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This class

n Understand early and current work on Reasoning
¨ (Learn to) read critically, present, and discuss papers

n Understand some of the difficulties in NLU from the perspective of reasoning
¨ Conceptual and technical

n Try some new ideas

n How:
¨ Presenting/discussing papers 

n Probably: 2 presentations each; 4 discussants
¨ Writing a few critical reviews
¨ “Small” individual project (reproducing); 
¨ Large project (pairs)
¨ Tentative details are on the web site.

n Machine Learning
n 519/419
n 520
n Other?

n NLP
n Yoav Goldberg’s book
n Jurafsky and Martin
n Jacob Eisenstein

n Attendance is mandatory
n Participation is mandatory

n Time of class?
n Expectations? 

n Today: discuss first project
n Content + Timetable

n Tomorrow: release list of papers
n Timetable



This Class (2)

n Most of this class will be technical – reading, discussing, trying to understand 
current literature in this area (and some earlier literature).

n Before we get there, I’d like to spend the next two meetings on:

1. What are the questions we should ask in this area (and why)?

2. What were the earlier foci of the relevant research communities (and why)?
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Questions

n What is Reasoning? 
¨ Do we do reasoning? Yes, we do.
¨ How can we formulate it? 

n Reasoning requires knowledge
¨ How do we represent it?
¨ What types of knowledge 
¨ What types of representations? 

n We want to think about these in the context of natural language understanding
¨ In what ways does it change the game?
¨ Is Reasoning for/in NLU different than “Reasoning”?
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John McCarthy on Natural Language Understanding



A New York Times Story



A New York Times Story (Cont.)



New York Times Story: Questions

n An intelligent person or program should be able to answer the following questions 
based on the information in the story:
¨ The article proceeds with 22 questions:

1.  Who was in the store when the events began?
¨ Probably Mr. Hug alone, although the robbers might have been waiting for him, but if so, this 

would have been stated. 

2. What did the porter say to the robbers? 
¨ Nothing, because the robbers left before he came.

20. Why did Mr. Hug yell from the bottom of the elevator shaft? 
¨ So as to attract the attention of someone who would rescue him. 

n “The above list of questions is rather random. I doubt it covers all facets of 
understanding the story.”



The QA module is not being trained 
Once the program knows English, and has 

the relevant background knowledge, it 
should answer the questions

McCarthy’s Challenges

n A formalism capable of expressing the assertion of the sentences free from 
dependence on the grammar of the English language. (“Artificial Natural Language”, 
ANL)
¨ Semantic Parser

n An “understander” that constructs the “facts” from the text.
¨ Information Extraction: Entities, Relations, Temporal, Quantities,…

n Expression of the “general information” about the world that could allow getting 
the answers to the questions from the “facts” and the “general information”
¨ Background Knowledge 

n A “problem solver” that could answer the above questions on the basis of the 
“facts”.
¨ Question Answering Engine 



Lessons

n What can we learn from this example?

¨ Difficulties of NLU 

¨ Importance of reasoning
n Part of Reasoning here seems to be “providing the reasons”, not only the “answers”

¨ Decoupling learning from reasoning

n McCarthy thinks that there is a need for some level of abstraction – an abstract representation of the 
text and the relevant knowledge so that a generic module can work on it and “do the reasoning”.

n Is this important/Essential?



Class Discussion

n You will spend the next 10 minutes on:

¨ Suggest a reasoning problem.
n Describe it
n Suggest a way to formulate it so that you can write a program that solves it

¨ Think about knowledge needed
n Describe the type of knowledge you think is needed and why/when
n Suggests ways to formulate it: represent it and use it
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More Examples

n Skip
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(1) I Have Some Questions About….

n Scenario:
¨ You are reading the book, but left it for a couple of weeks.
¨ You need a refresher: some of the events, entities, the 

current relationships between David and James Steerforth.

n Conversing about it is challenging:
¨ Many chapters, multiple voices, long periods of time,…
¨ The novel features the character David Copperfield, his 

journey of change and growth from infancy to maturity, as 
many people enter and leave his life and he passes through 
the stages of his development. (Fiction, and you know it)

¨ London and England in the 19-th century; socio-economic 
state, child exploitation; schools, prisons, emigration to 
Australia (true historical facts)

n What computational tasks should we think about? 
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https://en.wikipedia.org/wiki/David_Copperfield_(character)


(2) I Want to Talk about this News Story
Who was in the store when the events 
began?

