What Can Neural Networks Reason About?

Keyulu Xu , Jingling Li , Mozhi Zhang , Simon S. Du, Ken-ichi Kawarabayashi, Stefanie Jegelka

ICLR, 2020 [Paper]

Anushree Hede (anuhede@seas.upenn.edu) April 6, 2020

Motivation

Observation - Neural nets that succeed on reasoning tasks possess specific structures

- Reasoning processes resemble algorithms <u>VQA</u>: "Starting at the green cylinder, if each time we jump to the closest object, which object is K jumps away?"

Bellman-Ford algorithm

for k = 1 ... ISI - 1:

for u in S:

d[k][u] = min_v d[k-1][v] + cost (v, u)

- Shortest path task: dynamic programming
- Reasoning process

Renn Engineering

Graph Neural Network

for $k = 1 \dots$ GNN lter:

for u in S:

 $h_u^{(k)} = \Sigma_v MLP(h_v^{(k-1)}, h_u^{(k-1)})$

- Model pairwise relations
- $h_u^{(k)}$ of each node u (in iteration k) recursive updates by aggregation

$$h_S = MLP_2(\sum_{u \in S} h_u^{(K)})$$

2

Problem

- Neural networks that succeed in reasoning tasks usually possess specific structures that generalize better
- <u>Hypothesis</u> Strong alignment of network structure w/ algorithmic structure explains success in reasoning tasks
- <u>Intuition</u> strong alignment → network learns simple algorithm to simulate reasoning process → better sample efficiency
 - Formalize: define a numeric measure for algorithmic alignment
 - Develop theoretical framework to characterize what a neural network can learn about
 - Show experimental support for hypothesis: algorithmic alignment facilitates learning
 - GNNs align with dynamic programming
- What tasks can a neural network (sample efficiently) learn to reason about?

Presentation Map

I. Related work and previous approaches

2. Preliminary concepts and definitions

3. Theoretical framework for **algorithmic alignment**

4. Experiments: Demonstrate generalizability on reasoning tasks

5. Conclusion and takeaways

Previous work

- GNNs suitable for relational reasoning because they have relational inductive biases
 - Battaglia et al. (2018) [1]
- Here, formally introduce algorithmic alignment
 - Quantify relation between network and algorithm structure
 - Derive implications for learning
 - Basis for what reasoning tasks a network can learn well
- Differs from structural assumptions common in learning theory:
 - Bartlett et al., 2017; [2] : norms of network parameters to measure capacity of NNs
 - Golowich et al., 2018 [3] : sample complexity of deep NNs independent of depth and width under additional assumptions
- Aligns with reasoning

Notation

- S: universe, i.e., a configuration of objects to reason about. Each object s ∈ S is represented by a vector X
 - Given a set of universes $\{S_1...S_M\}$, answer labels $\{y_1...y_M\} \subseteq Y$
 - Aim to learn function g that can answer questions about unseen universes, y = g(S)
- For example:
 - Task: shortest path problem in graphs
 - Universe \rightarrow graph; objects \rightarrow vertices, edges; y \rightarrow shortest path lengths
 - Task: visual question answering
 - Universe \rightarrow image; objects \rightarrow questions, context; y \rightarrow answer

Network Structures

Output

Laver

MLP

- Works well on singleobject universe
- Poor generalizability otherwise
- Eg: simple classifier of objects as vectors

Hidden

Laver

Input

Laver

Input

Input

[4]

Deep Sets

- Induces permutation invariance in neural network
- y = $MLP_2(\sum_{s \in S} MLP_1(X_s))$
- Eg: Compute sum of feature over all objects

GNN

- Models pairwise relations between objects
- Recursive updates by aggregating neighboring nodes
- Eg: shortest path

Theory: Sample Complexity

- Given
 - $\{x_i, y_i\}_{i=1}^M \sim \mathcal{D}$
 - Data satisfies $y_i = g(x_i)$ for some g
 - $f = \mathcal{A}(\{x_i, y_i\}_{i=1}^M)$ is function learned by algorithm \mathcal{A}
 - Error parameter ${\cal E}>0$ and failure probability δ
- <u>PAC learning theory</u>: analyzes whether and under what conditions a learner *A* will probably output an approximately correct classifier
 - Hypothesis h is *approximately correct* if its error over the input distribution is bounded by some \mathcal{E}
 - If \mathcal{A} outputs classifier using h with probability 1δ , classifier is *probably approximately correct*
- Using above, g is (M, \mathcal{E}, δ) -learnable with \mathcal{A} if
 - $\quad \mathbb{P}_{x \sim \mathcal{D}}[\|f(x) g(x)\| \leq \mathcal{E}] \geq 1 \delta$
- Sample complexity $C_{\mathcal{A}}(g, \mathcal{E}, \delta)$
 - Minimum *M* for which *g* is (M, \mathcal{E}, δ) -learnable with \mathcal{A}

