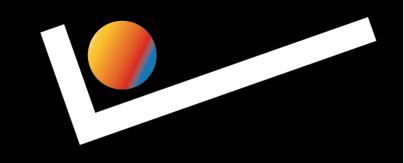
C I T 5940

LINKED LISTS & TREES INTRO



Agenda

- 1. ArrayList Memory Usage
- 2. Introducing the Node
- 3. Implementing the List ADT with LinkedList
- 4. Comparing List Implementations
- 5. Introducing Trees
- 6. Traversing Trees & Expression Tree Demo

C I T 5940

ARRAYLIST MEMORY USAGE

Motivation: Course Registration

Imagine tracking student enrollment in CIT 5940:

- Initial capacity: 100 students
- After add/drop: 65 students remain

What happens to the allocated array space?

ArrayList Internal Storage

```
@SuppressWarnings("unchecked")
private void grow() {
    E[] newElements = (E[]) new Object[elements.length * 2];
    for (int i = 0; i < size; i++) {</pre>
        newElements[i] = elements[i];
    3
    elements = newElements;
3
private void ensureCapacity() {
    if (size == elements.length) {
        grow();
    3
3
```

The array grows, but we haven't implemented a way of shrinking it.

Memory Visualization

Before Drop/Add Period:

Capacity: 100 Size: 100 [S1][S2][S3][S4]...[S100]

After Drop/Add Period:

```
Capacity: 100
Size: 65
[S1][S2][S3]...[S65][x][x]...[x]
^ 35 empty slots
```

Implementing shrink() doesn't save us—have to do so sparingly to avoid blowing up runtime cost.

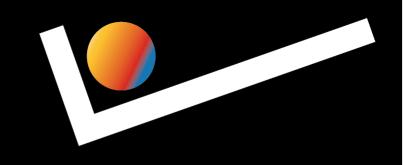
The Space-Time Tradeoff

Benefits of extra capacity:

- Fast append operations (usually O(1))
- Quick random access
- Memory locality (cache hits!!! CIT 5950!!)

Drawbacks:

- Wasted memory
- Need to periodically resize
- Cannot easily insert/remove from middle



Time to Rethink...

Key questions:

- Do we need contiguous memory?
- Can we store elements anywhere in memory?
- How would we keep track of element order?

C I T 5940

THE NODE CLASS

Non-Sequential Storage

Instead of storing records next to each other in memory:

- Each record is represented by its own object instance
- A record contains the data for one element
- Records are linked together through references

Node Structure

We'll use a Node to represent an individual record in this context. A Node contains:

1. The data element

2. A reference to the next Node

```
public class Node<E> {
    E data;
    Node<E> next;
```


Memory Layout

For storing values C, D, E, an ArrayList uses this organization for a List stored at address 2:

A B[C D E]Q Z P 0 0 1 2 3 4 5 6 7 8

For a List of Node objects starting at address 2, we might have this shape:

A (D6) (C1)D Z Q (E/) P 0 0 1 2 3 4 5 6 7 8

Top row are values, bottom row are toy addresses.

Basic Node Implementation

Let's implement:

• Constructor

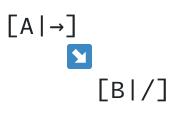
(...and that's pretty much it!)

A Node doesn't really "do" anything other than represent an individual record!

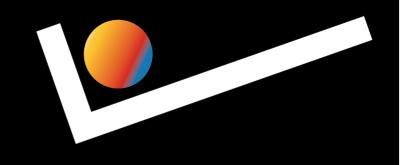
Node Usage Example

```
Node<String> first = new Node<>("A");
Node<String> second = new Node<>("B");
first.setNext(second);
```

Creates an arrangement like so:



Null pointers (/ above) designate the end of a linked sequence of Nodes



Node Usage Example

Given a Node to start at, how would we visit reach record accessible from that start?

```
// Traverse
Node<String> current = first;
while (current != null) { // null reference indicates end of sequence
    System.out.println(current.getData());
    current = current.getNext();
}
```



Think-Pair-Share

Given a Node to start at, how would we visit reach record...

- in reverse order, and
- using only constant additional space

What's the runtime complexity of your solution?

```
Node<String> current = first;
int length = 0;
while (current != null) {
    length++;
    current = current.getNext();
3
for (int i = length - 1; i >= 0; i--) {
    current = first;
    for (int j = 0; j < i; j++) {</pre>
        current = current.getNext();
    3
    System.out.println(current.getData());
```

3

Why Nodes?