¨ The story doesn’t say. 
¨ Probably Mr. Hug alone, although the 

robbers might have been waiting for 
him, but if so, this would have been 
stated. 

n Why was he crying?
¨ Maybe he was scared. 
¨ Maybe he was injured. 
¨ Maybe he called for help.

n Understanding the story and 
conversing about it require  
Situated Reasoning: Model-based 
Reasoning 

14[Example due to John McCarthy]



(3) Some questions to my Sports’ Assistant

Coming off a road win over the Cowboys, the Redskins traveled 
to Lincoln Financial Field for a Week 5 NFC East duel with the 
Philadelphia Eagles. In the first quarter, the Redskins trailed early 
as RB Brian Westbrook scored on a 9-yard TD run and the Eagles 
DeSean Jackson returned a punt 68 yards for a touchdown.
Washington still trailed at half time 14:9, with field goals from 
Shaun Suisham. In the third quarter, the Redskins took the lead 
on a trick play as WR Antwaan Randle El threw an 18-yard TD 
pass to TE Chris Cooley. In the fourth quarter, the Redskins 
increased their lead when Clinton Portis scored on a 4-yard TD 
run. The Eagles managed one more score in the final quarter for 
a final score of 17:23.
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n How many touchdowns 
did the Eagles score in 
the first quarter?

n Answer: 2
n How many field goals did 

Washington score?
n Answer: 3
n à Need a resource –

the rules of the game.
n How many field goals did 

the Eagles score? 
n Answer: 1

Modified version of a question for AI2’s DROP dataset

§ The answer isn’t available in any KB, but can be gleaned from the recap. 
§ Semantic parsing is harder: it involves executing programs on the text

§ Count(scoring team=Eagles (identify TD, scoring team))
§ How do we train such models? Some decomposition is necessary.

Football Scoring Rule Book: 
§ TD could be 6, 7, or 8 points.

§ Kick….
§ Field goal is worth 3 points
§ …..

General rules that are to be instantiated….What computational tasks 
should we think about?



(4) Let’s Talk about Dinner

n à Let’s talk about dinner. 
¨ A: Where do you want to go? 

n à I had a big lunch 
¨ [This is not an answer; can the Assistant figure it out? ]
¨ It’s probably just a hint that we should go for a light dinner

n à I don’t like crowds 
¨ [This is not an answer; can the Assistant figure it out? ]
¨ Perhaps a preference  for small venues? 

n à I had a lot of pizza the last few weeks
¨ [Again; not a direct; how do we understand it? How do we represent it? 
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But, there is another big difference between 
these two scenarios.
§ The first applies only today. 
§ The second is a general rule that I’d like the 

Assistant to remember. 



Formulation

n What is the role of formal theories of reasoning and representation?
¨ They assume that we can map text and world knowledge to a “symbolic” representation; given 

that, the problem is solved (so people think).
n Note that this is true even when people use neural networks for all/part of the computation

¨ If this is wrong – where is it wrong? 
n Is it the infeasibility of the mapping?
n Is it that our formal theories of reasoning are missing something? 

n Think also about the statements I expressed last time 
¨ Reasoning is about giving reasons

n What are the implications of this (whether you agree with it or not) on the need to 
have “symbols”?
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Formulation (cont.)

n Eventually, we may want to think about a neural implementation of Reasoning
¨ Is it necessary? Is this where the challenge is?

n Note that neuro-symbolic AI goes back many years

¨ Is it ok to first think about formal theories, and then encode them in neural architectures? 
¨ Or, there is an advantage to directly thinking about neural representations.

n This latter view means that there is no other representation of what neural architectures are doing.
¨ E.g., is an embedding of a sentence different than other representations of it in some principled way?
¨ Or is it just a more compact representation?

n Next, we will describe things from the perspective of Learning to Reason. 
¨ The presentation will mostly focus on the logical approach, but similar ideas can be extended to 

other formalisms. 
¨ This will hopefully serve as introduction to formalisms,
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It’s Time for Reasoning: Outline 

n Reasoning about events and time in natural language
¨ Temporal ordering of events

n Learning & Inference paradigms to support reasoning
¨ Temporal common sense 
¨ Reasoning & Supervision paradigms

n More about Temporal Common Sense

n Initial thoughts on additional Reasoning paradigms
¨ Decomposition, and computing functions over sets of variables 

20

Did Aristotle have a laptop?• Reflects an important move in NLU from sentence level to situation level
• Addresses issues in combining learning and reasoning, and supervision. 



