
SOFTWARE DESIGN

Software Design

An iterative process

Provides details about components necessary to implement software

Classes

Data Structures

Software architecture, etc.

SOFTWARE DESIGN

1

Class Design:

Abstraction

An Abstraction of a Pipe.

(from Torczyner, Harry. Magritte:

Ideas and Images. p. 71)

SOFTWARE DESIGN

2

Class Design: Abstraction

Abstraction: set of information properties relevant to a stakeholder about an entity

Information Property: a named, objective and quantifiable aspect of an entity

Stakeholder: a real or imagined person (or a class of people) who is seen as the

audience for, or user of the abstraction being defined

SOFTWARE DESIGN

3

When you drive a car, you're shown

information on speed, fuel, and

RPMs. You have the choice of actions

like drive, park, reverse, etc.

As the driver of a car, you are not

concerned with the crankshaft &

spark plugs & cylinders & valves & ...

(For self-driving cars, Drive.java

might have a similar degree of

abstraction.)

SOFTWARE DESIGN

4

Class Design

Information Hiding: prevents client(s) from accessing some aspect of the class (or

software system) implementation

Information hiding can be achieved through:

Interfaces

Encapsulation

SOFTWARE DESIGN

5

Using an Interface to Hide Information

From a user's point of view, they do not need to care about how Car and Motorcycle
are implemented.

SOFTWARE DESIGN

public interface Driveable {
 void drive();
 void park();
 void reverse();
}
public class Car implements Driveable {
 // ...
}
public class Motorcycle implements Driveable {
 // ...
}

6

Using an Interface to Hide Information

From a user's point of view, they do not need to care about how Car and Motorcycle

are implemented. Just use them both as Driveable objects.

SOFTWARE DESIGN

public class DriveableClient {
 public static void main() {
 Driveable car = new Car();
 Driveable motorcycle = new Motorcycle();
 car.drive();
 motorcycle.drive();
 }
}

7

Using Encapsulation to Hide

Information

Do you see any issues with the way this class is designed?

SOFTWARE DESIGN

public class BankAccount {
 public double balance;
 public BankAccount(double startingAmount, String owner) {...}
 public double checkBalance() {...}
 public void deposit(double amount) {...}
 public void withdraw(double amount) {...}
}

8

Using Encapsulation to Hide

Information

Public methods can be freely accessed and modified by other classes. This is not good!

SOFTWARE DESIGN

public class BankAccountDemo {
 public static void main(String[] args) {
 BankAccount myAccount = new BankAccount(100.0, "Harry Smith");
 myAccount.balance = 1000000.0;
 myAccount.withdraw(1000000.0);
 }
}

9

Using Encapsulation

public class BankAccount {
 private double balance;
 public BankAccount(double startingAmount, String owner) {...}
 public void deposit(double amount) {
 if (verifyDepositAmount(amount)) {
 balance += amount;
 }
 }
 public void withdraw(double amount) {
 if (balance >= amount) {
 balance -= amount;
 offerCash(amount);
 }
 }
}

Class Design

Characteristics of a well-formed design class:

Complete and sufficient:

design should encapsulate all attributes and methods that are expected

Primitiveness:

methods in a class should accomplish one service for the class.

A class should not have more than one method to accomplish the

same function

Can you make an argument about why primitiveness is important for testing? For

making modifications in future iterations?

SOFTWARE DESIGN

11

Class Design

Characteristics of a well-formed design class:

High cohesion:

A cohesive design class has a small, focused set of responsibilities

A cohesive design class single-mindedly applies attributes and methods to

implement those responsibilities

SOFTWARE DESIGN

12

Class Design

Characteristics of a well-formed design class:

Low coupling:

Classes collaborate with each other

Collaboration should be kept to a minimum and mediated through interfaces

wherever possible

High coupling leads to software that is difficult to implement, to test, and to

maintain over time

SOFTWARE DESIGN

13

Unified Modeling Language (UML)

UML:

Modeling language intended to provide a standard way to visualize the design of a

software system.

Class diagram:

Static diagram

Describes the structure of a system by showing the system's classes, their

attributes, operations (or methods), and the relationships among objects

SOFTWARE DESIGN

14

Class Diagram

Upper section: Contains the name of

the class

Middle section: Contains the

attributes of the class

Bottom section: Includes class

operations (methods header).

