
CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Final Review
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao

Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Administrivia

❖ Final Project Autograder Posted

▪ SOME of it is auto graded. There is a lot of functionality that is not autograded that you
will need to implement

▪ Extended to Midnight on Thursday

❖ This lecture: Exam Review

❖ Travis will still have OH this Friday, most TA’s have finished OH

❖ Re-opens should happen soon

❖ End of semester survey posted, due Tuesday the 6th

❖ Exam logistics & Practice exam questions posted! (Solutions over weekend!)
2

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Exam Philosophy / Advice (pt. 1)

❖ I do not like midterms that ask you to memorize things

▪ You will still have to memorize some critical things.

▪ I will hint at some things, provide documentation or a summary of some things. (for
example: I will list some of the functions that may be useful and a brief summary of what
the function does)

❖ I am more interested in questions that ask you to:

▪ Apply concepts to solve new problems

▪ Analyze situations to see how concepts from lecture apply

❖ Will there be multiple choice?

▪ If there is, you will still have to justify your choices

3

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Exam Philosophy / Advice (pt. 2)

❖ I am still trying to keep the exam fair to you, you must remember some things

▪ High level concepts or fundamentals. I do not expect you to remember every minute
detail.

• E.g. how a multi level page table works should be know, but not the exact details of what is in
each page table entry

• (I know this boundary is blurry, but hopefully this statement helps)

❖ I am NOT trying to “trick” you (like I sometimes do in poll everywhere
questions)

4

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Exam Philosophy / Advice (pt. 3)

❖ I am trying to make sure you have adequate time to stop and think about the
questions.

▪ You should still be wary of how much time you have

▪ But also, remember that sometimes you can stop and take a deep breath.

❖ Remember that you can move on to another problem.

❖ Remember that you can still move on to the next part even if you haven’t
finished the current part

5

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Exam Philosophy / Advice (pt. 4)

❖ On the midterm you will have to explain things

❖ Your explanations should be more than just stating a topic name.

❖ Don't just say something like (for example) "because of threads" or just state
some facts like "threads are parallel and lightweight processes".

❖ State how the topic(s) relate to the exam problem and answer the question
being asked.

6

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Disclaimer

❖THIS REVIEW IS NOT
EXHAUSTIVE

❖Topics not in this review are still
testable
▪ We recommend going through the course material. Lecture polls,

recitation worksheets, and the previous homework assignments.

7

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Review Topics

❖ C++ Programming

▪ (Not included in this lecture, see the practice problems posted with exam policies)

❖ C++ Memory Diagram & Allocations

❖ C++ Copying

❖ Locality

❖ Inter Process Communication

❖ Process Synchronization

❖ Threads & Deadlocks

❖ Threads & Condition Variables

❖ Networking

8

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

C++ Memory Diagram & Allocations

❖ Consider the following code
that uses std::list (linked list)

❖ How many memory allocations
occur in this code?

❖ What is the state of memory
when we reach HERE?

9

struct coord {
 int x;
 int y;
}

list<coord> scale(list<coord> to_norm) {
 int total_x = 0;
 int total_y = 0;
 for (coord r : to_norm) {
 total_x += r.x;
 total_y += r.y;
 }

 for (coord& r : to_norm) {
 r.x *= total_x;
 r.y *= total_y;
 }

 return to_norm; // result is moved
}

int main() {
 list<coord> l;
 coord rn = {1, 1};
 l.push_back(rn);
 rn = {2, 2};
 l.push_back(rn);
 rn = {3, 3};
 l.push_back(rn);
 list<coord> result = std::move(scale(l));
 // HERE
}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

C++ Memory Diagram & Allocations

❖ Consider the following code
that uses std::list (linked list)

❖ How many memory allocations
occur in this code?

