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Motivation

- Shortest path task: dynamic 

programming

- Reasoning process

- Model pairwise relations

- ℎ𝑢
(𝑘)

of each node u (in iteration k) 

recursive updates by aggregation

ℎ𝑆 = 𝑀𝐿𝑃2(

𝑢∈𝑆

ℎ𝑢
(𝐾)

)

Observation - Neural nets that succeed on reasoning tasks possess specific structures

- Reasoning processes resemble algorithms

VQA: “Starting at the green cylinder, if each 

time we jump to the closest object, which 

object is K jumps away?”
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Problem

• Neural networks that succeed in reasoning tasks usually possess specific 
structures that generalize better

• Hypothesis Strong alignment of network structure w/ algorithmic structure 
explains success in reasoning tasks

• Intuition strong alignment → network learns simple algorithm to simulate 
reasoning process → better sample efficiency 
– Formalize: define a numeric measure for algorithmic alignment
– Develop theoretical framework to characterize what a neural network can 

learn about
– Show experimental support for hypothesis: algorithmic alignment facilitates 

learning 
• GNNs align with dynamic programming

• What tasks can a neural network (sample efficiently) learn to reason about?
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Presentation Map

1. Related work and previous approaches

2. Preliminary concepts and definitions

3. Theoretical framework for algorithmic 
alignment

4. Experiments: Demonstrate 
generalizability on reasoning tasks

5. Conclusion and takeaways
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Previous work 

• GNNs suitable for relational reasoning because they have 
relational inductive biases
– Battaglia et al. (2018) [1]

• Here, formally introduce algorithmic alignment 
– Quantify relation between network and algorithm structure
– Derive implications for learning
– Basis for what reasoning tasks a network can learn well 

• Differs from structural assumptions common in learning theory:
– Bartlett et al., 2017;  [2] : norms of network parameters to measure capacity of NNs
– Golowich et al., 2018 [3] : sample complexity of deep NNs independent of depth and 

width under additional assumptions

• Aligns with reasoning
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Notation

• S: universe, i.e., a configuration of objects to reason 
about. Each object s ∈ S is represented by a vector X
– Given a set of universes {S1…SM}, answer labels {y1…yM} ⊆ Y 
– Aim to learn function g that can answer questions about 

unseen universes, y = g(S)

• For example: 
– Task: shortest path problem in graphs 

• Universe → graph; objects → vertices, edges; y → shortest path 
lengths

– Task: visual question answering 
• Universe → image; objects → questions, context; y → answer
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Network Structures
MLP

• Works well on single-
object universe

• Poor generalizability 
otherwise

• Eg: simple classifier of 
objects as vectors 

Deep Sets

• Induces permutation 
invariance in neural 
network

• 𝑦 =
𝑀𝐿𝑃2(σ𝑠∈𝑆𝑀𝐿𝑃1(𝑋𝑠))

• Eg: Compute sum of 
feature over all objects

GNN

• Models pairwise 
relations between 
objects

• Recursive updates by 
aggregating neighboring 
nodes 

• Eg: shortest path

[4]

[5]

[6]
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Theory: Sample Complexity

• Given

– {𝑥𝑖 , 𝑦𝑖} 𝑖=1
𝑀 ~ 𝒟

– Data satisfies 𝑦𝑖 = 𝑔(𝑥𝑖) for some 𝑔

– 𝑓 = 𝒜( 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑀 ) is function learned by algorithm 𝒜

– Error parameter ℰ > 0 and failure probability 𝛿

• PAC learning theory: analyzes whether and under what conditions a learner
𝒜 will probably output an approximately correct classifier
– Hypothesis h is approximately correct if its error over the input distribution is bounded by some ℰ

– If 𝒜 outputs classifier using h with probability 1 − 𝛿, classifier is probably approximately correct

• Using above, 𝑔 is (𝑀, ℰ, 𝛿)-learnable with 𝒜 if
– ℙ𝑥~𝒟 𝑓 𝑥 − 𝑔(𝑥) ≤ ℰ ≥ 1 − 𝛿

• Sample complexity 𝒞𝒜(𝑔, ℰ, δ)
– Minimum 𝑀 for which 𝑔 is (𝑀, ℰ, 𝛿)-learnable with 𝒜
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Theory: Algorithmic Alignment

• 𝑔: reasoning function, 𝒩 : neural network with modules {𝒩𝑖}𝑖=1
𝑛

• 𝒩 (𝑀, ℰ, 𝛿)- algorithmically aligns with 𝑔 if
– 𝒩 simulates 𝑔 using finite number of modules (n)
– Each module 𝑓𝑖 has low sample complexity

• ∃𝒜𝑖 for the 𝒩𝑖’s such that 𝑛 ⋅ max
𝑖

𝒞𝒜𝑖
( 𝑓𝑖, ℰ, 𝛿) ≤ 𝑀

• Alignment value 𝑚 = σ𝑖 𝒞𝒜𝑖
(𝑓𝑖, ℰ, 𝛿)

