
LINKED LISTS &

TREES INTRO

1

Agenda

1. ArrayList Memory Usage

2. Introducing the Node

3. Implementing the List ADT with LinkedList

4. Comparing List Implementations

5. Introducing Trees

6. Traversing Trees & Expression Tree Demo

COLLECTIONS

2

ARRAYLIST

MEMORY USAGE

3

Motivation: Course Registration

Imagine tracking student enrollment in CIT 5940:

Initial capacity: 100 students

After add/drop: 65 students remain

What happens to the allocated array space?

COLLECTIONS

4

ArrayList Internal Storage

The array grows, but we haven't implemented a way of shrinking it.

@SuppressWarnings("unchecked")
private void grow() {
 E[] newElements = (E[]) new Object[elements.length * 2];
 for (int i = 0; i < size; i++) {
 newElements[i] = elements[i];
 }
 elements = newElements;
}

private void ensureCapacity() {
 if (size == elements.length) {
 grow();
 }
}

Memory Visualization

Before Drop/Add Period:

After Drop/Add Period:

Implementing shrink() doesn't save us—have to do so sparingly to avoid blowing up

runtime cost.

Capacity: 100
Size: 100
[S1][S2][S3][S4]...[S100]

Capacity: 100
Size: 65
[S1][S2][S3]...[S65][x][x]...[x]
 ^ 35 empty slots

The Space-Time Tradeoff

Benefits of extra capacity:

Fast append operations (usually)

Quick random access

Memory locality (cache hits!!! CIT 5950!!)

Drawbacks:

Wasted memory

Need to periodically resize

Cannot easily insert/remove from middle

COLLECTIONS

7

Time to Rethink...

Key questions:

Do we need contiguous memory?

Can we store elements anywhere in memory?

How would we keep track of element order?

COLLECTIONS

8

THE NODE CLASS

9

Non-Sequential Storage

Instead of storing records next to each other in memory:

Each record is represented by its own object instance

A record contains the data for one element

Records are linked together through references

COLLECTIONS

10

Node Structure

We'll use a Node to represent an individual record in this context. A Node contains:

1. The data element

2. A reference to the next Node

COLLECTIONS

public class Node<E> {
 E data;
 Node<E> next;
}

11

Memory Layout

For storing values C, D, E , an ArrayList uses this organization for a List stored

at address 2 :

For a List of Node objects starting at address 2 , we might have this shape:

Top row are values, bottom row are toy addresses.

COLLECTIONS

 A B[C D E]Q Z P O
 0 1 2 3 4 5 6 7 8

 A (D6) (C1)D Z Q (E/) P O
 0 1 2 3 4 5 6 7 8

12

Basic Node Implementation

Let's implement:

Constructor

(...and that's pretty much it!)

A Node doesn't really "do" anything other than represent an individual record!

COLLECTIONS

13

Node Usage Example

Creates an arrangement like so:

Null pointers (/ above) designate the end of a linked sequence of Nodes

COLLECTIONS

Node<String> first = new Node<>("A");
Node<String> second = new Node<>("B");
first.setNext(second);

[A|→]

 [B|/]

14

Node Usage Example

Given a Node to start at, how would we visit reach record accessible from that start?

COLLECTIONS

// Traverse
Node<String> current = first;
while (current != null) { // null reference indicates end of sequence
 System.out.println(current.getData());
 current = current.getNext();
}

15

Think-Pair-Share

Given a Node to start at, how would we visit reach record...

in reverse order, and

using only constant additional space

What's the runtime complexity of your solution?

COLLECTIONS

16

COLLECTIONS

Node<String> current = first;
int length = 0;
while (current != null) {
 length++;
 current = current.getNext();
}
for (int i = length - 1; i >= 0; i--) {
 current = first;
 for (int j = 0; j < i; j++) {
 current = current.getNext();
 }
 System.out.println(current.getData());
}

17

Why Nodes?

Benefits:

No wasted space

Easy insertion/deletion

Flexible growth

Drawbacks:

Extra memory per element (have to store the next pointer)

No random access

Non-contiguous memory (fewer cache hits)

COLLECTIONS

18

LINKED LISTS

19

Structure

Head points to first node or null if empty

COLLECTIONS

class LinkedList<E> {
 Node<E> head;
 int size;
}

20

Add at Index

Runtime: O(n) and due to navigation to addition spot.