▪ 0 for initial construction of the list in main

▪ 3 for push_back in main (1 for each node that must be allocated for the list)

▪ 3 for copy constructing the list as a parameter to scale()

▪ 0 for iterating ove the list in scale(). Yes we do make a copy of the coord structs, but
those are just ints, no memory allocation needed

▪ 0 for moving the returned list out to the list result in main

❖ 6 in total

10

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

C++ Memory Diagram & Allocations
❖ Memory Diagram:

▪ Since we didn’t go over the exact internals of the linkedlist, it would have been fine to
have a slightly different linked list structure (e.g. no tail_ pointer) as long as it was clear it
was a linked list and the nodes were on the heap similar to how they are here:

11

list l

head_

tail_

list result

head_

tail_

list node

next:

value:

x: 1

y: 1

list node

next:

value:

x: 2

y: 2

list node

next: NULL

value:

x: 3

y: 3

list node

next:

value:

x: 6

y: 6

list node

next:

value:

x: 12

y: 12

list node

next: NULL

value:

x: 18

y: 18

Main’s stack frame

heapstack

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the

following invoked:

▪ MC constructor

▪ MC copy constructor

▪ MC operator=

▪ MC destructor

12

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const;

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A'};

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

}

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS];

myAns[0] = MC('B');

myAns[1] = MC('A');

cout << "Score: ";

 cout << Score(myAns) << endl;

return 0;

}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the

following invoked:

▪ MC constructor

▪ MC copy constructor

▪ MC operator=

▪ MC destructor

13

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const;

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A’}; // ctor x2

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

}

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS];

myAns[0] = MC('B');

myAns[1] = MC('A');

cout << "Score: ";

 cout << Score(myAns) << endl;

return 0;

}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the

following invoked:

▪ MC constructor

▪ MC copy constructor

▪ MC operator=

▪ MC destructor

14

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const;

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A’}; // ctor x2

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

}

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS]; // defulat ctor x2

myAns[0] = MC('B');

myAns[1] = MC('A');

cout << "Score: ";

 cout << Score(myAns) << endl;

return 0;

}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the

following invoked:

▪ MC constructor

▪ MC copy constructor

▪ MC operator=

▪ MC destructor

15

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const;

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A’}; // ctor x2

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

} // cctor in loop 2x for param

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS]; // defulat ctor x2

myAns[0] = MC('B’); // ctor then =

myAns[1] = MC('A’); // ctor then =

cout << "Score: ";

 cout << Score(myAns) << endl;

return 0;

}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the

following invoked:

▪ MC constructor

▪ MC copy constructor

▪ MC operator=

▪ MC destructor

16

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const;

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A’}; // ctor x2

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

}

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS]; // defulat ctor x2

myAns[0] = MC('B’); // ctor then =

myAns[1] = MC('A’); // ctor then =

cout << "Score: ";

 cout << Score(myAns) << endl;

return 0;

}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the

following invoked:

▪ MC constructor

▪ MC copy constructor

▪ MC operator=

▪ MC destructor

17

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const;

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A’}; // ctor x2

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

} // cctor in loop 2x for param

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS]; // defulat ctor x2

myAns[0] = MC('B’); // ctor then =

myAns[1] = MC('A’); // ctor then =

cout << "Score: ";

 cout << Score(myAns) << endl;

return 0;

}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the

following invoked:

▪ MC constructor 6

▪ MC copy constructor 2

▪ MC operator= 2

▪ MC destructor 8

18

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const;

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A’}; // ctor x2

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

} // cctor in loop 2x for param

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS]; // defulat ctor x2

myAns[0] = MC('B’); // ctor then =

myAns[1] = MC('A’); // ctor then =

cout << "Score: ";

 cout << Score(myAns) << endl;

return 0;

}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Locality

❖ Typically, a bool variable is 1 byte. How much space does a bool strictly
need though?

▪ 1 bit

❖ C++ goes against the standard implementation of a vector for the bool type,
and instead has each bool stored as a bit instead of the type a stand-a-lone
Boolean variable would be stored as.

▪ Travis thinks this was a horrible design decision, but there is a reason why they did this.
What are those reasons?

19

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Locality

❖ Typically, a bool variable is 1 byte. How much space does a bool strictly
need though?