Theory: Algorithmic Alignment

- g: reasoning function, \mathcal{N} : neural network with modules $\{\mathcal{N}_i\}_{i=1}^n$
- $\mathcal{N}(M, \mathcal{E}, \delta)$ algorithmically aligns with g if
 - \mathcal{N} simulates g using finite number of modules (n)
 - Each module f_i has low sample complexity
 - $\exists \mathcal{A}_i \text{ for the } \mathcal{N}_i \text{'s such that } n \cdot \max_i \mathcal{C}_{\mathcal{A}_i}(f_i, \mathcal{E}, \delta) \leq M$
- Alignment value $m = \sum_{i} C_{A_i} (f_i, \mathcal{E}, \delta)$
- Small $m \rightarrow \text{all steps } f_i$ to simulate g are easy to learn
- Sample complexity of MLP
 - "Simple" functions \rightarrow polynomial \rightarrow sample efficiently learnable by MLP
 - Binary classifier $\rightarrow \sigma(W^T X)$ represented as a polynomial
 - "For loop" is complex algorithm step \rightarrow not a polynomial

Framework

- Theoretical result: sample complexity bound increases with algorithmic alignment value m
 - Simplified setting, sequential training, auxiliary labels
- Generalization ability verified experimentally

Theorem 3.6. (Algorithmic alignment improves sample complexity). Fix ϵ and δ . Suppose $\{S_i, y_i\}_{i=1}^M \sim \mathcal{D}$, where $|S_i| < N$, and $y_i = g(S_i)$ for some g. Suppose $\mathcal{N}_1, ..., \mathcal{N}_n$ are network \mathcal{N} 's MLP modules in sequential order. Suppose \mathcal{N} and $g(M, \epsilon, \delta)$ -algorithmically align via functions $f_1, ..., f_n$. Under the following assumptions, g is $(M, O(\epsilon), O(\delta))$ -learnable by \mathcal{N} .

a) Algorithm stability. Let \mathcal{A} be the learning algorithm for the \mathcal{N}_i 's. Suppose $f = \mathcal{A}(\{x_i, y_i\}_{i=1}^M)$, and $\hat{f} = \mathcal{A}(\{\hat{x}_i, y_i\}_{i=1}^M)$. For any x, $||f(x) - \hat{f}(x)|| \leq L_0 \cdot \max_i ||x_i - \hat{x}_i||$, for some L_0 . b) Sequential learning. We train \mathcal{N}_i 's sequentially: \mathcal{N}_1 has input samples $\{\hat{x}_i^{(1)}, f_1(\hat{x}_i^{(1)})\}_{i=1}^N$, with $\hat{x}_i^{(1)}$ obtained from S_i . For j > 1, the input $\hat{x}_i^{(j)}$ for \mathcal{N}_j are the outputs from the previous modules, but labels are generated by the correct functions $f_{j-1}, ..., f_1$ on $\hat{x}_i^{(1)}$. c) Lipschitzness. The learned functions \hat{f}_j satisfy $\|\hat{f}_j(x) - \hat{f}_j(\hat{x})\| \leq L_1 \|x - \hat{x}\|$, for some L_1 .

Corollary 3.7. Suppose universe S has ℓ objects $X_1, ..., X_\ell$, and $g(S) = \sum_{i,j} (X_i - X_j)^2$. In the setting of Theorem 3.6, the sample complexity bound for MLP is $O(\ell^2)$ times larger than for GNN.

Experiments

- Apply algorithmic alignment framework to analyze
 - MLP
 - Deep Sets
 - GNNs

to explain generalizability

- Reasoning tasks:
 - Summary statistics
 - Relational argmax
 - Dynamic programming
 - NP-hard problem
- Empirical comparison of sample complexity models
 - Extensive hyperparameter tuning to ensure all models perfectly fit training sets
 - Test accuracy reflects generalizability

Summary Statistics

- Task: Maximum value difference
 - Object $X = [h_1; h_2; h_3]$ with location h_1 , value h_2 , and color h_3 .
 - Predict the difference in value between the most and the least valuable objects

$$- y(S) = \max_{s \in S} h_2(X_s) - \min_{s \in S} h_2(X_s)$$

- MLP
 - High sample complexity
 - − Sorting objects by value reduces → subtraction: $y(S) = h_2(X_{|S|}) h_2(X_1)$
- Deep Sets
 - Better sample complexity, strong generalization
- GNN
 - Special case of relational argmax; which GNNs can learn

