Harnessing Deep Neural Networks
with Logic Rules

teacher network construction rule knowledge distillation
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Motivation

e Hard to encode human intention in Deep Neural Nets g,&%
e But...

o People not only learn from concrete examples, but also from general knowledge
o Logic rules is an expressive language for that

e Therefore
o  We wish to enhance Neural Nets with logic rule knowledge
o E.g.learn sentiment from sentence examples, but also follow the rule “A-but-B = B”

e Our framework uses iterative rule knowledge distillation procedure to
learn from labeled data and logic rules simultaneously




Background

e Denote data as

where x € X is input and y € Y is target

e Denote first-order logic(FOL) rules as where R is the rule

over space (X, Y) and A € [0, «] is confidence level
FOL: extension to propositional logic, which can only express facts (either true or false)
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Constant
Variables
Predicates
Function
Connectives
Equality

Quantifier

1, 2, A, John, Mumbai, cat,....
X;'Ys Zi-@; Dpiaes

Brother, Father, >,....

sqrt, LeftLegOf, ....

AV, T, 2,6

v, 3

FOL syntax

1. All birds fly.

In this question the predicate is "fly(bird)."

And since there are all birds who fly so it will be represented as follows.
vx bird(x) —fly(x).

2. Every man respects his parent.
In this question, the predicate is "respect(x, y)," where x=man, and y= parent.
Since there is every man so will use v, and it will be represented as follows:

vx man(x) — respects (x, parent).

FOL examples



Background

FOL rules:

(@)

(@)

@)

, R is the rule, A € [0, «] is confidence level

Grounding: logic expression with all variables instantiated

A =« indicates hard rule, all groundings have to be true

Denote the set of groundings of R, as

Encode FOL rules using soft logic
o Soft logic are continuous from [0, 1], instead of {0, 1} A& B = maX{A o8 L, O}

@)

&vs \
m & is selection operator
m A&B =BwhenA=1,A&B =AwhenA=0
m /\is averaging operator

AV B = min{A + B, 1}
Ay A NAN =) AN
—A=1-A



Iterative rule knowledge distillation

Consider K-way classification

° Learn from labeled instances, defines conditional
probability p (v |x)

° Constructed by projecting p (v |x) to a subspace
constrained by FOL rules, denoted q(y|x)

teacher network construction rule knowledge distillation
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Iterative rule knowledge distillation

Algorithm 1 Harnessing NN with Rules

Input: The training data D = {(x,,y,,)}_;,

The rule set R = {(R;, )},

Parameters: T — imitation parameter teachernetworljionstruction rule knowledge distillation
C' — regularization strength qu)‘{ o " T

1: Initialize neural network parameter 0 N/ e
2: rep eat /ogi}rmles qlx) po (¥1%)
3:  Sample a minibatch (X,Y) C D e
4:  Construct teacher network ¢ with Eq.(4) Kmpieeiin.
5) Transfer knowledge into py by updating € with Eq.(2)
6: until convergence
Output: Distill student network py and teacher network ¢

Overall Algorithm



Transfer knowledge into p,

e We wish to balance between imitating q(y|x) and learning supervised
labels, therefore define objective:

0+t — arg min =
€O

M=

(1 — ﬂ-)g(yn’ o (Xn )—» prediction from p (v |x)

n=1

+ ml(sPllog(x,)).

prediction from q(y|x) at iteration t

e II: imitation parameter
e Teacher and student are learned simultaneously



teacher network construction rule knowledge distillation
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logic rules
e GCoal: Cnibdeddas | iodatan
o 1) fits the rule
m Impose rule constraints through expectation operator
m For eachrule, expect with confidence A

o  2) stay close to p,
m  Minimize KL-divergence between q and p,

e Combining above, we form the optimization problem

min  KL(¢(Y|X)|lpe(Y[X)) +C &9,
L,

q,§£>0
st. M(1=Eyfrie, X, Y)]) < &g
q = 1,...,Gl, = ]-7---aL>



Construct teacher network

® ¢, >0 :slackvariable for each rule, C: regularization parameter

min KL(q(Y[X)|lpe(Y|X)) + sz,gl &L,g1

st Ai(1 = Eqglrq, (X, Y)]) < &,

[ 1,...,Gl, | = 1,...,L,
e Problem is convex, can be efficiently solved in dual form with closed-form
solutions