▪ 1 bit

❖ C++ goes against the standard implementation of a vector for the bool type,
and instead has each bool stored as a bit instead of the type a stand-a-lone
Boolean variable would be stored as.

▪ Travis thinks this was a horrible design decision, but there is a reason why they did this.
What are those reasons?

▪ A lot less space is taken up, and as a side effect of that, you probably don’t have to call
malloc as often and will have better cache performance

20

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Locality

❖ If we stored a vector of 120 bools, and wanted to iterate over all of them,
roughly how many cache hits & misses would we have if we:

▪ You can assume a cache line is 64 bytes.

▪ If we used a vector<bool> that allocates the bools normally (1 byte per bool)

▪ If we use a vector<bool> that represents each bool with a single bit

21

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Locality

❖ If we stored a vector of 120 bools, and wanted to iterate over all of them,
roughly how many cache hits & misses would we have if we:

▪ You can assume a cache line is 64 bytes.

▪ If we used a vector<bool> that allocates the bools normally (1 byte per bool)

• 2 cache misses, 118 cache hits

▪ If we use a vector<bool> that represents each bool with a single bit

• 1 cache miss, 119 cache hits

22

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

IPC

❖ The following code intends to
use a global variable so that a
child process reads a string
and the parent prints it.

❖ Briefly describe two reasons
why this program won’t work.
You can assume it compiles.

23

string message;

void child();

void parent();

int main() {

 pid_t pid = fork();

 if (pid == 0) {

 child();

 } else {

 parent();

 }

}

void child() {

 cin >> message;

}

void parent() {

 cout << message;

}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

IPC

❖ The following code intends to
use a global variable so that a
child process reads a string
and the parent prints it.

❖ Briefly describe two reasons
why this program won’t work.
You can assume it compiles.
▪ After fork is called, global

variables are no longer shared.
Each process has its own
“message”

▪ There is no synchronization to
know if the parent prints after the
child reads. 24

string message;

void child();

void parent();

int main() {

 pid_t pid = fork();

 if (pid == 0) {

 child();

 } else {

 parent();

 }

}

void child() {

 cin >> message;

}

void parent() {

 cout << message;

}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

IPC

❖ Describe how we would have
to rewrite the code if we
wanted it to work. Keeping the
multiple processes and calls to
fork(). Be specific about where
you would add the new lines
of code.

25

string message;

void child();

void parent();

int main() {

 pid_t pid = fork();

 if (pid == 0) {

 child();

 } else {

 parent();

 }

}

void child() {

 cin >> message;

}

void parent() {

 cout << message;

}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

IPC

❖ Describe how we would
have to rewrite the code
if we wanted it to work.
Keeping the multiple
processes and calls to
fork(). Be specific about
where you would add the
new lines of code.

❖ ONE POSSIBLE ANSWER:

26

string message;

int fds[2];

void child();

void parent();

int main() {

 pipe(fds);

 pid_t pid = fork();

 if (pid == 0) {

 close(fds[0]);

 child();

 } else {

 close(fds[1]);

 parent();

 }

}

void child() {

 cin >> message;

 wrapped_write(fds[1], message);

}

void parent() {

 wrapped_read(fds[0], message);

 cout << message;

}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Process Synchronization

❖ Which of the following outputs are possible? How?

▪ 1213

▪ 3112

▪ 2312

▪ 1123

❖ If we wanted to change the code to guarantee
that 1312 is printed. How could we do that?

▪ There must still be 4 processes forked in a similar way
(The initial process can’t fork 3 direct children)

▪ Each process must print out the same number as
before.

27

int main() {
 pid_t pid = fork();
 bool flag = false
 if (pid == 0) {
 flag = true;
 cout << "1" << endl;
 }

 pid = fork();

 if (pid == 0) {
 if (flag) {
 cout << "3" << endl;
 } else {
 cout << "1" << endl;
 }
 } else if (!flag) {
 cout << "2" << endl;
 }
}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Process Synchronization

❖ Which of the following outputs are possible? How?

