models, augmented by declarative constraints/knowledge

m Cast NLP problems as CCMs

[0 Sequence Tagging (Hidden Markov Model + Global Constraints)
[0 Semantic Role Labeling (Independent/Local classifiers + Global Constraints )

18



Inference is challenging @M

argmaxyF(x,y)

m Requires discrete optimization

m Naturally this is an Integer Linear Programming (ILP) problem
[0 Every structured prediction inference is an ILP.
O But it doesn’t have to be solved as an ILP problem (e.g. if you don’t need exact inference)

19



Quick Revisit - ILP (4
Telfa Co. produces tables and chairs; wants to maximize profit
Each table makes $8 profit, each chair makes $5 profit.
A table requires 1 hour of labor and 9 sq. feet of wood
A chair requires 1 hour of labor and 5 sq. feet of wood
We have only 6 hours of work and 45sq. feet of wood
Variables y,: Number of tables manufactured
Objective function y,: Number of chairs manufactured
MAaxXy, 4, Y1 + dY2 maxz =c-y
Constraints , Y .
Lab y1t+y2 <0 subject to Ay < b
aner Iy +oy2 <45 . .
Wood >0 y; integer for all 7
Y11
Variable Y2 =
Y1, Y2 integers
We cannot build fractional tables or chairs!
20

NAACL 13 Tutorial “Predicting structures in NLP:

Constrained Conditional Models” by Goldwasser, Srikumar, Roth



CCM example — Sequence Labeling @\C,

m Hidden Markov Model

O (Here y would a a single label instead of structure)

T
argmaxy, P(yo)P(Xo|yo) 1_[ Pilyi—1)P(x;ly;)
=1

®m Models the joint probability P(x, y) under independence assumptions (next

prediction only looks at previous prediction)
P(yo) P(y1lyo) P(y2|y1)  Plysly2) P(yalys)

~ ~ ~
7~ 7~ 7~

m Only captures local relationships l l l l l

P(xolyo) P(xi|yr) Plxzly2) Plxslyz)  P(walys)

21



CCM example — Sequence Labeling @\C,

m Hidden Markov Model
O (Here y would a a single label instead of structure)

T
argmaxy, P(yo)P(Xo|yo) 1_[ Pilyi—1)P(x;ly;)
=1

m Step #1 — Represent the objective in ILP formulation —
0 You don’t have to read this too carefully...

n—1
maximize 2 Aoyliyy=yy + Z Z Z Aiyy' Yyi=y nyioi=y')

YEY i=1 yeY y'ey
Ao,y = log(P(y)) + log(P(xoly))

e Aiy,y = log(P('y]y')) + log(P(xily))
(Learned parameters) 22




CCM example — Sequence Labeling @:;

n-—1
Maximize z /lo,yl{yo=y} T Z Z Ai,y,Y'l{YFY/\yi—l:JI'}
yEY =1 yeY y’ey

m Step #2: Come up with constraints according to the problem

m Let’s take Part-of-Speech tagging as example again...
0 Constraint #1: Unique label for each word

2 lyp=yy =1

yeY

23



CCM example — Sequence Labeling @:;

n-—1
Maximize z /lo,yl{yo=y} T Z Z Ai,y,Y'l{YFY/\yi—l:JI'}
yEY =1 yeY y’ey

m Step #2: Come up with constraints according to the problem

m Let’s take Part-of-Speech tagging as example again...
0 Constraint #2: There must be at least one verb in the sentence

n-—1

Liyo=tvern'y + z z lyici=y ayi='verpy 2 1
=1 yeYy

24



CCM example — Sequence Labeling

V a
\Y

Maximize z Aoyley,=y1 +

Subject to:

(1 PoS tag per word)

(>=1 verb)

yeY

2 Lyo=yy =1

yeY

n-—1

n-—1
Z Z Ay Lyi=y nyica=y')
=1 yeY y’ey

You can write many
declarative constraints like
this, as ‘prior knowledge’ for
the problem

1{3’0=’”37‘b’} + 2 2 1{yi—1=y/\yi ='verb'} =1

=1 yey

25



CCM - Empirical Evaluation

\

m Citation Field Parsing

(@) [ AUTHOR Lars Ole Andersen . | [ TITLE Program analysis and
specialization for the C programming language . | [ TECH-REPORT PhD
thesis , | [ INSTITUTION DIKU , University of Copenhagen , | [ DATE May
1994 . ]

(b) [ AUTHOR Lars Ole Andersen . Program analysis and | [ZI/TLE spe-
cialization for the | [EDITOR C | [ BOOKTITLE Programming language ]
[ TECH-REPORT . PhD thesis , | [ INSTITUTION DIKU , University of
Copenhagen , May | [ DATE 1994 . ]

26



CCM — Empirical Evaluation (»

m Citation Field Parsing — Constraints used

Table 1 The list of constraints used in the citations domain. Some constraints are relatively difficult to
represents in traditional models

Citations

Start
AppearsOnce
Punctuation
BookJournal
Date

Editors
Journal
Note

Pages
TechReport
Title

Location

The citation can only start with author or editor.

Each field must be a consecutive list of words, and can appear at most once in a citation.
State transitions must occur on punctuation marks.