Benefits:

- No wasted space
- Easy insertion/deletion
- Flexible growth

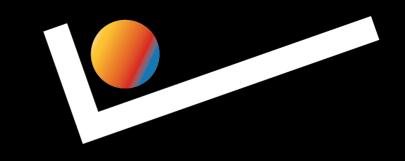
Drawbacks:

- Extra memory per element (have to store the next pointer)
- No random access
- Non-contiguous memory (fewer cache hits)



C I T 5940

LINKED LISTS



Structure

class LinkedList<E> { Node<E> head; int size; }

Head points to first node or null if empty

Add at Index


```
void add(int index, E element) {
    if (index == ∅) {
        head = new Node<>(element, head);
    } else {
        Node<E> current = head;
        for (int i = 0; i < index - 1; i++) {</pre>
            current = current.next;
        3
        current.next = new Node<>(element, current.next);
    3
    size++;
3
```

Runtime: O(n) and $\Theta(i)$ due to navigation to addition spot.

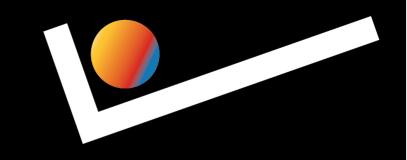
Remove at Index

```
E remove(int index) {
    E data;
    if (index == 0) {
        data = head.data;
        head = head.next;
    3 else {
        Node<E> current = head;
        for (int i = 0; i < index - 1; i++) {</pre>
            current = current.next;
        3
        data = current.next.data;
        current.next = current.next.next;
    3
    size--;
    return data;
```


Get Element

```
E get(int index) {
    Node<E> current = head;
    for (int i = 0; i < index; i++) {
        current = current.next;
    }
    return current.data;
}</pre>
```

Runtime: O(n) and $\Theta(i)$ due to navigation to query spot.



Runtime Analysis Summary

Operation	ArrayList	LinkedList
add(i, e)	O(n)	O(n) and $\Theta(i)$
get(i)	O(1)	O(n) and $\Theta(i)$
remove(i)	O(n)	O(n) and $\Theta(i)$

Special cases for i=0

Doubly Linked Lists

- 1. Change Node to contain both a next and a previous pointer
- 2. Maintain a reference to the head AND the tail nodes
- 3. When performing an operation based on indices, start from the front or back based on whichever is closer to the target destination.

Runtime Analysis Summary

Operation	ArrayList	LinkedList	Doubly Linked List
add(i, e)	O(n)	O(n) and $\Theta(i)$	O(n) and $\Theta(min(i,n-i))$
get(i)	O(1)	O(n) and $\Theta(i)$	O(n) and $\Theta(min(i,n-i))$
remove(i)	O(n)	O(n) and $\Theta(i)$	O(n) and $\Theta(min(i,n-i))$

C I T 5940

SPACE ANALYSIS

Space Complexity

Overhead refers to all information stored by a data structure aside from the actual data (bad)

- Array Lists
 - Size must be predetermined before the array can be allocated
 - Unused space (overhead) if the array contains few elements
 - $\circ~$ No overhead when array is full
- Linked Lists
 - Only need space for the elements in the list
 - Needs space for next and/or prev pointers (overhead)

Which to choose?

Given :

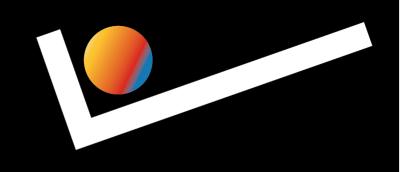
 \boldsymbol{n} the number of elements in the list

- P the size of a pointer
- ${\cal E}$ the size of a data element

D the maximum number elements that can be stored in the array

Space complexity

- Array List: *DE*
- Linked Lists: n(P+E)



Break-Even



$$n(P+E)=DE$$

Solving this for n gives us the break-even point beyond which the array-based implementation is more space efficient

$$n = \frac{DE}{P+E}$$

If we assume P=E then break-even point is $rac{D}{2}$ (array half full)

$$n = \frac{DE}{2E} = \frac{D}{2}$$

Linked Lists take more space when $n > \frac{D}{2}$ but Array Lists win out otherwise.

Rule of Thumb

- Linked Lists are more space efficient when the number of elements varies widely or is unknown
- Array Lists are more space efficient when you know the eventual size of the list in advance.

But also: you probably just want to use an Array List.