COLLECTIONS

void add(int index, E element) {
 if (index == 0) {
 head = new Node<>(element, head);
 } else {
 Node<E> current = head;
 for (int i = 0; i < index - 1; i++) {
 current = current.next;
 }
 current.next = new Node<>(element, current.next);
 }
 size++;
}

21

Remove at Index

COLLECTIONS

E remove(int index) {
 E data;
 if (index == 0) {
 data = head.data;
 head = head.next;
 } else {
 Node<E> current = head;
 for (int i = 0; i < index - 1; i++) {
 current = current.next;
 }
 data = current.next.data;
 current.next = current.next.next;
 }
 size--;
 return data;
} 22

Get Element

Runtime: O(n) and due to navigation to query spot.

COLLECTIONS

E get(int index) {
 Node<E> current = head;
 for (int i = 0; i < index; i++) {
 current = current.next;
 }
 return current.data;
}

23

Runtime Analysis Summary

Operation ArrayList LinkedList

add(i, e) O(n) O(n) and

get(i) O(1) O(n) and

remove(i) O(n) O(n) and

Special cases for i=0

COLLECTIONS

24

Doubly Linked Lists

1. Change Node to contain both a next and a previous pointer

2. Maintain a reference to the head AND the tail nodes

3. When performing an operation based on indices, start from the front or back based

on whichever is closer to the target destination.

COLLECTIONS

25

Runtime Analysis Summary

Operation ArrayList LinkedList Doubly Linked List

add(i, e) O(n) O(n) and O(n) and

get(i) O(1) O(n) and O(n) and

remove(i) O(n) O(n) and O(n) and

COLLECTIONS

26

SPACE ANALYSIS

27

Space Complexity

Overhead refers to all information stored by a data structure aside from the actual

data (bad)

Array Lists

Size must be predetermined before the array can be allocated

Unused space (overhead) if the array contains few elements

No overhead when array is full

Linked Lists

Only need space for the elements in the list

Needs space for next and/or prev pointers (overhead)

Which to choose?

Given :

 the number of elements in the list

 the size of a pointer

 the size of a data element

 the maximum number elements that can be stored in the array

Space complexity

Array List:

Linked Lists:

COLLECTIONS

29

Break-Even

Solving this for n gives us the break-even point beyond which the array-based

implementation is more space efficient

If we assume then break-even point is (array half full)

Linked Lists take more space when but Array Lists win out otherwise.

COLLECTIONS

30

Rule of Thumb

Linked Lists are more space efficient when the number of elements varies widely or

is unknown

Array Lists are more space efficient when you know the eventual size of the list

in advance.

But also: you probably just want to use an Array List.

COLLECTIONS

31

FROM LISTS TO

TREES

32

Beyond Linear Structures

Lists: One Next Node

(Binary) Trees: Multiple (up to two) Children

COLLECTIONS

[A] → [B] → [C] → [D]

 [A]
 / \
 [B] [C]
 / \ \
[D] [E] [F]

33

BinaryTreeNode Structure

(normally we'll just call it Node , but we want some contrast here...)

If a BinaryTreeNode has no children, we call it a leaf; otherwise it's an internal

node.

COLLECTIONS

class BinaryTreeNode<E> {
 E data;
 BinaryTreeNode<E> left;
 BinaryTreeNode<E> right;
}

34

Example: Building a Tree

Creates:

COLLECTIONS

BinaryTreeNode<String> root = new BinaryTreeNode<>("A");
root.left = new BinaryTreeNode<>("B");
root.right = new BinaryTreeNode<>("C");
root.left.left = new BinaryTreeNode<>("D");

 root node ---> [A]
 / \
internal node -----> [B] [C] <---- this is a leaf
 /
 [D] <----- this is a leaf

35

Relationships Among Nodes

If a Node c is the left or right child of a Node p , then we say that p is a parent

of c .

A is a parent of B and C .

COLLECTIONS

 [A]
 / \
 [B] [C]
 / \ \
[D] [E] [F]

36

Paths

A sequence of nodes forms a path of length if there exist edges

from to for .

 is an ancestor of if for some path

Two nodes are siblings if they have the same parent & cousins if they share

an ancestor.

 forms a path of length . and are both ancestors of . and are

siblings, while and are cousins.