Displayed in list format, each

operation takes up its own line

SOFTWARE DESIGN

15

Domain Model

Diagram

Emphasizes classes, interfaces,

associations, usage, realization,

& multiplicity

Used to show how all the

entities relate

Implementation details

totally abstracted

This example doesn’t show a

single method!

SOFTWARE DESIGN

16

Diagram of

Implementation

Classes

Emphasizes classes, interfaces,

associations, usage, realization

Gives a clear picture of how the

classes will be written

Will include fields & methods

Very dense!

SOFTWARE DESIGN

17

What to use?

Companies have different standards

Important to know the ideas of UML but frequency of use may be low

So:

For this course, use the domain model diagram since I know what methods

you’re using!

If you want to do the diagram of implementation classes, that is good practice

for the future!

SOFTWARE DESIGN

18

Class Diagram

Data fields visibility:

+ Public

- Private

Protected

/ Derived

~ Package (default)

SOFTWARE DESIGN

19

Class Diagram

Methods:

Underline static methods

Parameter types listed as (name: type)

Do not include “return type” when it is void

SOFTWARE DESIGN

20

Class

Relationships

All relationships in UML are

considered associations

Specific kinds of relationships

are subtypes of associations and

have specific ways they should

be drawn on the page.

SOFTWARE DESIGN

21

Writing a

General

Association

SOFTWARE DESIGN

22

Class Relationships

Composition relationship (filled/black diamond):

When attempting to represent real-world whole-part relationships.

When the container is destroyed, the contents are also destroyed.

Usually refers to a collection (or data structure!) of some kind

SOFTWARE DESIGN

23

Class Relationships

Aggregation relationship (white diamond):

Weak form of aggregation.

When the container is destroyed, the contents are usually not destroyed.

Usually refers to a collection (or data structure!) of some kind

SOFTWARE DESIGN

24

Class

Relationships

Inheritance (hollow triangle,

solid line):

(sometimes called

generalization)

Omit trivial (get/set) methods

Do not include

inherited methods

SOFTWARE DESIGN

25

Class Relationships

Implementation (hollow triangle, dotted line):

(sometimes called realization)

Write <interface> on top of the interfaces' name

SOFTWARE DESIGN

26

Questions

SOFTWARE DESIGN

27

DESIGN PATTERNS:

FLYWEIGHT

28

Design patterns

Embody and generalize important design concepts for a recurring problem

Reusable solution to a commonly occurring problem in software design

SOFTWARE DESIGN

29

Design patterns

23 patterns grouped in 3 categories:

Creational patterns: object creation patterns

Structural patterns: classes and objects organization patterns

Behavioral patterns: communication between objects patterns

SOFTWARE DESIGN

30

Flyweight Pattern

Structural pattern

Problem: We are building an application with many similar objects. Objects store

identical information and play the same role.

Goal: Minimize memory cost

SOFTWARE DESIGN

31

Example: Memory &

Block Games

Each Block stores references to:

two Point objects: topLeft and

bottomRight (64 bits each)

a Color (32 bits)

a description String (unbounded size!)

four children IBlock objects (64 bits each)

Which of these values are wasteful to duplicate?

Example: Memory &

Block Games

Each Block stores references to:

two Point objects: topLeft and

bottomRight (64 bits each)

a Color (32 bits)

a description String (unbounded size!)

four children IBlock objects (64 bits each)

Each of the blocks comes from a standard set

of colors.

Example: Memory &

Block Games

Each of the colors comes from a standard set

of colors.

Keeping a single reference to each color and sharing

those references among all the Block objects would

save a lot of memory!

10 different blocks with 10 different colors 10

different blocks with 8 different colors

A Better Example

Here's an example with much better savings:

many many references to just four different

color objects.

SOFTWARE DESIGN

35

Flyweight Pattern

Solution:

Shared memory space

A flyweight factory object is used to create and provide shared references

as needed

It is recommended to make shared references immutable

SOFTWARE DESIGN

36

Example

Flyweight:

Leaf nodes can be implemented using a reference to

a single instance of the flyweight (one per category)

to reduce memory costs.