Constrained Conditional Models [Abductive Reasoning; Chang et al.’12]

n Training:  Learning the objective function (w, u)?  Learning all the intermediate functions ∅(x, y)?
¨ Joint? Decoupled? Learned/provided constraints? Hard/soft? 
¨ There is some understanding for when to do what [IJCAI’05]

n Reasoning: A way to push a function over learned models to satisfy output expectations 
¨ (can also think about expectations from a latent representation) 

Knowledge component:  
(Soft) constraints 

A linear function over models – can 
be used to model any logical function

Penalty for violating
the constraints.

How far are the decisions (y) is from 
a “legal/expected” assignment

Features, Models, NN
(non-linearity comes here)

y = argmaxy ∈ Y wT∅(x, y) + uTC(x, y) y = argmaxy å 1∅(x, y) wx,y subject to Constraints C(x,y)

Variables are models  

n What are the variables? How to represent knowledge? 
n Is it expressive enough? 

¨ All Boolean functions can be represented as sets of linear constrains.
¨ Any MAP problem w.r.t. any probabilistic model, can be formulated as an ILP [Roth&Yih 04, Taskar 04]

§ Is it needed/useful in the NN era? Yes [Deutsch et al. CoNLL’19] ; later: a neural implementation of CCMs 
§ But, it’s not sufficient to support all types or reasoning we care about. 

§ It has been used extensively and successfully used in many NLU tasks from IE to discourse to summarization.
§ A good starting point for thinking about further progress in natural language understanding. 
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Formulation goes 
back to (Roth & Yih 
2004). Also related 
to PR (Ganchev et 

al. 2010)

Supporting structured, 
knowledge intensive, 

NLP decisions



Police used tear gasPeople were angry

Time
People were angry at something (which ended in violent conflicts with 
the police)…The police finally used tear gas (to restore order).

Two Events



Two Events

Police used tear gas People were angry

Time

Police used tear gas…People were angry at the police.
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Two Events

Police used tear gas People were angry

Time

In natural language, we rarely see explicit timestamps, so we have 
to figure out the temporal order from cues in the text.
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Time and Events [Ning et al. *SEM’2018; ACL’18, EMNLP’18, EMNLP’19]

n In Los Angeles that lesson was brought home today when tons of earth cascaded down a hillside, 
ripping two houses from their foundations. No one was hurt, but firefighters ordered the evacuation 
of nearby homes and said they'll monitor the shifting ground until March 23rd.

n Very difficult task— hinders exhaustive annotation (O(N2) edges)
n But, it’s rather easy to get partial annotation – some relations. 
n And, we have strong expectations from the output

¨ Transitivity
¨ Some events tend to precede others, or follow others
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Multiple Events Form a Situation

n In Los Angeles that lesson was brought home Friday when tons of earth cascaded
down a hillside, ripping two houses from their foundations. No one was hurt, but 
firefighters ordered the evacuation of nearby homes and said they'll monitor the 
shifting ground until March 23rd.
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cascaded

hurt

ripping

ordered

monitor

BEFORE BE_INCLUDED

Temporal relation 
extraction

Literature 
F1 (%)

w/ gold events low 50’s

w/o gold events low 30’s

This task is difficult:

The task: label the edges of the temporal graphs.

2015 results



orderedordered

monitormonitormonitormonitor

cascadedcascadedcascadedcascaded

hurthurthurt

rippingrippingripping

Temporal graphs are structured

Due to transitivity, TempRels are not independent

First step: global inference

cascaded

ripping

ordered

monitor

BEFORE INCLUDED

ripping

orderedcascaded

Time

Must be before

?
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I. Global inference (a toy example)

28

cascaded ordered

monitor

0.8

0.2

0.7
0.3

0.6
0.4

Resulting temporal graph is not feasible



Global inference (a toy example)

We should not only select the assignment with the best 
score, but also one that does not violate our constraints 

(here: transitivity). Formulated as an ILP (Roth & Yih 2004)

cascaded ordered

monitor

0.2

0.70.6

cascaded ordered

monitor

0.8

0.70.4

cascaded ordered

monitor

0.8

0.30.6

0.6+0.2+0.7=1.5 0.4+0.8+0.7=1.9 0.6+0.3+0.8=1.7

Option 1 Option 2 Option 3



Global inference via ILP

Integer Linear Programming (ILP)

#𝐼 = 𝑎𝑟𝑔max
,
-
./0

-
1

𝑓1 𝑖𝑗 𝐼1(𝑖𝑗)

s.t. ∀𝑖, 𝑗, 𝑘

-
1

𝐼1 𝑖𝑗 = 1, 𝐼1; 𝑖𝑗 + 𝐼1= 𝑗𝑘 − 𝐼1? 𝑖𝑘 ≤ 1

We’re maximizing the score of an entire graph while enforcing 
transitivity constraints.