• Small 𝑚 → all steps 𝑓𝑖 to simulate 𝑔 are easy to learn
• Sample complexity of MLP 

– “Simple” functions → polynomial → sample efficiently learnable by MLP
– Binary classifier → 𝜎(𝑊𝑇𝑋) represented as a polynomial
– “For loop” is complex algorithm step → not a polynomial
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Framework

• Theoretical result: sample complexity bound 
increases with algorithmic alignment value m

– Simplified setting, sequential training, auxiliary labels

• Generalization ability verified experimentally 

Algorithm 
steps

Network 
modules

Compute 
algorithmic 
alignment

Sample 
complexity 

bound
Generalization

21 3 4 5
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Algorithmic alignment improves sample complexity
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Experiments

• Apply algorithmic alignment framework to analyze 
– MLP
– Deep Sets
– GNNs 

to explain generalizability
• Reasoning tasks:

– Summary statistics
– Relational argmax
– Dynamic programming
– NP-hard problem

• Empirical comparison of sample complexity models
– Extensive hyperparameter tuning to ensure all models perfectly fit training sets
– Test accuracy reflects generalizability
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Summary Statistics
• Task: Maximum value difference

– Object X = [h1; h2; h3] with location h1, value h2, and color h3. 

– Predict the difference in value between the most and the least valuable objects

– 𝑦 𝑆 = max
𝑠∈𝑆

h2 𝑋𝑠 −min
𝑠∈𝑆

h2 𝑋𝑠

• MLP
– High sample complexity

– Sorting objects by value reduces →subtraction: 𝑦 𝑆 = ℎ2(𝑋 𝑆 ) − ℎ2(𝑋1)

• Deep Sets
– Better sample complexity, strong generalization

• GNN
– Special case of relational argmax; which GNNs can learn

MLP Sorted MLP Deep Sets GNN1 GNN3

9 100 96 95 100

Test Accuracy in %

loc   val col
𝑋𝑠
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Relational Argmax

• Task: Furthest pair among a set of objects
– Object X = [h1; h2; h3] with location h1, value h2, and color h3. 

– Find the colors of the two objects with the largest distance

• Deep Sets
– “Most pairwise relations cannot be encoded as sum of individual 

objects”

– MLP learns complex “for loop” → poor sample complexity

• GNN
– GNN1 sums over all pairs of objects, compares pairwise information

– Aligns well without learning “for loops”

MLP Deep Sets GNN1 GNN3

9 21 92 95

Test Accuracy in %

loc   val col
𝑋𝑠
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Dynamic Programming
• General recursive form of DP:

– Answer[k][i] = DP-Update({Answer[k - 1][j]}; j = 1…n)

– 𝐴𝑛𝑠𝑤𝑒𝑟 𝑘 [𝑖] in DP ↔ℎ𝑖
(𝑘)

in GNN

– GNN with enough iterations can sample efficiently learn any DP algorithm with a 
simple DP-update function

• Task: shortest path problem
– distance[1][u] = cost(s; u); s is source vertex
– distance[k][u] = minv distance[k -1][v] + cost(v; u)

• GNN
– With at least four iterations generalize well
– Other networks have high sample complexity

• VQA can be formulated as DP → solved by GNN

MLP Deep Sets GNN1 GNN2 GNN3 GNN4 GNN7

8 11 27 62 91 94 96

Test Accuracy in %
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NP-hard Problem: Subset sum

• NP-hard problems → cannot be solved by DP → GNN cannot 
sample-efficiently learn these
– Framework: If structure of reasoning algorithm is known, a network with 

a similar structure can be designed to learn it

• Task: Subset sum as zero
– Approach 1: Exhaustive search

• Enumerate and check whether subset from possible 2|𝑆|subsets has zero-
sum

– Approach 2: Neural Exhaustive Search (NES)
• Each subset → LSTM → MLP1 → max-pooling layer → MLP2

• LSTM + MLP1 perform simple step: to check zero-sum

MLP Deep Sets GNN1 GNN6 NES

60 61 69 72 98

Test Accuracy in %
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Results and Conclusion

• Results explain success of current neural architectures on four popular 
reasoning tasks
– GNNs generalize because underlying reasoning processes aligns with DP 

– Expected to learn sample efficiently

• Introduce an algorithmic alignment framework to formalize the relation 
b/w structure of a neural network and a reasoning process
– Provide preliminary results on sample complexity 

• Algorithmic alignment perspective may inspire neural network design for 
new reasoning tasks 

• Future: use algorithmic alignment to learn reasoning paradigms beyond 
DP
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Takeaways

• Many times in deep learning we accept network structures that 
perform well on a task without too many questions
– This framework gives a strong intuition for choosing a network that 

generalizes well for a specific kind of task 

• Intuition developed from algorithm 
– Deductive reasoning?

• Can be applied to more reasoning tasks?
– Preference Learning
– Logical Induction

• Minor critique: What have we learned after all?
– Successful empirical results, results not supported by framework?  
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