Harnessing Deep Neural Networks with Logic Rules

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, Eric P. Xing ACL 2016 Presenter: Weiyu Du

Motivation

- Hard to encode human intention in Deep Neural Nets
- But...
 - \circ ~ People not only learn from concrete examples, but also from general knowledge
 - \circ Logic rules is an expressive language for that
- Therefore
 - \circ $\hfill We wish to enhance Neural Nets with logic rule knowledge$
 - \circ E.g. learn sentiment from sentence examples, but also follow the rule "A-but-B = B"
- Our framework uses <u>iterative rule knowledge distillation</u> procedure to learn from labeled data and logic rules simultaneously

Background

- Denote data as $\mathbf{D} = \{(\mathbf{x}_n, \mathbf{y}_n)\}$ where $\mathbf{x} \in \mathbf{X}$ is input and $\mathbf{y} \in \mathbf{Y}$ is target
- Denote first-order logic(FOL) rules as R = {(R₁, λ₁)} where R is the rule over space (X, Y) and λ ∈ [0, ∞] is confidence level
 - FOL: extension to propositional logic, which can only express facts (either true or false)

Constant	1, 2, A, John, Mumbai, cat,
Variables	x, y, z, a, b,
Predicates	Brother, Father, >,
Function	sqrt, LeftLegOf,
Connectives	$\land,\lor,\lnot,\Rightarrow,\Leftrightarrow$
Equality	==
Quantifier	∀,∃

1. All birds fly.

In this question the predicate is "**fly(bird)**." And since there are all birds who fly so it will be represented as follows. $\forall x \text{ bird}(x) \rightarrow fly(x).$

2. Every man respects his parent.

In this question, the predicate is "**respect**(x, y)," where x=man, and y= parent. Since there is every man so will use \forall , and it will be represented as follows:

 $\forall x man(x) \rightarrow respects (x, parent).$

FOL examples

Background

- FOL rules: $\mathbf{R} = \{(\mathbf{R}_1, \boldsymbol{\lambda}_1)\}$, **R** is the rule, $\boldsymbol{\lambda} \in [0, \infty]$ is confidence level
 - Grounding: logic expression with all variables instantiated
 - \circ $\lambda = \infty$ indicates hard rule, all groundings have to be true
 - Denote the set of groundings of R_1 as $\{r_{1\sigma}(X, Y)\}$
- Encode FOL rules using soft logic
 - Soft logic are continuous from [0, 1], instead of {0, 1}
 - \circ & vs Λ
 - & is selection operator
 - A&B = B when A = 1, A&B = A when A = 0
 - **Λ** is averaging operator

1} $A\&B = \max\{A + B - 1, 0\}$ $A \lor B = \min\{A + B, 1\}$ $A_1 \land \dots \land A_N = \sum_i A_i / N$

$$\neg A = 1 - A$$

Iterative rule knowledge distillation

Consider K-way classification

- "Student network": Learn from labeled instances, defines conditional probability $p_{\theta}(y|x)$
- "Teacher network": Constructed by projecting $p_{\theta}(y|x)$ to a subspace constrained by FOL rules, denoted q(y|x)

Iterative rule knowledge distillation

Algorithm 1 Harnessing NN with Rules

Input: The training data $\mathcal{D} = \{(\mathbf{x}_n, \mathbf{y}_n)\}_{n=1}^N$, The rule set $\mathcal{R} = \{(R_l, \lambda_l)\}_{l=1}^L$, Parameters: π – imitation parameter C – regularization strength

1: Initialize neural network parameter $\pmb{\theta}$

2: repeat

- 3: Sample a minibatch $(\mathbf{X}, \mathbf{Y}) \subset \mathcal{D}$
- 4: Construct teacher network q with Eq.(4)
- 5: Transfer knowledge into p_{θ} by updating θ with Eq.(2)
- 6: **until** convergence