Uniqueness Transitivity (no loops)

Boolean variable

real variable

𝐼→ 𝑖𝑗 = 1

Event i j

𝐼← 𝑖𝑗 = 1

𝑓→ 𝑖𝑗 = 0.6

𝑓← 𝑖𝑗 = 0.4

Global Inference is essential. But, how should we train the 
models 𝐼1 𝑖𝑗 ? 



II. Local learning is not sufficient

…ripping two houses…firefighters ordered the evacuation of nearby homes… 

n Q: (ripping, ordered)=? (difficult even for humans)

n Annotation says “before”, but training this way without accounting for the other 
labels – eg., the relation to “cascaded” misleads the model and leads to overfitting

n Jointly training the relations is essential
¨ Structured Learning

31

tons of earth cascaded down a hillside,

ripping

orderedcascaded

Time

Must be before



III. Temporal Common Sense

n More than 10 people have (event1: died), police said. A car (event2: exploded) on 
Friday in a group of men.

n Which event came first, event1 or event2? 
n Hard to tell. 

n What about now? 
¨ Context is important, but not sufficient
¨ Humans have good priors about which event “usually” happens before another.

n We would like to acquire it, and use it to enhance our temporal relation 
identification
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TemProb: Temporal Relation Probabilistic Knowledge Base

n Run initial system on New York Times 1987-2007, #Articles~1M
n Identify events; identify temporal order
n 80M temporal relations
n Noisy statistics is sufficient to give good priors. 
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Example pairs Temporal  
Before (%)

Temporal
After (%)Text Before Text After

Ask Help 86 9

Attend Schedule 1 82

Accept Propose 10 77

Die Explode 14 83

Priors on order are often different than order of occurrence in text
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Many Forms of Temporal Common Sense

n Frequency, Periodicity  [ACL’19]

n Not being used in this talk

38

Typical Time Duration



III. Making use of TemProb

n Let 𝐶(𝑣., 𝑣0, 𝑟) be the number of appearances of 𝑣., 𝑣0 classified to be relation 𝑟.
n For each pair of verb events,

n ℎ1 𝑣., 𝑣0 =
J KL,KM,1

∑OP J(KL,KM,1
P) is the prior probability of the pair having relation 𝐫.

n Learning: Use the prior probability as an additional feature and retrain our system.
n Inference: Use as a regularization term in the objective. 

#𝐼 = 𝑎𝑟𝑔max
,
-
./0

-
1

(𝑓1 𝑖𝑗 + 𝒉𝒓(𝒊𝒋))𝐼1(𝑖𝑗)
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It’s Time for Reasoning: Outline 

n Reasoning about events and time in natural language
¨ Temporal ordering of events

n Learning & Inference paradigms to support reasoning
¨ Temporal common sense 
¨ Reasoning & Supervision paradigms

n More about Temporal Common Sense

n Initial thoughts on additional Reasoning paradigms
¨ Decomposition, and computing functions over sets of variables 
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Did Aristotle have a laptop?• Reflects an important move in NLU from sentence level to situation level
• Addresses issues in combining learning and reasoning, and supervision. 



Putting it all together: A Neural Approach

Siamese network
Common sense

Long short-term memory network
Structured learning

Feedforward network
Trained on new data

LSTM 
+

Feed-Forward NN (+ ILP Inference)
+

Siamese



LSTM w/ concatenations of two hidden states

LSTM

t0  t1 t2 tn

Siamese network
(Common sense)

Feedforward network
(Trained on new data)

q LSTM takes word embeddings as input
q Hidden vectors represent events
q FFNN predicts the labels of temporal relations 

(followed by ILP inference)
q Siamese network is a generalized TemProb

word 
embeddings

Putting it all together: A Neural Approach



LSTM w/ concatenations of two hidden states

LSTM

t0  t1 t2 tn

Siamese network
(Common sense)

he2

he1

128

128

word 
embeddings

q LSTM takes word embeddings as input
q Hidden vectors represent events
q FFNN predicts the labels of temporal relations 

