
CIS-700
Spring 2020

Reasoning for Natural Language Understanding

Dan Roth 
Computer and Information Science

University of Pennsylvania 

Introduction Part III: Knowledge Representation and Reasoning – Classical View



This class

n Understand early and current work on Reasoning
¨ (Learn to) read critically, present, and discuss papers

n Understand some of the difficulties in NLU from the perspective of reasoning
¨ Conceptual and technical

n Try some new ideas

n How:
¨ Presenting/discussing papers 

n Probably: 2 presentations each; 4 discussants
¨ Writing a few critical reviews
¨ “Small” individual project (reproducing); 
¨ Large project (pairs)
¨ Tentative details are on the web site.

n Machine Learning
n 519/419
n 520
n Other?

n NLP
n Yoav Goldberg’s book
n Jurafsky and Martin
n Jacob Eisenstein

n Attendance is mandatory
n Participation is mandatory

n Time of class?
n Expectations? 

n Today: discuss first project
n Content + Timetable

n Today: release list of papers
n Timetable



Reasoning

n The classical view of reasoning:
¨ Deriving conclusions from a corpus of explicitly stored information, as a mean to solve a range of problems. 

n An ideal reasoning system will produce:
¨ All-and-only the correct answer to every possible query
¨ Produce answers that are as specific as possible
¨ Be expressive enough to permit any possible fact to be stored and and query to be asked
¨ Be efficient

n Probably impossible for many reasons (?)
n Most of the classical research focused on tradeoffs: 

¨ As correct systems become more expressive, they can become less efficient
n This was studied both in the context of logic- and of probability-based reasoning.  
n Less effort was devoted to connecting things to applications where reasoning is needed

¨ Representation (and Mapping) – are these realistic? 
¨ Formulation – is it satisfactory?
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Towards a Formulation

¨ Of these, abduction might be the most useful (?) in many situations.
¨ But, we need to formalize these.
¨ And, maybe think about the relations to Induction
¨ And, always ask, are these forms of reasoning sufficient?
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Representation and Reasoning

n Propositions (p, q, …). Connectives (∧, ¬, …).
¨ Implications: φÞ x. Equivalences: φÛ x.

n Reasoning semantics through entailment ⊨.
n Proof procedures ⊢ to compute entailment.

n Given formulas in KB and an input O, deduce whether a result R is entailed (KB⋃ O ⊨ R).
n Given formulas in KB and an input O, abduce an explanation E that entails O (KB⋃ E ⊨ O).

¨ The question of how to compute deduction (and abduction) is also an interesting question here. 
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Non-Monotonic Reasoning

n Non-monotonicity typically viewed as property of extending input O for fixed KB, 
and having result R become “smaller”.

n Birds fly
n Tweedy is a bird; does Tweedy fly? 
n Tweedy is a penguin 

¨ This is a problem to most formalisms 

¨ Involving learning in the process provides ways to address these difficulties.
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Analogy

n The heart is a pump

n Is this an important reasoning setting?
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Quantitative Reasoning
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The many faces of reasoning

n Reasoning is often studied in a very narrow sense.
¨ But probably has many forms 
¨ Realistic examples typically span multiple reasoning aspects. 
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quantitative reasoning

paraphrasing

temporal

deductive

inductive

causal (cause to effect)

abductive

analogy

exemplar (learn. by ex.s)

conditional 

causal (effect to cause)

non-monotonic 
coref 

....



The many faces of reasoning
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Space of all the reasoning 
phenomena 

Abductive 
reasoning

Abductive reasoning 
Incomplete 

Observations
Best conclusion 

(maybe true)

(Bayesian Nets; Fuzzy Logic; Dampster-Shafer Theory)

Deductive 
reasoning

Very little 
understanding

Inductive reasoning

In language, things are not 
clearly disjoint. 
⇒ An instance might have 
elements of both phenomena. 