Output: Distill student network p_{θ} and teacher network q

Transfer knowledge into p_{θ}

• We wish to balance between imitating q(y|x) and learning supervised labels, therefore define objective: Learn from labels

$$\boldsymbol{\theta}^{(t+1)} = \arg\min_{\boldsymbol{\theta}\in\Theta} \frac{1}{N} \sum_{n=1}^{N} (1-\pi) \ell(\mathbf{y}_n, \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}_n)) \longrightarrow \text{ prediction from } \mathbf{p}_{\boldsymbol{\theta}}(\mathbf{y}|\mathbf{x}) \\ + \pi \ell(\mathbf{s}_n^{(t)}, \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}_n)), \quad \text{Imitation} \\ \text{prediction from } \mathbf{g}(\mathbf{y}|\mathbf{x}) \text{ at iteration } \mathbf{t}$$

- π: imitation parameter
- Teacher and student are learned simultaneously

Construct teacher network

- Goal:
 - 1) fits the rule
 - Impose rule constraints through expectation operator
 - For each rule, expect $\mathbf{E}_{q(\mathbf{Y}|\mathbf{X})}[\mathbf{r}_{1q}(\mathbf{X}, \mathbf{Y})] = 1$ with confidence λ_1
 - \circ 2) stay close to p_{θ}
 - Minimize KL-divergence between q and p_{θ}
- Combining above, we form the optimization problem

$$\min_{q, \boldsymbol{\xi} \ge 0} \operatorname{KL}(q(\mathbf{Y}|\mathbf{X}) \| p_{\theta}(\mathbf{Y}|\mathbf{X})) + C \sum_{l, g_{l}} \xi_{l, g_{l}}$$
s.t. $\lambda_{l}(1 - \mathbb{E}_{q}[r_{l, g_{l}}(\mathbf{X}, \mathbf{Y})]) \le \xi_{l, g_{l}}$
 $g_{l} = 1, \dots, G_{l}, \quad l = 1, \dots, L,$

Construct teacher network

• $\xi_{l,g_l} \ge 0$: slack variable for each rule, C: regularization parameter

$$\min_{q,\boldsymbol{\xi}\geq 0} \operatorname{KL}(q(\mathbf{Y}|\mathbf{X})||p_{\theta}(\mathbf{Y}|\mathbf{X})) + C \sum_{l,g_{l}} \xi_{l,g}$$

s.t. $\lambda_{l}(1 - \mathbb{E}_{q}[r_{l,g_{l}}(\mathbf{X},\mathbf{Y})]) \leq \xi_{l,g_{l}}$
 $g_{l} = 1, \dots, G_{l}, \quad l = 1, \dots, L,$

Problem is convex, can be efficiently solved in dual form with closed-form solutions

$$q^*(\mathbf{Y}|\mathbf{X}) \propto p_{\theta}(\mathbf{Y}|\mathbf{X}) \exp\left\{-\sum_{l,g_l} C\lambda_l(1-r_{l,g_l}(\mathbf{X},\mathbf{Y}))\right\}$$

Algorithm 1 Harnessing NN with Rules

Input: The training data $\mathcal{D} = \{(\mathbf{x}_n, \mathbf{y}_n)\}_{n=1}^N$, The rule set $\mathcal{R} = \{(R_l, \lambda_l)\}_{l=1}^L$, Parameters: π – imitation parameter C – regularization strength

- 1: Initialize neural network parameter $\boldsymbol{\theta}$
- 2: repeat
- 3: Sample a minibatch $(\mathbf{X}, \mathbf{Y}) \subset \mathcal{D}$
- 4: Construct teacher network q with Eq.(4)
- 5: Transfer knowledge into p_{θ} by updating θ with Eq.(2)
- 6: **until** convergence

Output: Distill student network p_{θ} and teacher network q

 π : at beginning of training, p_θ prediction is bad, therefore we favor true labels. As training goes on, gradually bias towards emulating teacher

$$\boldsymbol{\theta}^{(t+1)} = \arg\min_{\boldsymbol{\theta}\in\Theta} \frac{1}{N} \sum_{n=1}^{N} (1-\pi)\ell(\mathbf{y}_n, \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}_n)) + \pi\ell(\mathbf{s}_n^{(t)}, \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}_n)),$$

$$q^*(\mathbf{Y}|\mathbf{X}) \propto p_{\theta}(\mathbf{Y}|\mathbf{X}) \exp\left\{-\sum_{l,g_l} C\lambda_l(1-r_{l,g_l}(\mathbf{X},\mathbf{Y}))\right\}$$