(followed by ILP inference)
q Siamese network is a generalized TemProb

Putting it all together: A Neural Approach
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LSTM w/ concatenations of two hidden states

LSTM

t0  t1 t2 tn

Siamese network
(Common sense)

: a neural approachPut all pieces together

he2

he1

128

128

before
after
equal
vague

output

64

Output confidence scores

word 
embeddings

q LSTM takes word embeddings as input
q Hidden vectors represent events
q FFNN predicts the labels of temporal relations 

(followed by ILP inference)
q Siamese network is a generalized TemProb

Putting it all together: A Neural Approach



LSTM w/ concatenations of two hidden states

LSTM

t0  t1 t2 tn

he2

he1

128

128

before
after
equal
vague

output

64

Output confidence scores

v1 v2
500

150

500

45

Siamese network 
trained on TemProb

dropout 0.3

dropout 0.3

word 
embeddings

q LSTM takes word embeddings as input
q Hidden vectors represent events
q FFNN predicts the labels of temporal relations 

(followed by ILP inference)
q Siamese network is a generalized TemProb

Putting it all together: A Neural Approach



LSTM w/ concatenations of two hidden states
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embeddings

q LSTM takes word embeddings as input
q Hidden vectors represent events
q FFNN predicts the labels of temporal relations 

(followed by ILP inference)
q Siamese network is a generalized TemProb

Putting it all together: A Neural Approach
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BERT
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Generalized 
common 
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A Revolution in Temporal Reasoning

2015 2017 2019

Thesis work of  Qiang 
Ning (2019)



Multi-Axis View of Events [ACL’18]

n The improvements involves another conceptually important step:
¨ We suggest that not all events are comparable
¨ Events reside on multiple axes.

Police tried to eliminate the pro-independence army and restore order. At least 51 
people were killed in clashes between police and citizens in the troubled region.

police tried 51 people killed

to eliminate army

restore order

✓

✓

✓

Intention axis

Main axis

48

n Result: inter-annotator 
agreements are much higher.

n Higher quality training data, with 
significant improvement in 
temporal relation identification

n Events could be actual, 
hypothetical, intentions,..
¨ Not all events are comparable. 



It’s Time for Reasoning: Outline 

n Reasoning about events and time in natural language
¨ Temporal ordering of events

n Learning & Inference paradigms to support reasoning
¨ Temporal common sense 
¨ Reasoning & Supervision paradigms

n More about Temporal Common Sense

n Initial thoughts on additional Reasoning paradigms
¨ Decomposition, and computing functions over sets of variables 
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Did Aristotle have a laptop?• Reflects an important move in NLU from sentence level to situation level
• Addresses issues in combining learning and reasoning, and supervision. 

What kinds of supervision signals do can we get/need?



Inducing Semantics 

n Inducing semantic representations and making decisions that depend on it require 
learning and, in turn, supervision.

n Standard machine learning methodology:
¨ Given a task
¨ Collect data for the task and annotate it
¨ Learn a model [doesn’t matter how]

n We will never have enough annotated data to train all the models, for all the tasks 
we need, this way.
¨ We don’t even know what are “all the tasks”
¨ Most of what we learn we don’t learn by “training” on many examples

n Current methodology is not scalable and, often, makes no sense
¨ Annotating for complex tasks is difficult, costly, and sometimes impossible. 

n Most decisions we care about are too sparse to be trained for directly 

It’s ok to do supervised learning.
But what about tasks that cannot be supervised directly?

In most interesting cases, learning should be (and is) driven 
by incidental supervision signals [Roth AAAI’17]
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Today: how does the ability 
to reason (a little bit) helps 
supervision? 

Incidental supervision: How to understand, acquire and use 
signals that were not put there to help a specific target task. 



Temporal Relations [Ning et al. *SEM’2018; ACL’18, EMNLP’18]

n In Los Angeles that lesson was brought home today when tons of earth cascaded down a hillside, 
ripping two houses from their foundations. No one was hurt, but firefighters ordered the evacuation 
of nearby homes and said they'll monitor the shifting ground until March 23rd.

n Very difficult task— hinders exhaustive annotation (O(N2) edges)
n But, it’s rather easy to get partial annotation – some relations. 
n And, we have strong expectations from the output

¨ Transitivity
¨ Some events tend to precede others, or follow others [Ning et. al., NAACL’18]

Two key questions:         (i) What level of supervision is really needed? 
(ii) Algorithmic Approach: how to gain from it? 
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Intuition:
• If the structure is tight, 

there is no need to 
annotate all the variables. 