▪ 1213 Possible

▪ 3112 Not Possible

▪ 2312 Not Possible

▪ 1123 Possible

❖ If we draw the processes and ordering within a process we get:

▪ Within each process the events must happen in that order. So the first child must print(1)
before it forks the child that prints 3, so there must be a 1 printed before 3 is printed.

28

fork()

fork()

print(2)

print(1) print(1)

fork()

print(3)

Overall parentSecond child First child Grand-child

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Process Synchronization

❖ If we wanted to change the code to guarantee
that 1312 is printed. How could we do that?

▪ There must still be 4 processes forked in a similar way
(The initial process can’t fork 3 direct children)

▪ Each process must print out the same number as
before.

▪ One possible answer:

• Main thing: using waitpid to enforce ordering

• Make children processes exit to make sure it doesn’t
continue running code it shouldn’t run.

29

int main() {
 pid_t pid = fork();
 bool flag = false
 if (pid == 0) {
 flag = true;
 cout << "1" << endl;
 pid = fork();
 if (pid == 0) {
 cout << "3" << endl;
 exit(EXIT_SUCCESS);
 }
 waitpid(pid, NULL, 0);
 exit(EXIT_SUCCESS);
 }
 waitpid(pid, NULL, 0);
 pid = fork();

 if (pid == 0) {
 cout << "1" << endl;
 exit(EXIT_SUCCESS);
 }
 waitpid(pid, NULL, 0);
 cout << "2" << endl;
}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Threads & Locks

▪ This code has the possibility to deadlock. Give an
example of this happening. You can assume no thread tries to acquire the same lock twice

▪ Someone proposes we fix this by locking the whole database instead of locking at the
block level. What downsides does this have? Does it even avoid deadlocks?

▪ How can we fix this
(without locking
the whole database
if that even works)?

31

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Threads & Locks

▪ This code has the possibility to deadlock. Give an
example of this happening. You can assume no thread tries to acquire the same lock twice

• Thread 1 wants B2 and B4. Thread 2 also wants B2 and B4, but lists them in a different order.
Thread 1 gets B2, Thread 2 get B4, and we deadlock.

32

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Threads & Locks

▪ Someone proposes we fix this by locking the whole database instead of locking at the
block level. What downsides does this have? Does it even avoid deadlocks?

• This works, but now our data base is run entirely sequentially for these transactions even if
two thread have completely separate blocks they operate on, they cannot run in parallel.

33

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Threads & Locks

▪ How can we fix this (without locking the whole database
if that even works)?

▪ Have each thread acquire the locks in a strict increasing numerical order. This prevents
any cycles from happening

34

void transaction(list<int> block_numbers) {

 for (every block_num in block_numbers) {

 acquire_lock(block_num)

 }

 operation(block_numbers);

 for (every block_num in block_numbers) {

 release_lock(block_num);

 }

}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Threads & Condition Variables

❖ If we have 7 threads all reading shared memory but not writing, is a data race
possible?

❖ what if one of the 7 threads writes to the shared memory?

35

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Threads & Condition Variables

❖ If we have 7 threads all reading shared memory but not writing, is a data race
possible?

▪ No, a data race requires concurrent access of a shared resource and at least one thread
is writing to that resource.

❖ what if one of the 7 threads writes to the shared memory?

▪ Yes, it is possible. See definition above.

36

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Threads & Condition Variables

❖ We create these two functions for threads
to read and write some shared memory
but allows multiple readers. Something is
wrong though, what is it? How do we fix?

37

int num_readers:
pthread_mutex_t lock
pthread_cond_t cond;

void do_write() {
 pthread_mutex_lock(&lock);
 while (num_readers > 0) {
 pthread_cond_wait(&cond, &lock);
 }

 // do write
 // (omitted for space)

 pthread_cond_broadcast(&cond);
 pthread_mutex_unlock(&lock);
}

void do_read() {
 pthread_mutex_lock(&lock);
 num_readers += 1;
 pthread_mutex_unlock(&lock);

 // don't hold the lock while reading
 // so that other readers can get access

 // do read (omitted for space)

 pthread_mutex_lock(&lock);
 num_readers -= 1;
 pthread_mutex_unlock(&lock);
}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Threads & Condition Variables

❖ We create these two functions for threads
to read and write some shared memory
but allows multiple readers. Something is
wrong though, what is it? How do we fix?

