
Bloom Filters

CIT 5940 Spring 2025 @ University of Pennsylvania 1



Material adapted from Data

Structures the Fun Way, freely

available to you as a Penn Student

through Penn Libraries.

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 2



bit.ly

bit.ly  is a service that shortens URLs to make them easier to

share:

Turn https://www.cis.upenn.edu/~cit5940/current/

into bit.ly/cit5940 .

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 3



Problem: Malicious Links

If you get a link from someone called bit.ly/win_money , you don't know where

you're headed!

bit.ly  has a vested interest in making sure that people aren't afraid to click their

links

Need some system of refusing to create links for malicious websites.

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 4



Problem: Malicious Links

Idea: check if each link belongs to a set of known malicious sites.

Problems:

1. There are lots of malicious links. More than we could possibly store in fast memory.

2. Our malicious link lookup needs to be fast.

3. Our malicious link lookup can't let anything slip through the cracks.

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 5



Interacting with bit.ly

A naive solution to the problem would be to maintain some hash-indexed database (or

just a hash set) containing all of the banned links. So:

1. User submits a link, making a request to bit.ly 's servers

2. bit.ly  has to search its databases of malicious links for this one

3. If the link is known to be evil, reject; otherwise, produce a shortened link

Problem: to even decide whether a link is acceptable, the user has to (1) make a web

request and (2) wait for a database lookup. 

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 6



Pre-Filtering

Web requests and database lookups are slow and expensive. What if we had an efficient

way of deciding whether or not we even need to check the bad URL?

If we could know with absolute certainty whether or not we had to look up a URL,

that would be the same as just accepting or rejecting it...

Maybe we could accept some uncertainty to make the pre-lookup step faster!

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 7



Refined: Interacting with bit.ly

1. User submits a link, making a request to an oracle about whether or not we need to

check bit.ly 's servers

i. If the oracle says "this is a malicious URL," double-check the database

ii. If the oracle says "this URL is not part of our banned set," make no request

2. If the link is known to be evil, reject; otherwise, produce a shortened link

Observations:

This only makes sense to do if the query to the oracle is somehow cheaper than the

database lookup

We can only trust this process if we have some guarantees about the

oracle's correctness

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 8



Trusting the Oracle?

Not Known to Be

Malicious

Known to Be

Malicious

Oracle Says "This Might Be Malicious"
 + a wasted

database lookup

 + a

database lookup

Oracle Says "This Is Definitely Not Known to

Be Malicious"

As long as our oracle never says "it's fine!" when it's not to not be fine, we'll always

be correct.

As long as our oracle rarely says "please check" when we didn't need to check, we

won't waste much time.

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 9



Building an Oracle

Need to build something that:

1. fits in program memory/page downloads

2. can be queried quickly

3. never gives a false negative

4. rarely gives a false positive

 the Bloom Filter!

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 10



Structure of a Bloom Filter

A Bloom Filter is an array of binary values.

If position i  stores a 1 , we have seen some item k  such that h(k) = i  before.

If position i  stores a 0 , we have not seen some item k  such that h(k) = i .

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 11



Using a Filter

Analogy: searching for a friend at a restaurant.

On our own, best we can do is just look at every person one by one.

If there is a host with a great memory, we can ask them, e.g. "Have you seen

someone tall, with glasses, wearing a suit?"

If they have seen such a person, then we go looking—might be someone else

with same description

If they have not seen such a person, no need to bother looking!

Here, the hashing is our way of describing our friend and the host is the Filter.

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 12



Simple Bloom Filter

A binary indicator array mapped to by a single hash function.

When looking up a key, hash it and check the bit in the slot.

1   "I've seen that (or something like that) before."

0   "I have never seen that before."

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 13



Book's Example: Sampling Coffees

As a coffee lover, I want to try every blend listed in an alphabetized, 1000-page

catalogue. Imagine we implement this simple single-hash-function filter for our

thousand-page coffee log. Whenever we want to look up a type of coffee in our log,

we first ask the filter the simple question, “Have I tried this type of coffee before?”

This filter often allows us to avoid binary searching through a thousand pages if we

know that we have never tried the coffee before.

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 14



At the Start, All Good

Try the new coffee called "HOUSE 

BLEND"  and note it down in the

table, flipping f("HOUSE 

BLEND") = 6  from 0  to 1 .

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 15



Drink a Few More...

I drink three more blends with three

different hashes, and here we are.

Can answer questions:

Have you tried VELVET BLEND

where f("VELVET BLEND") 

= 4? Definitely not.

Have you tried SUMMER SIN

where f("SUMMER SIN") = 

7? Maybe...

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 16



No Collision Resolution

This is a table using hashing, but we

don't have any probing or other

collision resolution policies

As the table fills up, we end up with

more coffees that hash to filled

positions. This leads to a higher

number of Maybe... answers that take

more time to look up!

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 17



Collisions

We know from hashing that collisions become more likely when the load factor is higher.

 Could lower the false positive rate by increasing the size of the table.

 But we need to make sure that we're still keeping this small enough for

working memory!