• A partial set of signals can 
supervise all. 



(a) Complete
same budget

(b) Partial
same budget

Training Phase

𝒯WXYW

Testing Phase

Partial or complete, that’s the question [NAACL’19]

n When we have a fixed budget, partial structures indeed lead to better performance.
n How should we quantify the quality of “partial”?

𝒯WXYW
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Constrained output; not all 
assignments are possible. 

Structure

n Structure: a vector of random variables: 𝑌 = 𝑌;, 𝑌=, … , 𝑌\ ∈ 𝐶 ℒ\

¨ ℒ is the label set
¨ 𝑌 ∈ 𝐶 ℒ\ ⊆ ℒ\ represents the constraints imposed by this type of structure. 

n (Generalized) Annotation:  
¨ 𝒌 out of 𝑑 variables are labeled à a subset of 𝐶 ℒ\

¨ Let 𝒇𝒌 be the size of the feasible subset

¨ 𝑓b = 𝐶 ℒ\ ≥ 𝑓; ≥ 𝑓= ≥ ⋯ ≥ 𝑓\ = 1

n Define the benefit of k labels: 𝑰𝒌 ≜ 𝐥𝐨𝐠 |𝑪(𝓛𝒅)| − 𝑬[𝐥𝐨𝐠 𝒇𝒌]
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Intuition:
• If the structure is tight, 

there is no need to 
annotate all the variables. 

• A partial set of signals can 
supervise all. 

How much of 𝐶 ℒ\ has 
been disqualified by 𝑘 labels

1

2 3

4

1à2à3à4

Or

1à3à2à4Partial order

𝒇𝒌 = 𝟐

Complete annotationNo annotation



Diminishing Return of New Labels
𝑰𝒌: The benefit of k labels is concave

𝜟𝒌 = 𝑰𝒌 − 𝑰𝒌t𝟏: The benefit of a new label is diminishing
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Improvement Consistent With Tightness Analysis By 𝐼v

Algorithmically:
n Results are consistent with 

tightness of the structure
n A version of the Constraint-

Driven Learning (CoDL) 
Algorithm [Chang et al. 2012] 
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++ ++ ++ ++ ++ ++ ++ ++ +

+: p<5%
++: p<1%

++ ++ ++ ++ ++ ++

Chain:
Temporal Relation Extraction

Bipartite Graph:
Semantic Role Classification

Seq Tagging
Shallow Parsing

𝜟𝒌 = 𝑰𝒌 − 𝑰𝒌t𝟏: The benefit of a new label

more concave

Indeed: 
• If the structure is tight, 

there is no need to 
annotate all the variables. 

• A partial set of signals can 
supervise all. 



What is 𝐼v Actually?

n Definition: A 𝒌-partial annotation 𝐴v is a vector of random variables 
𝑨𝒌 = 𝐴v,;, 𝐴v,=, … , 𝐴v,\ ∈ ℒ ∪⊓ \, where ⊓ is a special character 
for no label yet, such that 
¨ ∑.{;\ 𝕀(𝐴v,. ≠⊓) = 𝑘
¨ 𝑃 𝑌|𝐴v = 𝑎v = 𝑃(𝑌|𝑌0 = 𝑎v,0, 𝑗 ∈ 𝒥), where 𝒥 = 𝑗: 𝑎v,0 ≠⊓
¨ 𝐴v means k variables in Y are labeled, and they are correct

n Theorem: 𝐼v is the mutual information between 𝑌 and 𝐴v when both 𝑌
and the 𝑘 variables labeled in 𝐴v follow uniform distributions.
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How Reasoning Helps Learning 

n It provides a reduction in the uncertainty of a target structure 𝑌, by the annotation 
random process 𝐴
¨ Here we reasoned from the “partial” annotation to the complete one.

n More generally, we argue:
¨ Any signal that has non-zero mutual information with Y can be viewed as “annotation”
¨ Since it allows us to “reason” from it to the complete annotation needed. 

n Points out a way to understand and quantify the value of indirect supervision 
signals.
¨ Refine the theory
¨ Rather than annotate a data set at the events and relations level, answer some questions relative to it. 
¨ Rather than annotating topics of documents, use Wikipedia to “understand” the topic means; then classify
¨ ……. 
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Work in Progress



It’s Time for Reasoning: Outline 

n Reasoning about events and time in natural language
¨ Temporal ordering of events

n Learning & Inference paradigms to support reasoning
¨ Temporal common sense 
¨ Reasoning & Supervision paradigms

n More about Temporal Common Sense

n Initial thoughts on additional Reasoning paradigms
¨ Decomposition, and computing functions over sets of variables 
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Did Aristotle have a laptop?• Reflects an important move in NLU from sentence level to situation level
• Addresses issues in combining learning and reasoning, and supervision. 