Equation 4

Algorithm 1 Harnessing NN with Rules

Input: The training data $\mathcal{D} = \{(\mathbf{x}_n, \mathbf{y}_n)\}_{n=1}^N$, The rule set $\mathcal{R} = \{(R_l, \lambda_l)\}_{l=1}^L$, Parameters: π – imitation parameter C – regularization strength

- 1: Initialize neural network parameter $\boldsymbol{\theta}$
- 2: repeat
- 3: Sample a minibatch $(\mathbf{X}, \mathbf{Y}) \subset \mathcal{D}$
- 4: Construct teacher network q with Eq.(4)
- 5: Transfer knowledge into p_{θ} by updating θ with Eq.(2)
- 6: **until** convergence

Output: Distill student network p_{θ} and teacher network q

student p vs teacher q at test time

- We can use either p or q at test time
- \circ In general, q performs better than p
 - q more suitable when rules requires joint inference (spanning over multiple example)
 - p more lightweight and efficient

$$\boldsymbol{\theta}^{(t+1)} = \arg\min_{\boldsymbol{\theta}\in\Theta} \frac{1}{N} \sum_{n=1}^{N} (1-\pi)\ell(\mathbf{y}_n, \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}_n)) + \pi\ell(\mathbf{s}_n^{(t)}, \boldsymbol{\sigma}_{\boldsymbol{\theta}}(\mathbf{x}_n)),$$

$$q^*(\mathbf{Y}|\mathbf{X}) \propto p_{\theta}(\mathbf{Y}|\mathbf{X}) \exp\left\{-\sum_{l,g_l} C\lambda_l (1 - r_{l,g_l}(\mathbf{X}, \mathbf{Y}))\right\}$$

Sentence-level sentiment analysis

- Task: identify the sentiment (positive / negative) underlying individual sentence
- Base Network: single-channel conv net
 - Max-over-time pooling
 - Fully-connected layer after sentence representation
- Logic Rule:
 - Consider A-but-B structure, B dominates
 - "I'm stuck at home but I get to watch Friends."

has-'A-but-B'-structure(S) \Rightarrow ($\mathbf{1}(y=+) \Rightarrow \boldsymbol{\sigma}_{\theta}(B)_{+} \land \boldsymbol{\sigma}_{\theta}(B)_{+} \Rightarrow \mathbf{1}(y=+)$)

Truth value evaluates to $(1 + \sigma_{\theta}(B)_{+})/2$ when y = +, and $(2 - \sigma_{\theta}(B)_{+})/2$ otherwise

- Datasets: Around 15% sentences contains "but"
 - SST2 (Stanford Sentiment Treebank)
 - MR: movie reviews
 - CR: customer reviews of various products

All the more disquieting for its relatively gore-free allusions to the serial murders , but it falls down in its attempts to humanize its subject .

MR

[t]excellent phone , excellent service .
##i am a business user who heavily depend on mobile service .
phone[+3], work[+2]##there is much which has been said in other
reviews about the features of this phone , it is a great
phone , mine worked without any problems right out of the box .

CR

"Dramas like this make it human."

- Compare against different methods
 - Superior performance, q improves over p
 - On SST2, MVCNN has better performance -- diverse sets of pre-trained word embeddings, more layers and parameters

	Model	SST2	MR	CR
1	CNN (Kim, 2014)	87.2	$81.3 {\pm} 0.1$	84.3 ± 0.2
2	CNN-Rule-p	88.8	$81.6{\pm}0.1$	$85.0 {\pm} 0.3$
3	$\operatorname{CNN-Rule}_q$	89.3	$\textbf{81.7}{\pm}\textbf{0.1}$	$85.3{\pm}0.3$
4	MGNC-CNN (Zhang et al., 2016)	88.4	_	-
5	MVCNN (Yin and Schutze, 2015)	89.4	_	_
6	CNN-multichannel (Kim, 2014)	88.1	81.1	85.0
$\overline{7}$	Paragraph-Vec (Le and Mikolov, 2014)	87.8	_	_
8	CRF-PR (Yang and Cardie, 2014)	_	-	82.7
9	RNTN (Socher et al., 2013)	85.4	_	_
10	G-Dropout (Wang and Manning, 2013)	—	79.0	82.1

