
Skip Lists

CIT 5940 Spring 2025 @ University of Pennsylvania 1

Adversarial Behavior

Several data structures have potentially very bad runtime guarantees if the elements

they store are inserted in "adversarial order."

Given elements, how could you make the most unbalanced Binary Search Tree

out of those elements?

Given a Hash Table with a particular collision resolution policy, how could you

choose elements to insert to make the lookup as slow as possible?

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 2

Adversarial Behavior

Several data structures have potentially very bad runtime guarantees if the elements

they store are inserted in "adversarial order."

Given elements, how could you make the most unbalanced Binary Search Tree

out of those elements? Insert in sorted order to build a linked list.

Given a Hash Table with a particular collision resolution policy, how could you

choose elements to insert to make the lookup as slow as possible? Insert a bunch

of elements following the same probe sequence, maximizing expected

probe length.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 3

Adversarial Behavior: A Problem?

We have a few different "defenses" against this adversarial behavior.

Self-balancing BSTs keep tree height logarithmic with constant-time modifications.

Assumptions that elements are inserted into Hash Tables somewhat randomly

"smooths out" the probe sequences

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 4

Deterministic Data Structures

So far, all data structures are fully determined by the data that we insert and the order

in which we insert it.

Shape of a tree

Slots occupied in Hash Tables and Bloom Filters

Graphs/Lists/Arrays/Heaps

This can be perilous in the "worst case" cases

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 5

Randomized Data Structures

Data Structures where some element of the organization of the data is chosen

randomly so that the structure is not readily predictable from the elements it contains.

Sometimes we'll make bad random choises, yes, but this happens anyways with

badly ordered inputs

Sacrificing a guaranteed optimal solution for an expected reasonable one.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 6

Doing Better Than a Linked List

Linked Lists are interesting academically (and work well as Double-Ended Queues)

but have significant shortcomings.

Linear time random access

Binary search can't be performed in time because of the pointer traversal

Could we come up with an idea that uses less pointer overhead than a BST but still

allows for searching through sorted data?

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 7

Idea: Finding Your Spot in a Book

Your bookmark has fallen out of your book! How do you find where you were?

Binary Search? No! Too much possibility of spoiling something important.

Skip a bunch of pages?

At the start, skip forward a bunch

The closer you feel you are to the right spot, the narrower each "skip" gets

If you overshoot, you're not likely to overshoot by much.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 8

Skip Lists: Main Idea

Take a Linked List, but enable jumps of different sizes by creating nodes of

different heights.

Possible to jump from a node of height to any node of height or lower.

Make tall nodes rare and short nodes common

Going between tall nodes represent large "skips"; between short nodes are

short "skips."

This describes a Skip List.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 9

Sending Flashlight Signals

Between Tall Buildings

How far you can send a signal

depends on your current floor and the

heights of buildings in the path.

First floor only send to next-

door neighbor.

Fifth floor send a message

over top of smaller intermediate

neighbors or move down to talk

to smaller neighbors.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 10

Sending Flashlight Signals

Between Tall Buildings

Key ideas:

Taller buildings are more

"expensive" in terms of cost to

build and space taken, but they

are more powerful.

Taller buildings are only useful if

there are relatively large gaps

between them.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 11

Structure of a Skip List

public class SkipList {
 int topLevel;
 int maxLevel;
 SkipListNode front;
}

public class SkipListNode<T> {
 T element;
 int height;
 SkipListNode<T>[] next;
}

Nodes always store values in increasing sorted order.

Use a sentinel front node to point to the first node of each height

Each node stores an array of size height + 1 for all next nodes at heights

Crucially, the pointers in next will often point to different nodes!

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 12

Example Skip List

The full skip list contains six total

values. This is equivalent to the list

following all height 0 pointers.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 13

Example Skip List

The list of height 1 pointers reaches

nodes 0, 1, 12, and 17.

The list of height 2 pointers reaches

nodes 1 and 17.

The list of height 3 is empty in

this case.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 14

Example Skip List

What's the smallest number of

pointers we need to follow to reach

node 12?

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 15

Example Skip List

What's the smallest number of

pointers we need to follow to reach

node 12?

Front to 1 using level 2, then 1 to

12 using level 1 (although we would

need to observe that the next level 2

pointer would have taken us a step

too far.)

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 16

Vital Ideas

Skip lists should have:

Nodes of many different heights

Decreasing frequency for increasing heights

Maximal spacing between nodes of the same height

These guarantees can be obtained (in expectation) by choosing the heights of nodes

randomly. More on this later.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 17

Searching a Skip List

public SkipListNode search(T target) {
 int level = topLevel;
 SkipListNode current = front;

 while (level >= 0) {
 while (current.next[level] != null && current.next[level].key < target) {
 current = current.next[level];
 }
 level--;
 }

 SkipListNode result = current.next[0];
 if (result != null && result.element == target) {
 return result;
 }
 return null;
}

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 18

Searching a Skip List

int level = topLevel;
SkipListNode current = front;
...

Start at the front of the list with a maximum height for the longest jumps possible...

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 19

Searching a Skip List

...
while (level >= 0) {
 while (current.next[level] != null && current.next[level].key < target) {
 current = current.next[level];
 }
 level--;
}
...

Inner Loop: proceed along current level as long as the next "skip" doesn't take you

past the desired element.