Temporal Common Sense [EMNLP’19 + In Progress]

My friend Bill went to Duke 
University in North Carolina. With a 
degree in CS, he joined Google MTV 
as a software engineer. As a huge 
basketball fan, he has attended all 3 
NBA finals since then. He also plans 
to visit Duke regularly as an alumnus 
to attend their home games.
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Temporal Common Sense

My friend Bill went to Duke 
University in North Carolina. With a 
degree in CS, he joined Google MTV 
as a software engineer. As a huge 
basketball fan, he has attended all 3 
NBA finals since then. He also plans 
to visit Duke regularly as an alumnus 
to attend their home games.

College: about 4 years, start at the age of 18

Bill in North Carolina: about 4 years

Duke in North Carolina: always

Typical Time

Duration Stationarity

Stationarity

Duration
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Temporal Common Sense

My friend Bill went to Duke 
University in North Carolina. With a 
degree in CS, he joined Google MTV 
as a software engineer. As a huge 
basketball fan, he has attended all 3 
NBA finals since then. He also plans 
to visit Duke regularly as an alumnus 
to attend their home games.

College: about 4 years, start at the age of 18

Bill in North Carolina: about 4 years

Duke in North Carolina: always (expected)

Typical Time

Duration Stationarity

Stationarity

Duration

Join Google: after college graduation
Ordering
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Temporal Common Sense

My friend Bill went to Duke 
University in North Carolina. With a 
degree in CS, he joined Google MTV 
as a software engineer. As a huge 
basketball fan, he has attended all 3 
NBA finals since then. He also plans 
to visit Duke regularly as an alumnus 
to attend their home games.

NBA Finals: every year

College: about 4 years, start at the age of 18

Bill in North Carolina: about 4 years

Duke in North Carolina: always (expected)

Typical Time

Frequency

Duration Stationarity

Stationarity

Duration

Join Google: after college graduation
Ordering
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Temporal Common Sense

My friend Bill went to Duke 
University in North Carolina. With a 
degree in CS, he joined Google MTV 
as a software engineer. As a huge 
basketball fan, he has attended all 3 
NBA finals since then. He also plans 
to visit Duke regularly as an alumnus 
to attend their home games.

NBA Finals: every year

College: about 4 years, start at the age of 18

Visit Alma Mater: 0-2 times per year, 0-2 days each time

Attend basketball games: a few hours

Bill in North Carolina: about 4 years

Duke in North Carolina: always (expected)

Typical Time

Frequency

Frequency

Duration

Duration Stationarity

Stationarity

Duration

Join Google: after college graduation
Ordering

Duration
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• Q: How old is Bill?
• A: Around 25.
• R: 3 + 4 + 18

• Q: How long will take Bill to fly to Duke?
• A: A few (1-5) hours.
• R: Duke is always in NC, Bill is now in CA

• Q: How often would he visit Duke in the future?
• A: A few (<5) times a year.

• Q: Which one happened first, went or joined?
• A:  Went.

Temporal Commonsense

My friend Bill went to Duke 
University in North Carolina. With a 
degree in CS, he joined Google MTV 
as a software engineer. As a huge 
basketball fan, he has attended all 3 
NBA finals since then. He also plans 
to visit Duke regularly as an alumnus 
to attend their home games.

66

q Human infer temporal common sense 
that helps them to better understand the 
story. 

q This is reflected in the ability to answer 
questions about temporal aspects.



MC-TACO🌮: A Temporal Common Sense Dataset

n MC-TACO🌮 (multiple choice temporal common-sense) :
¨ In a given scenario – addressing multiple aspects/options of temporal commons sense 
¨ Input: 

¨ Task: Decide whether each answer is plausible.
¨ Metrics:

n Exact Match: the percentage of question of which all candidates are predicted correctly
n F1: The F1 score of “plausible”

¨ Statistics: 
n 1,893 questions
n 13,225 question-answer pairs
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He went to Duke University. How long did it take him to graduate? 4 years