- Compare against different rule integration methods on SST2
 - -but-clause: takes the clause after "but" as input
 - \circ -l2-reg: adds regularization term $\gamma \| oldsymbol{\sigma}_{ heta}(S) oldsymbol{\sigma}_{ heta}(Y) \|_2$
 - \circ $\$ -project: project trained CNN to rule-constrained space
 - -opt-project: optimize projected CNN
 - \circ $\$ -pipeline: distills pre-trained "opt-project" to plain CNN $\$

	Model	Accuracy $(\%)$
1	CNN (Kim, 2014)	87.2
2	-but-clause	87.3
3	$-\ell_2$ -reg	87.5
4	-project	87.9
5	-opt-project	88.3
6	-pipeline	87.9
7	-Rule-p	88.8
8	$-\mathrm{Rule}-q$	89.3

- Semi-supervised learning
 - Superior in performance sparse data context
 - Performance further improved with unlabeled data, they are used to better absorb logic rules

	Data size	5%	10%	30%	100%
1	CNN	79.9	81.6	83.6	87.2
2	-Rule-p	81.5	83.2	84.5	88.8
3	-Rule- q	82.5	83.9	85.6	89.3
4	-semi-PR	81.5	83.1	84.6	_
5	-semi-Rule-p	81.7	83.3	84.7	_
6	-semi-Rule-q	82.7	84.2	85.7	-

Named entity recognition

- Task: locate and classify elements in text into entity categories
 - Assign tag in "X-Y", where X is one of BIEOS (Beginning, Inside, End, Outside, Singleton) and Y is entity category
- Base Network: bi-directional LSTM
 - CNN + pre-trained word vectors for char+word repr
- Logic Rule:
 - Constraint on successive label for a valid tag sequence:
 - \circ I-ORG (inside, organization) cannot follow B-PER (beginning
 - $\circ \quad \text{equal}(y_{i-1}, \text{I-ORG}) \Rightarrow \neg \text{equal}(y_i, \text{B-PER})$
 - List structures:
 - 1. Juventus, 2. Barcelona, ... Barcelona has to be a club
 - is-counterpart $(X, A) \Rightarrow 1 \|c(\mathbf{e}_y) c(\boldsymbol{\sigma}_{\theta}(A))\|_2$

Named entity recognition

- Datasets: 1.7% named entities occur in lists
 - CoNLL-2003 NER benchmark [ORG U.N.] official [PER Ekeus] heads for [LOC Baghdad]
 - Close performance to SOTA, which is more complex and has more parameters

	Model	F1
1	BLSTM	89.55
2	BLSTM-Rule-trans	p: 89.80, q: 91.11
3	BLSTM-Rules	p: 89.93, q: 91.18
4	NN-lex (Collobert et al., 2011)	89.59
5	S-LSTM (Lample et al., 2016)	90.33
6	BLSTM-lex (Chiu and Nichols, 2015)	90.77
$\overline{7}$	BLSTM-CRF ₁ (Lample et al., 2016)	90.94
8	Joint-NER-EL (Luo et al., 2015)	91.20
9	BLSTM-CRF ₂ (Ma and Hovy, 2016)	91.21

BLSTM-Rule-trans: impose transition rule, BLSTM-Rules: further impose list rule

Discussion

- Summary:
 - Our framework combines learning knowledge and rules through an iterative distillation procedure. We transfer logic rules through a teacher network, constructed with posterior regularization principle.
- Contribution:
 - Provides a general distillation framework for FOL that can be applied to any specific network structures; very intuitive
- Limitations:
 - Dependent on hand-crafted rules as priors, lack the ability to induce and learn abstract knowledge from data; unsuitable to incorporate large amount of fuzzy human intuitions
- Comparison:
 - A Semantic Loss Function for Deep Learning with Symbolic Knowledge
 - Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, Guy Van den Broeck
 - Combines propositional logic, limited but more convenient
 - Deep Neural Networks with Massive Learned Knowledge
 - Difting Hu, Zichao Yang, Ruslan Salakhutdinov, Eric P. Xing
 - Mutual distillation that iteratively transfers information between DNN and structured knowledge