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Motivation

Observation - Neural nets that succeed on reasoning tasks possess specific structures
- Reasoning processes resemble algorithms
VQA:“Starting at the green cylinder, if each
time we jump to the closest object, which
object is K jumps away?”
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Problem

* Neural networks that succeed in reasoning tasks usually possess specific
structures that generalize better

* Hypothesis Strong alignment of network structure w/ algorithmic structure
explains success in reasoning tasks

e Intuition strong alignment — network learns simple algorithm to simulate
reasoning process — better sample efficiency

— Formalize: define a numeric measure for algorithmic alignment

— Develop theoretical framework to characterize what a neural network can
learn about

— Show experimental support for hypothesis: algorithmic alignment facilitates
learning

* GNNs align with dynamic programming
What tasks can a neural network (sample efficiently) learn to reason about?
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Previous work

* GNNs suitable for relational reasoning because they have
relational inductive biases

— Battaglia et al. (2018) [1]
* Here, formally introduce algorithmic alignment
— Quantify relation between network and algorithm structure
— Derive implications for learning
— Basis for what reasoning tasks a network can learn well

e Differs from structural assumptions common in learning theory:
— Bartlett et al,, 2017; [2] : norms of network parameters to measure capacity of NNs

— Golowich et al., 2018 [3] : sample complexity of deep NNs independent of depth and
width under additional assumptions

* Aligns with reasoning
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Notation

e S:universe, i.e., a configuration of objects to reason
about. Each object s € S is represented by a vector X
— Given a set of universes {S,...S,,}, answer labels {y,..yy} € Y
— Aim to learn function g that can answer questions about
unseen universes, y = g(S)
* For example:

— Task: shortest path problem in graphs

* Universe — graph; objects — vertices, edges; y = shortest path
lengths

— Task: visual question answering
* Universe — image; objects — questions, context; y = answer
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Network Structures

MLP

Deep Sets

* Induces permutation
invariance in neural

* Works well on single-
object universe

* Poor generalizability network
otherwise oy =
* Eg:simple classifier of MLP; (Xses MLP; (X))

* Eg: Compute sum of
feature over all objects

objects as vectors
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GNN

* Models pairwise
relations between
objects

* Recursive updates by
aggregating neighboring
nodes

* Eg:shortest path
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Theory: Sample Complexity

* Given
- {(xuyi}ita~D
— Data satisfies y; = g(x;) forsome g
— = A{x;y;} ™) is function learned by algorithm A
— Error parameter £ > 0 and failure probability §
 PAC learning theory: analyzes whether and under what conditions a learner
A will probably output an approximately correct classifier

— Hypothesis h is approximately correct if its error over the input distribution is bounded by some &

— If A outputs classifier using h with probability 1 — §, classifier is probably approximately correct
* Using above, g is (M, &, §)-learnable with A if

= Proplllf(x) —gll<€]=z1-6
* Sample complexity C4(g, &, )

— Minimum M for which g is (M, £, §)-learnable with A
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Theory: Algorithmic Alignment

* g:reasoning function, V' : neural network with modules {V;}-,
N (M, &, 6)- algorithmically aligns with g if
— NV simulates g using finite number of modules (n)

— Each module f; has low sample complexity
* 3A,; for the N’s suchthat n - maxCy.(f;, €,6) <M
l

Alignment value m = }; C 4. (fi, €, 6)
Small m — all steps f; to simulate g are easy to learn

Sample complexity of MLP
— “Simple” functions = polynomial = sample efficiently learnable by MLP
— Binary classifier > a(WTX) represented as a polynomial
— “For loop” is complex algorithm step — not a polynomial
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Framework

| 2 3 4 5
Algorithm Network f°“?F;]”t‘? Samlple. G lizati
steps modules algorithmic complexity eneralization
alignment bound

* Theoretical result: sample complexity bound
increases with algorithmic alignment value m

— Simplified setting, sequential training, auxiliary labels

* Generalization ability verified experimentally
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Algorithmic alignment improves sample complexity

Theorem 3.6. (Algorithmic alignment improves sample complexity). Fix € and 6. Suppose
{S;, yt-}fi] ~ D, where |S;| < N, and y; = g(S;) for some g. Suppose N1, ..., N, are network N''s
MLP modules in sequential order. Suppose N" and g (M, €, 8)-algorithmically align via functions
fis ey fro Under the following assumptions, g is (M, O(¢€), O(8))-learnable by N.

a) Algorithm stability. Let A be the learning algorithm for the N’s. Suppose f = A({z;,y;} -:Iilj
and f = A({:’i‘-g,yi};‘i]). For any x, || f(z) — f(l‘-}H < Lo - max; ||z; — ||, for some Ly.
b) Sequential learning. We train N;’s sequentially: N\ has input samples {:E.'El}, fi (:’&E“}} with
:’E{l:| obtained from S;. For j > 1, the input :rij ) for N; are the outputs from the previous modules,
but labels are generated by the correct functions f;_, ..., f on fEE”.

c) Lipschitzness. The learned functions _f:_, satisfy ||fj(:r.} - fj (2)]| < Lyl||lz — 2|

N

i=1*

, for some L.