Co-reference
Resolution What a logician would 

interpret as “reasoning”

What a linguist would 
interpret “reasoning”

Temporal Spatial

The grass is wet, …
- It must have rained. 
- Someone has watered them

Q: When did Jack pass out? 

Learning 
theory

(Valiant,84)

Jack passed out after dinner.  
Options: morning, noon, night 

The sunlight hit Jack and he passed out.
Options: morning, noon, night 

There is overlap 
between all of them.

Generalization
bounds 

⇒ Abduction: (probably) morning

⇒ Deduction: night

Deductive reasoning 
General Rule Specific conclusion 

(always true)

(modus ponens; modus tollens)

When it rains, objects get wet. 
It rained. 

- The grass must be wet. 



Flow of Ideas

n Idea: represent all your knowledge in First Order Logic (KB).
n Given a query α, determine whether it holds in the KB: (KB implies α)

n For efficiency reasons:
¨ FOL (too complex to compute with) à Propositional Logic

n Problem I: complexity of inference.  
¨ Key solution: relax expressivity. 

n (but of, course, there were many other problems – incomplete knowledge, uncertainty) 
¨ E.g., what if the knowledge is not given, but rather learned? 
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Proof Systems

n Given a query α, determine whether it holds in the KB: (KB implies α)

¨ Assume that KB is a collection of propositional rules: pàq ; this is equivalent to: ¬p∨q≡ 𝑻 (a tautology)
n p itself can be a conjunction of propositions; 
n q can be a disjunction of propositions (if it a conjunction, we’ll split to multiple rules.)

¨ Then the KB is a conjunction of disjunctions: a CNF
¨ Answering KB ⊨ α is equivalent to solving satisfiability for KB ∧ ¬α 

n Determining that KB ∧ ¬α has no satisfying assignments. 
n There is a lot of algorithmic proof theory to develop, under some conditions, efficient algorithms for KB ⊨ α 

¨ E.g., if all the rule in KB are Horn rules (monotone antecedent, a single head proposition) there is an efficient algorithm. 
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Proof Systems

n Given a query α, determine whether it holds in the KB: (KB implies α)

n But, exact reasoning could be too hard.
n And, what if KB is only approximate?

¨ Model theory may makes more sense here.
n KB ⊨ α means that all the assignments that satisfy KB also satisfy α.
n Of course,  there are too many assignments…

¨ PAC semantics: what if you “sample” KB. 
n See Learning to Reason,(Khardon & Roth 96); an approach that is independent of the size of KB
n This algorithm is complete, but not sound. 

¨ If KB ⊨ α it never errs. Otherwise, it may not find a counter examples.

¨ It is also possible, under some conditions, to develop exact Learning to Reason
n Under some assumptions on the type of queries, it is possible to find a polynomial size set of examples in KB such that is sufficient to test 

the query on these.
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Many Other Representations

n Limited Forms of FOL
n Relational Databases: 

¨ And the hope is that you can address questions such as: 

¨ Many other representations were developed, some along with inference systems.
n Logic Programs (Prolog): a collection of Horn sentences

n For example: 

n Now I can infer who is the Mother of Bill (if I execute the program)
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Relational Models

n Knowledge:
¨ 0.7 Actor(a) ⇒￢Director(a)
¨ 1.2 Director(a) ⇒￢WorkedFor(a,b)
¨ 1.4 InMovie(m,a) ∧ WorkedFor(a,b) ⇒ InMovie(m,b)

n Input:
¨ Actor(Brando), Actor(Cruise), Director(Coppola),
¨ WorkedFor(Brando, Coppola), etc.

n Query:
¨ is (InMovie(GodFather, Brando))  ?
¨ is (what is the probability that: Pr(InMovie(GodFather, Brando)) = ?

n Abductive version: 