 [A]
 / \
 [B] [C]
 / \ \
[D] [E] [F]

Probing the Depths

The depth of a Node m in a tree is the length of the path from the root of the tree

to m .

The height of a Tree is the depth of its deepest Node.

All Nodes at depth are at level in the Tree. (The root is at level and its

children are at level)

COLLECTIONS

38

Binary Tree Rules

Mandatory:

Each node has at most two children for a generalized binary tree.

Optional Variants:

Left child < Parent < Right child for a binary search tree (used for

TreeSet/TreeMap)

All internal nodes have two children in a full binary tree

Neat property: # leaves = # internals + 1

All levels filled except last for a complete binary tree (used for heaps)

All levels filled for a perfect binary tree (not that important)

Applications

Expression Trees (today!)

Huffman Coding (Wednesday!)

Heaps & Priority Queues (Wednesday and beyond!)

Binary Search Trees (in a couple weeks)

COLLECTIONS

40

TREE TRAVERSALS

41

Expression Trees

Trees that represent arithmetic expressions ordered semantically.

Leaf Nodes are always numeric values, e.g. 2 , 3 , 4

Internal Nodes are always operators, e.g. + , *

Expression Trees are not "testable material" (won't need to remember these rules for

recitation quizzes) but they are useful for thinking about traversals, which are "testable".

COLLECTIONS

42

Three Ways to Visit

Pre-order: Node, Left, Right

*, +, 2, 3, 4

In-order: Left, Node, Right

2, +, 3, *, 4

Post-order: Left, Right, Node

2, 3, +, 4, *

COLLECTIONS

 [*]
 / \
 [+] [4]
 / \
 [2] [3]

43

Implementation

Other orders: just rearrange the three lines!

COLLECTIONS

void preorder(TreeNode<E> root) {
 if (root != null) {
 process(root); // Visit node
 preorder(root.left); // Traverse left
 preorder(root.right); // Traverse right
 }
}

44

Expression Trees

To get the human-readable expression, you'll use an in-order traversal.

To process the arithmetic result, you'll use post-order.

Example: 2 + 3 * 4

COLLECTIONS

 [*]
 / \
 [+] [4]
 / \
[2] [3]

45

Creating Expression Trees From

Postfix Expressions

For each token:

If operand: Create leaf node, push onto a stack

If operator:

i. Create operator node

ii. Pop two operands

iii. Make them children

iv. Push result

Demo on 3 7 + 1 8 7 + * *

COLLECTIONS

46

Expression Evaluation

int evaluate(TreeNode<String> root) {
 // Empty or Leaf is a base case
 if (root == null) return 0;
 if (root.left == null && root.right == null) {
 return Integer.parseInt(root.data);
 }
 // Post-order: process children first
 int left = evaluate(root.left);
 int right = evaluate(root.right);
 // Recursive case: internal nodes are operators
 switch(root.data) {
 case "+": return left + right;
 case "*": return left * right;
 default: throw new IllegalArgumentException();
 }
}

Example Evaluation

1. evaluate(2) =

2. evaluate(3) =

3. evaluate(+) =

4. evaluate(4) =

5. evaluate(*) =

COLLECTIONS

 [*]
 / \
 [+] [4]
 / \
[2] [3]

48

	Linked Lists & Trees Intro
	Agenda
	ArrayList Memory Usage
	Motivation: Course Registration
	ArrayList Internal Storage
	Memory Visualization
	The Space-Time Tradeoff
	Time to Rethink...
	The Node Class
	Non-Sequential Storage
	Node Structure
	Memory Layout
	Basic Node Implementation
	Node Usage Example
	Node Usage Example
	Think-Pair-Share
	Why Nodes?
	Linked Lists
	Structure
	Add at Index
	Remove at Index
	Get Element
	Runtime Analysis Summary
	Doubly Linked Lists
	Runtime Analysis Summary
	Space Analysis
	Space Complexity
	Which to choose?
	Break-Even
	Rule of Thumb
	From Lists to Trees
	Beyond Linear Structures
	BinaryTreeNode Structure
	Example: Building a Tree
	Relationships Among Nodes
	Paths
	Probing the Depths
	Binary Tree Rules
	Applications
	Tree Traversals
	Expression Trees
	Three Ways to Visit
	Implementation
	Expression Trees
	Creating Expression Trees From Postfix Expressions
	Expression Evaluation
	Example Evaluation