¢ (Y|X) x po(Y|X) exp{ Y N1 - (X Y))}

L,gi



teacher network construction rule knowledge distillation

Algorithm 1 Harnessing NN with Rules ol loss

Input: The training data D = {(xn,y,)} -1, ot profetio -1~~~
The rule set R = {(R;, \i)}E,, i back

Parameters: 7 — imitation parameter 5 i
C' - regularization strength logic ruies
1: Initialize neural network parameter 6 J—
2: repeat Cidosoms [ i |
3:  Sample a minibatch (X,Y) C D
4:  Construct teacher network ith Eq.(4 (=
; S W qw q.(4) g+ — arg min i Z(l — )y, o9(xn))
6
(@)

student
pe (¥1%)

teacher

Transfer knowledge into py by updating 6 with Eq.(2) 9o
: until convergence
utput: Distill student network pg and teacher network ¢

n=1

o ﬂ-g(sgzt)a O¢ (xn)),

Equation 2

e 1 :atbeginning of training, p, prediction is bad,
therefore we favor true labels. As training goes

on, gradually bias towards emulating teacher Equation 4

q¢"(Y|X) o< pp(Y|X) exp {— D ON(L—miy, (X»Y))}

Lag
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Algorithm 1 Harnessing NN with Rules

Input: The training data D = {(x,,y,)}\_;,

1
2
3
i
5
6
O

The rule set R = {(R;, \i)}E,,
Parameters: m — imitation parameter
C — regularization strength

: Initialize neural network parameter 0
: repeat

Sample a minibatch (X,Y) C D
Construct teacher network ¢ with Eq.(4)

Transfer knowledge into py by updating 8 with Eq.(2)
: until convergence
utput: Distill student network pg and teacher network ¢

student p vs teacher g at test time

(@)

(@)

We can use either p or g at test time
In general, g performs better than p

m g more suitable when rules requires joint
inference (spanning over multiple example)

m p more lightweight and efficient

teacher network construction rule knowledge distillation
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Equation 2

Lag

q¢"(Y|X) o< pp(Y|X) exp {— D ON(L—miy, (X,Y))}

Equation 4
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Sentence-level sentiment analysis

e Task: identify the sentiment (positive / negative) underlying individual
sentence

Padding I like thisbook store a lot  Padding

e Base Network: single-channel conv net Woud
o Max-over-time pooling Embedding

o Fully-connected layer after sentence representation

Convolution

o Consider A-but-B structure, B dominates
o “I’m stuck at home but I get to watch Friends.

e Logic Rule:
Max Pooling (

T ]

T T e
O T T e
I
O T T e
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IR
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Sentence
Representation

has-*A-but-B’-structure(S) =
Ly =+) = 09(B)+ A 0¢(B)+ = 1y =+))

Truth value evaluatesto (14 o4(B),)/2 when y = +, and (2 — a¢(B),)/2 otherwise
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Sentiment analysis experiment

e Datasets: Around 15% sentences contains “but”
o SST2 (Stanford Sentiment Treebank)
o) : i i : g o : .
MR: movie reviews All the more disquieting for its relatively
o  CR: customer reviews of various products : :
customer reviews o ous proauc gore-free allusions to the serial murders , but
it falls down in its attempts to humanize its
* subject .
MR
@ ®
® ® ® ®
[tlexcellent phone , excellent service .
Dramas © ##i am a business user who heavily depend on mobile service .
® ® ® ® phone[+3], work[+2]##there is much which has been said in other
reviews about the features of this phone , it is a great
like this make phone , mine worked without any problems right out of the box .
e
€} ® CR
it human

“Dramas like this make it human.”
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Sentiment analysis experiment

Compare against different methods

o  Superior performance, g improves over p
o On SST2, MVCNN has better performance -- diverse sets of pre-trained word embeddings,
more layers and parameters
Model SST2 MR CR

1  CNN (Kim, 2014) 87.2 81.3£0.1 84.3+0.2
2 CNN-Rule-p 88.8 81.6+0.1 85.0£0.3
3 CNN-Rule-¢q 89.3 81.7+0.1 85.3+0.3
4 MGNC-CNN (Zhang et al., 2016) 88.4 - =