❖ Do_read needs to signal or broadcast the
condition variable after it decrements
num_readers so that any waiting writer
can wake up and check to see if it is ready
for them to run.

38

void do_read() {
 pthread_mutex_lock(&lock);
 num_readers += 1;
 pthread_mutex_unlock(&lock);

 // don't hold the lock while reading
 // so that other readers can get access

 // do read (omitted for space)

 pthread_mutex_lock(&lock);
 num_readers -= 1;
 if (num_readers == 0) {
 pthread_cond_signal(&cond);
 }
 pthread_mutex_unlock(&lock);
}

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Networking: pt. 1 (True / False)

❖ TCP guarantees reliable delivery of the packets that make up a stream, assuming that the socket doesn’t

fail because of an I/O error.

❖ IP guarantees reliable delivery of packets, assuming that the socket doesn’t fail because of an I/O error.

❖ Given a particular hostname (like www.amazon.com), getaddrinfo() will return a single IP address

corresponding to that name.

❖ A single server machine can handle connection requests sent to multiple IP addresses.

❖ A struct sockaddr_in6 contains only an ipv6 address.

❖ The HTTP payload takes up a larger percentage of the overall packet sent over the network than the IP

payload.

39

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Networking: pt. 1 (True / False)

❖ TCP guarantees reliable delivery of the packets that make up a stream, assuming that the socket doesn’t

fail because of an I/O error.
▪ True

❖ IP guarantees reliable delivery of packets, assuming that the socket doesn’t fail because of an I/O error.
▪ False

❖ Given a particular hostname (like www.amazon.com), getaddrinfo() will return a single IP address

corresponding to that name.
▪ False

❖ A single server machine can handle connection requests sent to multiple IP addresses.
▪ True

❖ A struct sockaddr_in6 contains only an ipv6 address.
▪ False

❖ The HTTP payload takes up a larger percentage of the overall packet sent over the network than the IP

payload.
▪ False

40

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Networking pt. 2 (The one most reflective of an Exam Q)

❖ Pearl is setting up a C++ program to do network communication using UDP to
send data.

▪ She notices that when using UDP it is sometimes unreliable, and her packets do not get to
there destinations in order. Is this a bug in how she wrote her program?

▪ To try and remedy this issue, Pearl has each message she send contain a “Packet Number”.
The receiver can then re-order the messages as they arrive to maintain the same order as
sent. The receiver then sends messages back to acknowledge which packets it has
received. Any messages not acknowledged are resent by the sender. Can this be
implemented? What affect would it have on the order & reliability?

41

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Networking pt. 2 (The one most reflective of an Exam Q)

❖ Pearl is setting up a C++ program to do network communication using UDP to
send data.

▪ She notices that when using UDP it is sometimes unreliable, and her packets do not get to
there destinations in order. Is this a bug in how she wrote her program?

• No, that’s just UDP. UDP is the reason that packets are lost or show up in a different order. There
isn’t a way to mitigate this without doing extra stuff (like below). You could theoretically call this
a bug by saying her choice to use UDP is a bug.

42

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Networking pt. 2 (The one most reflective of an Exam Q)

▪ To try and remedy this issue, Pearl has each message she send contain a “Packet Number”.
The receiver can then re-order the messages as they arrive to maintain the same order as
sent. The receiver then sends messages back to acknowledge which packets it has
received. Any messages not acknowledged are resent by the sender. Can this be
implemented? What affect would it have on the order & reliability?

• Yes, should help some. This is similar to what TCP does to ensure that data shows up in order.

• This also is implementable. When we send data using UDP we just send bytes and specify how
many bytes with sendto.