¨ What is the most likely table for InMovie?
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Semantic Networks

n Semantic Networks: allows the use of more expressive predicates, and more 
“intuitive inference”. 
¨ People talked about inference as a form of “spreading activation”

n A graph of labeled nodes and labeled, directed arcs
n Arcs define relationships that hold between objects denoted by the nodes.
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More Networks

n This led to two directions:
n (1) Concept nets:

¨ Based on Open Mind Common Sense (OMCS) 
¨ Intended to serve as a large commonsense knowledge base 
¨ Built on contributions of many people across the Web.
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More Networks

n (2) Formalization efforts: 
¨ These networks were formalized in terms of Description Logics, and then elaborated into Frame 

Description Forms. 
¨ Frames were used to describe types and their attributes: values, Restrictions, attached 

procedures (how an attribute should be used).

¨ Eventually, this led to theories of Frames (Minsky), and Scripts (Schank) 
n There are beginning to be influential again, where people think more about Events
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More Networks

n More generally, these languages had expressive grammars:

¨ Example:  The set of all people the all their male friends are doctors with some specialty. 

n And it came with inference algorithms – subsumption, and was extremely 
influential – all systems built in the 80-ith and later, were built on these languages. 
¨ It was also influential in areas such as Feature Extraction for machine learning, and theories of 

grammar. 
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Relational Models

n Knowledge:
¨ 0.7 Actor(a) ⇒￢Director(a)
¨ 1.2 Director(a) ⇒￢WorkedFor(a,b)
¨ 1.4 InMovie(m,a) ∧ WorkedFor(a,b) ⇒ InMovie(m,b)

n Input:
¨ Actor(Brando), Actor(Cruise), Director(Coppola),
¨ WorkedFor(Brando, Coppola), etc.

n Query:
¨ is (InMovie(GodFather, Brando))  ?
¨ is (what is the probability that: Pr(InMovie(GodFather, Brando)) = ?

n Abductive version: 

¨ What is the most likely table for InMovie?
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Probabilities

n In parallel to the progress on the logical representations, people argued that we need to deal with 
uncertainly, and need to move to probabilistic representations. 

n Progress here proceeded in two camps
¨ (Propositional) representation of distributions 

n Bayesian Networks (Pearl 1988)
¨ Probabilistic extensions of the FOL/Prolog representations. (Haddawy 1993)

n Problog
n Markov Logic Network

n Two important comments:
¨ The latter direction is presented today as fusing probabilities with declarative (logical) knowledge. This, in 

fact, was studies much earlier (in the 60—ies), but without practical implementations. 
¨ Fusing Probabilities with Declarative information is different from fusing Learning with Declarative 

Information. In fact, none of the bullets above came with a native approach for learning. 
¨ Fusing learning with declarative knowledge came later in the context of Structured Learning, e.g., ILP 

Formulations, Roth & Yih 2004, and following works. 
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Bayes Nets

n Nodes are random variables
n Edges represent causal influences
n Each node is associated with a conditional Probability distribution
n Computational Problems (Inference): 

¨ Computing the probability of an event: 
¨ Given structure and parameters
¨ Given an observation E, what is the probability of assignment Y? 
¨ P(R=off, A=off | E=e) =? (E, Y are sets of instantiated variables) 

n Most likely explanation (Maximum A Posteriori assignment, MAP, MPE)
¨ Given structure and parameters
¨ Given an observation E, what is the most likely assignment to Y?
¨ Argmaxy P(Y=y | E=e)  (Say, Y = (R, A))
¨ (E, Y are sets of instantiated variables) 
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Probabilistic Relational Representations

n Representation of distributions over relations, 
as opposed to propositional variables. 

n Ability to build programs that do not only 
encode complex interactions between variables 
but also express inherent uncertainty. 

n Inference: Becoming much harder. For the 
most part, done by propositionalizing relational 
representations (that is, substitution of all 
domain variables, and blowing up the 
representations to get a propositional BN). 

n But, there are other ways, e.g., lifted inference.
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