The words proc, journal, proceedings, ACM are JOURNAL or BOOKTITLE.
Four digits starting with 20xx and 19xx are DATE.

The words ed, editors correspond to EDITOR.

The word journal are JOURNAL.

The words note, submitted, appear are NOTE.

The words pp., pages correspond to PAGE.

The words tech, technical are TECH _REPORT.

Quotations can appear only in titles.

The words CA, Australia, NY are LOCATION.

27



CCM - Empirical Evaluation

\

m Results

O With small amount of training examples

Supervision from constraints > Supervision from examples

# labeled
samples

Supervised

HMM  HMMCEEM

Semi-supervised

HMM  HMMCEM

Citations
5

10

20

300

58.48
63.37
70.78
86.69

71.64 (31.69 %)
75.44 (32.94 %)
81.15 (35.49 %)
93.92 (54.29 %)

64.55
69.86
75.35
87.89

77.65 (36.96 %)
81.51 (38.67 %)
85.11 (39.61 %)
94.32 (53.07 %)

28



CCM — Hard vs. Soft Constraints @

m Soft-constraints work better when there’s sufficient training data

Table 6 Comparison of using —
hard and soft constraints in Training samples 5 10 20 300

semi-supervised learning

(a)-Citations

semi-HMMCEM 77.65 81.51 85.11 94.32
/ semi-HMMSM 78.18 81.11 85.16 92.80

All Constraints are hard (b)-Advertisement
(p = +00) '\ semi-HMMCCM 70.79 75.40 77.56 82.00
semi-HMMSSM 69.91 73.46 75.25 79.59

Constraints are not perfect! Some training examples will violate the constraints.



CCM in 20207 Challenges”? Opportunities? @:;,

m We try to solve everything in Neural Networks these days.

m From a pure inference perspective, declarative constraints are almost always good
to have

m What are the challenges in incorporating constraints in NN training?
O If we want to do inference based training, how do we write a differentiable d(y, 1¢,(x))

30
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Augmenting Neural Networks with First-order Logic

Tao Li Vivek Srikumar
University of Utah University of Utah
tli@cs.utah.edu svivek@cs.utah.edu

31



Incorporating declarative constraints in NN @M

m For a NN, suppose have a set of named neurons, for which you know their semantic
implications (with respect to the problem).

®m You can write declarative constraints in the form of first-order logic expressions
over the named neurons.

® This is analogous to C; and d(y, 1¢;(x)) we saw in CCM. 1 ’

Many layers :

® The challenge here is to make d(y, 1¢,(x)) differentiable. a, a, a,

32



Incorporating declarative constraints in NN @@

m Idea: Use T-norm fuzzy logic to represent d(y, 1¢,(x))

Antecedent Distance d(z)

O differentiable distance functions to measure “how much a

constraint is violated” N2z max(0,30;2 — 2] +1)
VZ; min(1,), 2)
Constrained Neural Layers Our goal is to aug- -V Z; max(0,1-7)", 2)
ment the compuj[atlon of y so that. whenever. Z 1s ~AZ min(1,N -3, z)
true, the pre-activated value of y increases if the i

literal Y is not negated (and decreases if it is). To

. Table 1: Distance functions designed using the
do so, we define a constrained neural layer as 5 5

Fukasiewicz T-norm. Here, |Z| is the number of an-
tecedent literals. z;’s are upstream neurons associated

y=g(Wx+pd(z)). (1) with literals Z;’s.

(Looks exactly like CCM, doesn’t it?)

33



Incorporating declarative constraints in NN @@

m Example: Machine Reading Comprehension (SQUAD)
[0 Consider the attention layer over words in paragraph and question

word p; is related to word g; in Concept-
Net via edges {Synonym, DistinctFrom,
IsA, Related}.

unconstrained model decision that word
q; best matches to word p;.

constrained model decision for the
above alignment.

—
—

o Ay
Vi, 5 € C, Kij; N\ Az',j — A;’j.

e

o)
N Rule 1: If a word in question and a word
in paragraph is related in ConceptNet,
their attention should be aligned
@
(D

Rule 2: (Softer version of Rule 1 which
also takes model prediction into account)

34



Results

J%Train L-DAtt +Ni; +No | +N3 +Ns3

1% 61.2 649 639|625 643
2% 66.5 70.5 69.8|67.9 70.2
5% 734 76.2 76.6|74.0 764
10% 789 80.1 80.4|79.3 803
100% 87.1 869 87.1|87.0 86.9

Table 3: Impact of constraints on L-DAtt network.
Each score represents the average accuracy on SNLI
test set among 3 random runs. For both /N7 and N,, we
set p = (8, 8,8, 8,4) for the five different percentages.
For the noisy constraint N3, p = (2,2,1,1, 1).



\ 1

: 7
Conclusion @

m CCM is a framework that augments simpler, (linear) models with expressive
declarative constraints.

m Declarative constraints can not only be used at decision time, it can also be viewed
as a form of supervision for learning.

m (Li and Srikumar, 2019) is a good attempt in using declarative constraints to drive
learning in Neural Networks

m Separating models from problem formulation seems to be a key intuition that we
keep re-visiting in this class.
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