• We can modify our struct to send additional
data and if we are writing the code on the
recievers end we can tell them to look at that
message number and do the behavior specified. 43

struct example_stuff_to_send {
 char characters[100];
};

example_stuff_to_send msg;
sendto(socket, &msg, sizeof(msg), addr, addr_len);

struct example_stuff_to_send {
 int message_number;
 char characters[100];
};

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Networking pt. 3

❖ For each of the following behaviors, identify what networking layer is most
closely thought of as being responsible for handling that behavior.

▪ Host A tries to send a long message to Host B in another city, broken up into many
packets. A packet in the middle does not arrive, so Host A sends it again.

▪ Host A tries to send a message to Host B, but Host C and Host D are also trying to
communicate on the same network, so Host A must avoid interfering

44

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Networking pt. 3

❖ For each of the following behaviors, identify what networking layer is most
closely thought of as being responsible for handling that behavior.

▪ Host A tries to send a long message to Host B in another city, broken up into many
packets. A packet in the middle does not arrive, so Host A sends it again.

• Transport Layer (Protocol commonly associated with this: TCP)

▪ Host A tries to send a message to Host B, but Host C and Host D are also trying to
communicate on the same network, so Host A must avoid interfering

• Data Link Layer (Protocol commonly associated with this: MAC)

45

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Networking pt. 4

❖ The original versions of HTTP (including 1.1) were designed to use plain text
characters sent over the network instead of alternatives like a binary encoding
for the request and response. Describe one advantage of this design decision
and one disadvantage.

❖ Advantage:

❖ Disadvantage:

46

CIT 5950, Spring 2025L24: Final ReviewUniversity of Pennsylvania

Networking pt. 4

❖ The original versions of HTTP (including 1.1) were designed to use plain text
characters sent over the network instead of alternatives like a binary encoding
for the request and response. Describe one advantage of this design decision
and one disadvantage.

❖ Advantage:

▪ Interpretable by humans

▪ Easy to experiment with and adopt

❖ Disadvantage:

▪ Might be less efficient (for some definition of efficient) than a well-packed binary format

47

	Default Section
	Slide 1: Final Review Computer Systems Programming, Spring 2025
	Slide 2: Administrivia
	Slide 3: Exam Philosophy / Advice (pt. 1)
	Slide 4: Exam Philosophy / Advice (pt. 2)
	Slide 5: Exam Philosophy / Advice (pt. 3)
	Slide 6: Exam Philosophy / Advice (pt. 4)
	Slide 7: Disclaimer
	Slide 8: Review Topics
	Slide 9: C++ Memory Diagram & Allocations
	Slide 10: C++ Memory Diagram & Allocations
	Slide 11: C++ Memory Diagram & Allocations
	Slide 12: C++ Copying
	Slide 13: C++ Copying
	Slide 14: C++ Copying
	Slide 15: C++ Copying
	Slide 16: C++ Copying
	Slide 17: C++ Copying
	Slide 18: C++ Copying
	Slide 19: Locality
	Slide 20: Locality
	Slide 21: Locality
	Slide 22: Locality
	Slide 23: IPC
	Slide 24: IPC
	Slide 25: IPC
	Slide 26: IPC
	Slide 27: Process Synchronization
	Slide 28: Process Synchronization
	Slide 29: Process Synchronization
	Slide 31: Threads & Locks
	Slide 32: Threads & Locks
	Slide 33: Threads & Locks
	Slide 34: Threads & Locks
	Slide 35: Threads & Condition Variables
	Slide 36: Threads & Condition Variables
	Slide 37: Threads & Condition Variables
	Slide 38: Threads & Condition Variables
	Slide 39: Networking: pt. 1 (True / False)
	Slide 40: Networking: pt. 1 (True / False)
	Slide 41: Networking pt. 2 (The one most reflective of an Exam Q)
	Slide 42: Networking pt. 2 (The one most reflective of an Exam Q)
	Slide 43: Networking pt. 2 (The one most reflective of an Exam Q)
	Slide 44: Networking pt. 3
	Slide 45: Networking pt. 3
	Slide 46: Networking pt. 4
	Slide 47: Networking pt. 4