C I T 5940

FROM LISTS TO

REES

Beyond Linear Structures

Lists: One Next Node

 $[A] \rightarrow [B] \rightarrow [C] \rightarrow [D]$

(Binary) Trees: Multiple (up to two) Children

[A] / \ [B] [C] / \ \ [D] [E] [F]

BinaryTreeNode Structure

(normally we'll just call it Node, but we want some contrast here...)

```
class BinaryTreeNode<E> {
    E data;
    BinaryTreeNode<E> left;
    BinaryTreeNode<E> right;
}
```

If a BinaryTreeNode has no children, we call it a **leaf**; otherwise it's an **internal** node.

Example: Building a Tree

BinaryTreeNode<String> root = new BinaryTreeNode<>("A"); root.left = new BinaryTreeNode<>("B"); root.right = new BinaryTreeNode<>("C"); root.left.left = new BinaryTreeNode<>("D");

Creates:

Relationships Among Nodes

If a Node c is the left or right child of a Node p, then we say that p is a parent of c.

A is a parent of B and C.

Paths

- A sequence of nodes v_1, v_2, \ldots, v_n forms a path of length n-1 if there exist edges from v_i to v_{i+1} for $1 \le i \le n$.
- v_i is an **ancestor** of v_j if i < j for some path
- Two nodes are **siblings** if they have the same parent & **cousins** if they share an ancestor.

 $A \to B \to E$ forms a path of length 2. A and B are both ancestors of E. B and C are siblings, while B and F are cousins.



Probing the Depths

- The **depth** of a Node m in a tree is the length of the path from the root of the tree to m.
- The height of a Tree is the depth of its deepest Node.
- All Nodes at depth d are at level d in the Tree. (The root is at level 0 and its children are at level 1)

Binary Tree Rules

Mandatory:

• Each node has at most two children for a generalized binary tree.

Optional Variants:

- Left child < Parent < Right child for a binary search tree (used for TreeSet/TreeMap)
- All internal nodes have two children in a *full binary tree*

• Neat property: **#** leaves = **#** internals + 1

- All levels filled except last for a *complete binary tree* (used for *heaps*)
- All levels filled for a *perfect binary tree* (not that important)

Applications

- Expression Trees (today!)
- Huffman Coding (Wednesday!)
- Heaps & Priority Queues (Wednesday and beyond!)
- Binary Search Trees (in a couple weeks)

C I T 5940

REE RAVERSALS

Expression Trees

Trees that represent arithmetic expressions ordered **semantically**.

Leaf Nodes are always numeric values, e.g. 2, 3, 4 **Internal Nodes** are always operators, e.g. +, *

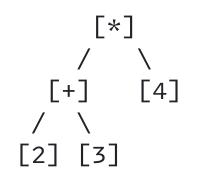
Expression Trees are not "testable material" (won't need to remember these rules for recitation quizzes) but they are useful for thinking about traversals, which are "testable".

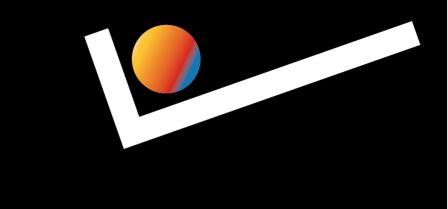
Three Ways to Visit

• Pre-order: Node, Left, Right

o ***, +, 2, 3, 4**

- In-order: Left, Node, Right
 - ° 2, +, 3, *, 4
- **Post-order**: Left, Right, Node





Implementation

```
void preorder(TreeNode<E> root) {
    if (root != null) {
        process(root); // Visit node
        preorder(root.left); // Traverse left
        preorder(root.right); // Traverse right
    }
}
```

Other orders: just rearrange the three lines!

Expression Trees

To get the human-readable expression, you'll use an **in-order** traversal. To process the arithmetic result, you'll use **post-order**.

Example: 2 + 3 * 4

Creating Expression Trees From Postfix Expressions

For each token:

- If operand: Create leaf node, push onto a stack
- If operator:
 - i. Create operator node
 - ii. Pop two operands
 - iii. Make them children

iv. Push result

Demo on 3 7 + 1 8 7 + * *

Expression Evaluation

```
int evaluate(TreeNode<String> root) {
   // Empty or Leaf is a base case
    if (root == null) return 0;
    if (root.left == null && root.right == null) {
        return Integer.parseInt(root.data);
   3
   // Post-order: process children first
    int left = evaluate(root.left);
    int right = evaluate(root.right);
   // Recursive case: internal nodes are operators
    switch(root.data) {
        case "+": return left + right;
        case "*": return left * right;
        default: throw new IllegalArgumentException();
    3
```

Example Evaluation

- 1. evaluate(2) = 2
- 2. evaluate(3) = 3
- 3. evaluate(+) = 2 + 3 = 5
- 4. evaluate(4) = 4
- 5. evaluate(*) = 5 * 4 = 20