Outer Loop: repeat the inner loop at descending levels, taking shorter and shorter

steps until we find what we're looking for.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 20

Searching a Skip List

...
SkipListNode result = current.next[0];
if (result != null && result.element == target) {
 return result;
}
return null;

If the target element is there, it's in the node after the current node where we

stopped.

If that next node has it, return that next node.

Otherwise, report null to indicate absence.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 21

Example:

Searching

Searching for the

value 13 in our

list.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 22

Example:

Searching

Searching for the

value 12 (or 11)

in our list.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 23

Search always starts from the top-left. It

proceeds to the right and down.

CIT 5940 Spring 2025 @ University of Pennsylvania 24

Inserting a Node in a Linked List

This is for a regular linked list:

public void insertBefore(Node n, T element) {
 Node current = head;
 while (current != null && current.next != n) {
 current = current.next;
 }
 Node newNode = new Node(element);
 newNode.next = current.next;
 current.next = newNode;
}

"Get up to right before where you need to insert, then create a new node and stitch the

pointers together."

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 25

Inserting a Node: Helper

Find the node AT EACH HEIGHT! that would be an immediate predecessor of the new

element to insert.

private SkipListNode[] predecessors(T target) {
 int level = topLevel;
 SkipListNode current = front;
 SkipListNode[] predecessors = front.copy();

 while (level >= 0) {
 while (current.next[level] != null && current.next[level].key < target) {
 current = current.next[level];
 }
 predecessors[level] = current
 level--;
 }
 return predecessors;
}

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 26

Inserting a Node: The Meat

public void insert(T element) {
 SkipListNode<T>[] predecessors = predecessors(element);
 int newLevel = randomLevel(); // pick a random level
 if (newLevel > list.topLevel) {
 list.topLevel = newLevel;
 }
 SkipListNode<T> newNode = SkipListNode<>(key, value, newLevel);
 int j = 0;
 while (j <= newLevel) {
 newNode.next[j] = predecessors[j].next[j];
 predecessors[j].next[j] = newNode;
 j = j + 1;
 }
}

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 27

Inserting a Node: The Meat

public void insert(T element) {
 ...
 int newLevel = randomLevel(); // pick a random level
 ...
}

We'll randomly select the height of the new node that we're creating. More on this in

a minute.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 28

Inserting a Node: The Meat

public void insert(T element) {
 ...
 if (newLevel > list.topLevel) {
 list.topLevel = newLevel;
 }
 ...
}

If we have a new tallest node height, we'll want to update our state properly to avoid

bugs later on.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 29

Inserting a Node: The Meat

public void insert(T element) {
 ...
 while (j <= newLevel) {
 newNode.next[j] = predecessors[j].next[j];
 predecessors[j].next[j] = newNode;
 j = j + 1;
 }
 ...
}

Walk down the levels of the node, inserting this node in the typical "linked list" way. Note

that this is only modifying

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 30

Inserting a

Node: Demo

If we insert 10 , it might

"block the view" of: front ,

node containing 1 , and

node containing 9 .

The actual "blocking"

depends on the height of

the new node.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 31

Picking the Height

private int generateHeight(double p) {
 int height = 0;
 double draw = Math.random(); // [0, 1)
 while (draw < p) {
 height++;
 draw = Math.random();
 }
 return height;
}

"Flip a weighted coin until you stop getting heads. The number of successes is the

height of the node. Higher gives higher nodes."

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 32

Height Distribution

This is a geometric distribution; taller nodes are increasingly rare.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 33

Height Distribution

This is a geometric distribution; the average height of a node will be .

Probability Average Height/# Pointers per Node

1/2 2

1/e 1.58

1/4 1.33

1/8 1.14

1/16 1.33

The expected search length of elements is . Empirically speaking,

 gives good speed, and that's better than the 1.5 pointers/node needed

for BSTs.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 34

Runtimes, Empirically

Stolen from https://www.cs.ucdavis.edu/~amenta/w04/skiplists.pdf, itself adapted from

the original designer's analysis.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 35

file:///Users/harrysmith/Documents/23sp/cis1100/slide_project/ds_slides/skip_list.md

Summary

Linked Lists do not provide fast random access and BSTs have lots of pointers

plus complex implementations to maintain balance.

Randomized Data Structures have structures that are not fully determined by the

elements they contain, which can prevent against adversarial behavior (if not

unlucky behavior.)

Skip Lists enable search, insertion, and deletion with fewer pointers and

comparable/better runtime when compared to trees.

SKIP LISTS

CIT 5940 Spring 2025 @ University of Pennsylvania 36

	Skip Lists
	Adversarial Behavior
	Adversarial Behavior
	Adversarial Behavior: A Problem?
	Deterministic Data Structures
	Randomized Data Structures
	Doing Better Than a Linked List
	Idea: Finding Your Spot in a Book
	Skip Lists: Main Idea
	Sending Flashlight Signals Between Tall Buildings
	Sending Flashlight Signals Between Tall Buildings
	Structure of a Skip List
	Example Skip List
	Example Skip List
	Example Skip List
	Example Skip List
	Vital Ideas
	Searching a Skip List
	Searching a Skip List
	Searching a Skip List
	Searching a Skip List
	Example: Searching
	Example: Searching
	Inserting a Node in a Linked List
	Inserting a Node: Helper
	Inserting a Node: The Meat
	Inserting a Node: The Meat
	Inserting a Node: The Meat
	Inserting a Node: The Meat
	Inserting a Node: Demo
	Picking the Height
	Height Distribution
	Height Distribution
	Runtimes, Empirically
	Summary