Corollary 3.7. Suppose universe S has £ objects Xy, ..., Xy, and g(5) =3, ;(X; — X ;)2 In the
setting of Theorem 3.6, the sample complexity bound for MLP is O(¢?) times larger than for GNN.
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Experiments

* Apply algorithmic alignment framework to analyze
— MLP
— Deep Sets
— GNNs
to explain generalizability

* Reasoning tasks:
— Summary statistics
— Relational argmax
— Dynamic programming
— NP-hard problem
* Empirical comparison of sample complexity models
— Extensive hyperparameter tuning to ensure all models perfectly fit training sets
— Test accuracy reflects generalizability
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Summary Statistics *

e Task: Maximum value difference

— Object X = [hy; h,; h;] with location h,, value h,, and color h;.

loc

val

col

— Predict the difference in value between the most and the least valuable objects

- Y(S) = I?SSX h, (Xs) — r?é? h, (Xs)

* MLP
— High sample complexity

— Sorting objects by value reduces —subtraction: y(S) = h,(X|s) — hy(X1)

* Deep Sets

— Better sample complexity, strong generalization

* GNN

— Special case of relational argmax; which GNNs can learn

Test Accuracy in %

_ Sorted MLP Eﬂ_m

100
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Relational Argmax  *ioc|val |co

e Task: Furthest pair among a set of objects
— Object X = [hy; h,; h;] with location h,, value h,, and color h,.
— Find the colors of the two objects with the largest distance

* Deep Sets

— “Most pairwise relations cannot be encoded as sum of individual
objects”

— MLP learns complex “for loop” — poor sample complexity

* GNN

— GNN1 sums over all pairs of objects, compares pairwise information
— Aligns well without learning “for loops”

Test Accuracy in %

MLP_____|DeepSets |GNNI___IGNN3
21 92 95
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Dynamic Programming

* General recursive form of DP:
— Answer[k][i] = DP-Update({Answer[k - 1][j]1}; j = 1...n)
— Answerlk][i] inDP & hlgk) in GNN

— GNN with enough iterations can sample efficiently learn any DP algorithm with a
simple DP-update function

e Task: shortest path problem

— distance[1][u] = cost(s; u); s is source vertex

— distance[k][u] = min, distance[k -1][v] + cost(v; u)
* GNN

— With at least four iterations generalize well

— Other networks have high sample complexity

* VQA can be formulated as DP — solved by GNN

Test Accuracy in %

—mlmmm



NP-hard Problem: Subset sum

 NP-hard problems — cannot be solved by DP - GNN cannot
sample-efficiently learn these

— Framework: If structure of reasoning algorithm is known, a network with
a similar structure can be designed to learn it

e Task: Subset sum as zero

— Approach 1: Exhaustive search

* Enumerate and check whether subset from possible 2!5lsubsets has zero-
sum

— Approach 2: Neural Exhaustive Search (NES)
e Each subset —» LSTM — MLP, - max-pooling layer - MLP,
* LSTM + MLP, perform simple step: to check zero-sum
Test Accuracy in %
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Results and Conclusion

e Results explain success of current neural architectures on four popular
reasoning tasks

— GNNs generalize because underlying reasoning processes aligns with DP
— Expected to learn sample efficiently
* Introduce an algorithmic alignment framework to formalize the relation
b/w structure of a neural network and a reasoning process
— Provide preliminary results on sample complexity

e Algorithmic alignment perspective may inspire neural network design for
new reasoning tasks

* Future: use algorithmic alignment to learn reasoning paradigms beyond
DP
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Takeaways

* Many times in deep learning we accept network structures that
perform well on a task without too many questions

— This framework gives a strong intuition for choosing a network that
generalizes well for a specific kind of task

* Intuition developed from algorithm
— Deductive reasoning?
 (Can be applied to more reasoning tasks?
— Preference Learning
— Logical Induction
 Minor critique: What have we learned after all?
— Successful empirical results, results not supported by framework?
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