5 MVCNN (Yin and Schutze, 2015) 89.4 - -

6 CNN-multichannel (Kim, 2014) 88.1 81.1 85.0

7 Paragraph-Vec (Le and Mikolov, 2014) 87.8 — —

8 CRF-PR (Yang and Cardie, 2014) = = 82.7

9 RNTN (Socher et al., 2013) 85.4 — -
10 G-Dropout (Wang and Manning, 2013) - 79.0 82.1

14



Sentiment analysis experiment

e Compare against different rule integration methods on SST2

o O O O O

-but-clause: takes the clause after “but” as input

-12-reg: adds regularization term 7y||04(S) — o9 (Y)||2
-project: project trained CNN to rule-constrained space
-opt-project: optimize projected CNN

-pipeline: distills pre-trained “opt-project” to plain CNN

Model Accuracy (%)
1 CNN (Kim, 2014) 87.2
2 -but-clause 87.3
3 -ly-reg 87.5
4  -project 87.9
5 -opt-project 88.3
6 -pipeline 87.9
7  -Rule-p 88.8
8 -Rule-q 89.3

15




Sentiment analysis experiment

e Semi-supervised learning
O Superior in performance sparse data context
o Performance further improved with unlabeled data, they are used to better absorb logic
rules

Data size 5% 10% 30% 100%

1 CNN 799 81.6 83.6 87.2
2 -Rule-p 81.5 83.2 84.5 88.8
3 -Rule-q 82.5 839 856 89.3
4 -semi-PR 81.5 83.1 846 -
5 -semi-Rule-p 81.7 83.3 84.7 -
6 -semi-Rule-q 82.7 84.2 85.7 -




Named entity recognition

e Task: locate and classify elements in text into entity categories
o Assign tagin “X-Y”, where X is one of BIEOS (Beginning, Inside, End, Outside,
Singleton) and Y is entity category

e Base Network: bi-directional LSTM NYC lgcates i E

Char+Word
o CNN + pre-trained word vectors for char+word repr epeeaaision

e Logic Rule:

o Constraint on successive label for a valid tag sequence:
I-ORG (inside, organization) cannot follow B-PER (beginninc
equal(y;_1,I-ORG) = — equal(y;, B-PER) Backward
List structures: o

1. Juventus, 2. Barcelona, ... Barcelona has to be a club
is-counterpart(X, A) = 1 — ||c(e,) — c(ag(A))||2

Output
Representation

® © ¢ O O



Named entity recognition

e Datasets: 1.7% named entities occur in lists

o CoNLL-2003 NER benchmark [ORG U.N. ] official [PER Ekeus ] heads for [LOC ]
o Close performance to SOTA, which is more complex and has more parameters

Model F1

BLSTM 89.55
BLSTM-Rule-trans p: 89.80, ¢: 91.11
BLSTM-Rules p: 89.93, ¢: 91.18
NN-lex (Collobert et al., 2011) 89.59

S-LSTM (Lample et al., 2016) 90.33

BLSTM-lex (Chiu and Nichols, 2015)  90.77
BLSTM-CRF; (Lample et al., 2016)  90.94
Joint-NER-EL (Luo et al., 2015) 91.20
BLSTM-CRF; (Ma and Hovy, 2016)  91.21

OO | W =

BLSTM-Rule-trans: impose transition rule, BLSTM-Rules: further impose list rule
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Discussion

e Summary:
o  Our framework combines learning knowledge and rules through an iterative distillation procedure. We
transfer logic rules through a teacher network, constructed with posterior regularization principle.

Contribution:
o  Provides a general distillation framework for FOL that can be applied to any specific network structures;

very intuitive
e Limitations:

O  Dependent on hand-crafted rules as priors, lack the ability to induce and learn abstract knowledge from

data; unsuitable to incorporate large amount of fuzzy human intuitions

Comparison:

o A Semantic Loss Function for Deep Learning with Symbolic Knowledge
m  Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, Guy Van den Broeck
m  Combines propositional logic, limited but more convenient
o  Deep Neural Networks with Massive Learned Knowledge
] Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov, Eric P. Xing
m  Mutual distillation that iteratively transfers information between DNN and structured knowledge
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