He went to Duke University. How long did it take him to graduate? 10 days

3.5 years

16 hours

1 century

Prediction

F1: 66.7
Exact Match: 0.0

Gold

✔

✔

✔

✗

✔



ESIM: Enhanced LSTM for Natural Language Inference (Chen et al., 2016)
GloVe: Global Vectors for Word Representation (Pennington et al., 2014)
ELMo: Deep contextualized word representations (Peters et al., 2018)
BERT: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al., 2019)
RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)

Results: We are Far
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40% 
difference

13% 
difference

49.8 50.3
54.9

66.1
69.9 72.3

17.4
20.9

26.4

39.6
42.7 43.6

0

10

20

30

40

50

60

70

80

90

100

Naïve Best ESIM + GloVe ESIM + ELMo BERT BERT + Unit
Normalization

RoBERTa

F1 EM Human F1 Human EM

49.8 50.3
54.9

66.1
69.9

72.3

17.4
20.9

26.4

39.6
42.7 43.6

87.1 87.1 87.1 87.1 87.1 87.1

75.8 75.8 75.8 75.8 75.8 75.8

0

10

20

30

40

50

60

70

80

90

100

Naïve Best ESIM + GloVe ESIM + ELMo BERT BERT + Unit
Normalization

RoBERTa

F1 Exact Match Human F1 Human Exact Match



What Do We Know?

n We can estimate some temporal aspects well

n But we don’t know if Aristotle had a laptop
¨ Not even if “we can make it to dinner before the movie”.

n Decompose or not decompose? 
¨ The strategy: What do we need to know in order to answer
¨ What functions are to be computed over components? 

n How/What to learn? 69

Did Aristotle have a laptop?

Typical TimeDuration

[ACL’19 + In Progress]



Reasoning over paragraphs
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Who kicked the longest field goal in the second quarter?



Decomposition for Reasoning about Text[In Submission]

n We need to induce a program, with some executable modules at the leaves
¨ “This phrase” indicates a field goal
¨ “This player” scored it; “this is the team” that scored it
¨ “This is the length” of the field goal

n Reason symbolically over it.
¨ Imagine more expressive functions

Colors represent levels of attention over phrases
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Neural Module Networks for Text
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Trainable 
parameters

Differentiable 
modules



Challenges

Training:
n End-to-End Learning in this context is challenging
n You have to know something 

¨ A limited amount of heuristically-obtained modules provides sufficient inductive bias for 
accurate learning 

Reasoning
n We introduce modules that perform symbolic reasoning (such as arithmetic, sorting, 

counting) over numbers in a probabilistic and differentiable manner.
n But how to extend it to more functions?

At this point, we can get state-of-the art and interpretable results on a relevant 
fraction of the DROP dataset.
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Recap 

Coming off a road win over the Cowboys, the Redskins 
traveled to Lincoln Financial Field for a Week 5 NFC East 
duel with the Philadelphia Eagles. In the first quarter, the 
Redskins trailed early as RB Brian Westbrook scored on 
a 9-yard TD run and the Eagles DeSean Jackson 
returned a punt 68 yards for a touchdown. Washington 
still trailed at half time 14:9, with field goals from Shaun 
Suisham. In the third quarter, the Redskins took the lead 
on a trick play as WR Antwaan Randle El threw an 18-
yard TD pass to TE Chris Cooley. In the fourth quarter, 
the Redskins increased their lead when Clinton Portis 
scored on a 4-yard TD run. The Eagles managed one 
more score in the final quarter for a final score of 17:23.
n What are the computational tasks that we should 

think about? 74

n How many touchdowns 
did the Eagles score in 
the first quarter?

n Answer: 2
n How many field goals did 

Washington score?
n Answer: 3
n à Need a resource –

the rules of the game.
n How many field goals did 

the Eagles score? 
n Answer: 1

Modified version of a question for AI2’s DROP dataset



CliffsNotes 

n Multiple natural language documents
¨ Small units of text or large units of texts
¨ Reading news about an event/situation over time and/or 

from multiple sources 
¨ Reading a book

¨ The novel features the character David Copperfield, his 
journey of change and growth from infancy to maturity, as 
many people enter and leave his life and he passes through 
the stages of his development. (Fiction, and you know it)

¨ London and England in the 19-th century; socio-economic 
state, child exploitation; schools, prisons, emigration to 
Australia (true historical facts)

n What are the computational tasks that we should 
think about? 
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https://en.wikipedia.org/wiki/David_Copperfield_(character)


Conclusion

n What is Reasoning?

n Who is doing the Reasoning?