Nodes in the same category share state: Color,

description, etc.

SOFTWARE DESIGN

37

Example: Class Design

Class Purpose

BlockCategory Enum type. Lists all the categories of Blocks

BlockType
The Flyweight data type. Maintains a reference to the Block category, color, and

description. Shared reference

BlockFactory
Factory class. Creates new Flyweight objects or return existing ones. Flyweight objects

are stored in a collection (Map) and are retrieved based on their category

SOFTWARE DESIGN

38

SOFTWARE DESIGN

39

DESIGN PATTERNS:

VISITOR

40

Visitor Pattern

Behavioral pattern

Problem: We want to perform an activity/operation on all objects in a collection

Goal: Separate the activity from the object’s specification

SOFTWARE DESIGN

41

Visitor Pattern

Solution:

Create a separate object called "visitor" that will implement the activity

operation to be performed on the objects

The objects in the collection "accept" the visitor and the visitor objects perform

the activity

SOFTWARE DESIGN

42

Example

We have 2 types of students (undergraduate and graduates) stored in a BST database

for a class' gradebook

We want to update the grade of all students in the class to "curve" it using the

following formula:

Add 1 point to all undergraduate student GPAs

Add 0.5 point to all graduate student GPAs

SOFTWARE DESIGN

43

Example

We don’t want to include the “update” operation in the Student class definition.

Why?

SOFTWARE DESIGN

44

Example

We don’t want to include the “update” operation in the Student class definition.

There are multiple ways that we might want to visit students in the future!

print out all the grades? drop certain assignments?

Poor cohesion if a student is resposible for storing its own information and

updating itself subject to external criteria

SOFTWARE DESIGN

45

Class Design

Name Type Purpose

VisitorStudent Interface Defines the activity to be performed (visit method)

Visitor Class Implements the VisitorStudent activity (visit method)

VisitableStudent Interface Defines the accept method to pass the visitor

Student Class implements VisitableStudent operation (accept)

SOFTWARE DESIGN

46

Extensibility & Anonymous Classes

The Visitor pattern means that we don't have to modify existing classes anytime we

want to define a new way of visiting

We can just implement VisitorStudent a new way

We don't even have to write a new class: we can use an anonymous class

SOFTWARE DESIGN

48

Grade Deflation!

Using an anonymous class, we can create a new instance of a VisitorStudent at

the same time that we use it.

SOFTWARE DESIGN

Database students = queryStudents();
students.visit(new VisitorStudent() {
 @Override
 public void visit(GradStudent student) {
 student.gpa -= 0.5;
 }

 @Override
 public void visit(UGStudent student) {
 student.gpa -= 1;
 }
});

49

Anonymous Classes

How to use:

Make sure you have some interface, e.g. MyInterface

Pass a reference to new MyInterface() {...} wherever an instance of

MyInterface is expected

Specify in the braces an implementation of each of the required methods

Avoid if:

The implementation is long

The implementation is used in multiple places

SOFTWARE DESIGN

50

	Software Design
	Software Design
	Class Design: Abstraction
	Class Design: Abstraction
	Class Design
	Using an Interface to Hide Information
	Using an Interface to Hide Information

	Using Encapsulation to Hide Information
	Using Encapsulation to Hide Information
	Using Encapsulation
	Class Design
	Class Design
	Class Design
	Unified Modeling Language (UML)
	Class Diagram
	Domain Model Diagram
	Diagram of Implementation Classes
	What to use?
	Class Diagram
	Class Diagram
	Class Relationships
	Writing a General Association
	Class Relationships
	Class Relationships
	Class Relationships
	Class Relationships
	Questions
	Design Patterns: Flyweight
	Design patterns
	Design patterns
	Flyweight Pattern
	Example: Memory & Block Games
	Example: Memory & Block Games
	Example: Memory & Block Games
	A Better Example
	Flyweight Pattern
	Example
	Example: Class Design
	Design Patterns: Visitor
	Visitor Pattern
	Visitor Pattern
	Example
	Example
	Example
	Class Design
	Extensibility & Anonymous Classes
	Grade Deflation!
	Anonymous Classes