Test Accuracy in %

MLP	Sorted MLP	Deep Sets	GNNI	GNN3	
9	100	96	95	100	13

Relational Argmax

- Task: Furthest pair among a set of objects
 - Object X = $[h_1; h_2; h_3]$ with location h_1 , value h_2 , and color h_3 .
 - Find the colors of the two objects with the largest distance
- Deep Sets
 - "Most pairwise relations cannot be encoded as sum of individual objects"
 - MLP learns complex "for loop" \rightarrow poor sample complexity
- GNN
 - GNN1 sums over all pairs of objects, compares pairwise information
 - Aligns well without learning "for loops"

Test Accuracy in %

14

	MLP	Deep Sets	GNNI	GNN3
Penn E	9	21	92	95

Dynamic Programming

- General recursive form of DP:
 - Answer[k][i] = DP-Update({Answer[k 1][j]}; j = 1...n)
 - Answer[k][i] in DP $\leftrightarrow h_i^{(k)}$ in GNN
 - GNN with enough iterations can sample efficiently learn any DP algorithm with a simple DP-update function
- Task: shortest path problem
 - distance[1][u] = cost(s; u); s is source vertex
 - distance[k][u] = min_v distance[k -1][v] + cost(v; u)
- GNN
 - With at least four iterations generalize well
 - Other networks have high sample complexity
- VQA can be formulated as $DP \rightarrow solved by GNN$

MLP	Deep Sets	GNNI	GNN2	GNN3	GNN4	GNN7	
8	П	27	62	91	94	96	15

Test Accuracy in %

NP-hard Problem: Subset sum

- NP-hard problems → cannot be solved by DP → GNN cannot sample-efficiently learn these
 - Framework: If <u>structure</u> of reasoning algorithm is known, a network with a similar structure can be designed to learn it
- Task: Subset sum as zero
 - Approach 1: Exhaustive search
 - Enumerate and check whether subset from possible 2^{|S|} subsets has zerosum

Test Accuracy in %

- Approach 2: Neural Exhaustive Search (NES)
 - Each subset \rightarrow LSTM \rightarrow MLP₁ \rightarrow max-pooling layer \rightarrow MLP₂
 - LSTM + MLP₁ perform simple step: to check zero-sum

MLP	Deep Sets	GNNI	GNN6	NES	
60	61	69	72	98	16

Results and Conclusion

- Results explain success of current neural architectures on four popular reasoning tasks
 - GNNs generalize because underlying reasoning processes aligns with DP
 - Expected to learn sample efficiently
- Introduce an algorithmic alignment framework to formalize the relation b/w structure of a neural network and a reasoning process
 - Provide preliminary results on sample complexity
- Algorithmic alignment perspective may inspire neural network design for new reasoning tasks
- Future: use algorithmic alignment to learn reasoning paradigms beyond DP

Takeaways

- Many times in deep learning we accept network structures that perform well on a task without too many questions
 - This framework gives a strong intuition for choosing a network that generalizes well for a specific kind of task
- Intuition developed from algorithm
 - Deductive reasoning?
- Can be applied to more reasoning tasks?
 - Preference Learning
 - Logical Induction
- Minor critique: What have we learned after all?
 - Successful empirical results, results not supported by framework?

References

- [1] Battaglia, Peter W., et al. "Relational inductive biases, deep learning, and graph networks." *arXiv preprint arXiv:1806.01261* (2018).
- [2] Relational inductive biases, deep learning, and graph networks. Bartlett, P. L., Foster, D. J., & Telgarsky, M. J. (2017). Spectrally-normalized margin bounds for neural networks. In *Advances in Neural Information Processing Systems* (pp. 6240-6249).
- [3] Golowich, N., Rakhlin, A., & Shamir, O. (2017). Size-independent sample complexity of neural networks. *arXiv preprint arXiv:1712.06541*.
- [4] <u>https://tex.stackexchange.com/questions/132444/diagram-of-an-artificial-neural-network</u>
- [5] Deep Sets Scientific Figure on ResearchGate. Available from: <u>https://www.researchgate.net/figure/Architecture-of-DeepSets-</u> <u>Equivariant_fig5_315383633</u> [accessed 2 Apr, 2020]
- [6] <u>https://towardsdatascience.com/https-medium-com-aishwaryajadhav-applications-of-graph-neural-networks-1420576be574</u>