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 18



Simple Bloom Filters and Restaurant Guests

For this simplest Bloom Filter, it's analogous to asking our restaurant hosts some very

foolish questions.

Making a decision based on a single hash value is like making a decision based on

a single property.

Having more 1s in the Bloom Filter is like dealing with a more crowded restaurant.

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 19



Multiple Properties & Bloom Filters

If you're looking for me in a Philadelphia restaurant, the following questions are all

basically useless on their own:

"Have you seen my friend? He's a man."

"Have you seen my friend? They're white."

"Have you seen my friend? They're tall."

"Have you seen my friend? They have a beard."

"Have you seen my friend? They have grey hair."

But what about asking them altogether?

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 20



Bloom Filters with

Multiple Hashes

A binary indicator array mapped to

by  hash functions.

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 21



Formally:

public void insert(Coffee c) {
  this.indicatorArray[h1(c)] = 1;
  this.indicatorArray[h2(c)] = 1;
  this.indicatorArray[h3(c)] = 1;
}

public void lookup(Coffee c) {
  return this.indicatorArray[h1(c)] == 1 &&
          this.indicatorArray[h2(c)] == 1 &&
          this.indicatorArray[h3(c)] == 1;
}

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 22



Why Fill Up the Filter Faster?

Now, to insert a new value, we're

filling up to three slots per

coffee inserted...

...but we still need all three slots to

"hit" to be a confirmed match!

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 23



Positive Lookups

We've tried a coffee with the

same properties (hashes) as

"PURE CAFFEINE".

Maybe it's PURE CAFFEINE, or maybe

it's a false positive.

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 24



Negative Lookups

We've never tried a coffee with the

same properties (hashes) as

"CAFFEINE + 10".

We have definitely never tried this

coffee before.

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 25



False Positives

Back to the restaurant example. More likely to have a false match for your friend if:

you ask about just one or two properties

restaurant has a ton of people in it

Better luck in a smaller restaurant if you ask: "I'm looking for my friend. He's a white

guy, tall, has a beard, and grey hair."

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 26



False Positives

Happen when all of a key's hash values collide with previous entries.

More likely to happen with a higher load factor

More likely to happen with fewer hash functions

We can decrease the likelihood of a false positive by adding more space and using

more hash functions.

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 27



How Common Are False Positives?

A simple approximation is the following:

where  is the table size,  is the number of items inserted, and  is the number of

hash functions used.

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 28



How Common Are False Positives?

where  is the table size,  is the number of items inserted, and  is the number of

hash functions used.

What happens as we increase the size of the array?

What happens as we increase the number of items inserted?

What happens as we increase the number of hash functions used?

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 29



How Common Are False Positives?

where  is the table size,  is the number of items inserted, and  is the number of

hash functions used.

What happens as we increase the size of the array? False positives decrease.

What happens as we increase the number of items inserted? False

positives increase.

What happens as we increase the number of hash functions used? False positives

decrease or increase.

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 30



Empirical Results for 

200 0.3942 0.4704 0.6535

400 0.2214 0.1473 0.1855

600 0.1536 0.0610 0.0579

800 0.1176 0.0306 0.0217

1000 0.0952 0.0174 0.0094

 tune the filter to your own setting!

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 31



Other Desirable Properties

Recall the bit.ly  setting:

Want to avoid as many web requests & database lookups as possible

Would be nice to avoid publishing the list of known malicious sites for

security concerns

How does a Bloom Filter help?

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 32



Compactness

A Bloom Filter is a binary/boolean array. This is much smaller than the

underlying database.

If , the size of the Bloom Filter is almost exactly 1MB.

bit.ly  can actually just send the Bloom Filter over the web at sizes like these so

that you can check on your machine whether or not the input URL is pre-cleared.

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 33



Secrecy

bit.ly  might not want to reveal all of the URLs that are known to be malicious

makes it too easy for attackers to realize they're "beat" and come up with a

new URL.

the Bloom Filter makes decisions based on the hashes of the URLs, and hashes are

non-reversable.

sharing the Bloom Filter with the user does not reveal the evil URLs!

BLOOM FILTERS

CIT 5940 Spring 2025 @ University of Pennsylvania 34


	Bloom Filters
	bit.ly
	Problem: Malicious Links
	Problem: Malicious Links
	Interacting with bit.ly
	Pre-Filtering
	Refined: Interacting with bit.ly
	Trusting the Oracle?
	Building an Oracle
	Structure of a Bloom Filter
	Using a Filter
	Simple Bloom Filter
	Book's Example: Sampling Coffees
	At the Start, All Good
	Drink a Few More...
	No Collision Resolution
	Collisions
	Simple Bloom Filters and Restaurant Guests
	Multiple Properties & Bloom Filters
	Bloom Filters with Multiple Hashes
	Formally:
	Why Fill Up the Filter Faster?
	Positive Lookups
	Negative Lookups
	False Positives
	False Positives
	How Common Are False Positives?
	How Common Are False Positives?
	How Common Are False Positives?
	Empirical Results for
	Other Desirable Properties
	Compactness
	Secrecy


