
CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

C++ Refresher, Move & File Descriptors
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao

Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Poll: how are you?

❖ How was spring break? Any questions now that we are back?

2

pollev.com/tqm

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Administrivia

❖ “Check-in” posted

▪ Due Wednesday

❖ HW06 – Hash Table

▪ Posted☺

▪ Due Friday 3/21 at midnight, leaving open till Sunday night tho

▪ AG posted soon, but all tests are posted and public

❖ Mid-semester Survey Posted!

▪ Due Sunday 3/23 & Anonymous

▪ Please give feedback, it is useful for me to make the course better!
And a lot has changed this semester!

3

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Lecture Outline

❖ C++ Programming Refresher

❖ Move Semantics

❖ File Descriptors & Buffering

4

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

C++ Programming Refresher

❖ Implement the function rect() which takes in a vector of vector of integers. The
function modifies the vector of vectors so that all rows are extended to be the
same length (by adding 0’s to the rows).

❖ For example, the following input

5

vector<vector<int>> m {

 {3, 4, 5},

 {2, 1},

 {},

 {0, 1, 2, 0, 0},

};

rect(m);

// what it should look

// like after calling rect

vector<vector<int>> m {

 {3, 4, 5, 0, 0},

 {2, 1, 0, 0, 0},

 {0, 0, 0, 0, 0},

 {0, 1, 2, 0, 0},

};

void rect(vector<vector<int>>& m);

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Lecture Outline

❖ C++ Programming Refresher

❖ Move Semantics

❖ File Descriptors & Buffering

8

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Memory Allocation in C++

❖ We rarely call new or delete directly in C++ code, but it is called implicity all the
time if we are not careful

▪ Whenever a data structure needs more space

▪ Whenever we copy construct an object that needs allocation

▪ Etc.

9

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

❖ Which function is faster?

10

pollev.com/tqm

void print_vec(ofstream& to_print, const vector<string>& words) {
 for (const string word : words) {
 to_print << word << "\n";
 }
}

void print_vec(ofstream& to_print, vector<string>& words) {
 for (size_t i = 0; i < words.size(); i++) {
 string& word = words[i];
 to_print << word;
 to_print << "\n";
 }
}

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

❖ How many memory allocations occur in each piece of code?

▪ Assume vector resizes will double capacity

▪ std::list is a linked list in C++

11

pollev.com/tqm

int main() {
 vector nums {4, 8}; // size and capacity == 2
 nums.push_back(5);
 nums.push_back(9);
 nums.push_back(5);
 nums.push_back(0);
}

int main() {
 list nums {4, 8};
 nums.push_back(5);
 nums.push_back(9);
 nums.push_back(5);
 nums.push_back(0);
}

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Minimizing Allocations

❖ As we saw previously, memory allocations require time, sometimes a lot of
time to compute.

❖ If performance is our goal, we should minimize the number of allocations we
make.

❖ This can include

▪ Making references instead of copies

▪ Using functions like vec.reserve()

• Java arraylist lets you specify capacity in the constructor.

• std::string also has a reserve function

▪ Using move semantics

12

vector::reserve(size_t new capacity)

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Copy Semantics: close up look

❖ Internally a string
manages a heap
allocated C string
and looks something like:

13

int main(int argc, char **argv) {

 std::string a{"bleg"};

}

a

Stack heap

ptr_

len_ 4

b l e g \0

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Copy Semantics: close up look

❖ When we copy
construct string b

we could get something like:

14

int main(int argc, char **argv) {

 std::string a{"bleg"};

 std::string b{a};

}

a

Stack heap

ptr_

len_ 4

b l e g \0

b ptr_

len_ 44

b l e g \0

This is another memory allocation, and we
need to copy over the characters of the string

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Move Semantics (C++11)

❖ “Move semantics”
move values from
one object to
another without
copying (“stealing”)

▪ A complex topic that
uses things called
“rvalue references”

• Mostly beyond the
scope of this
class

15

int main(int argc, char **argv) {

 std::string a{"bleg"};

 // moves a to b

 std::string b{std::move(a)};

 std::cout << "a: " << a << std::endl;

 std::cout << "b: " << b << std::endl;

 return EXIT_SUCCESS;

}

a: ""

b: "bleg"

Note: we should NOT access ‘a’ after we move it. It is undefined
to do so, it just so happens it is set to the empty string

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Move Semantics: close up look

❖ Internally a string
manages a heap
allocated C string
and looks something like:

16

int main(int argc, char **argv) {

 std::string a{"bleg"};

}

a

Stack heap

ptr_

len_ 4

b l e g \0

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Move Semantics: close up look

❖ When we use move
to construct string b

we could get something like:

17

int main(int argc, char **argv) {

 std::string a{"bleg"};

 std::string b{std::move(a)};

}

a

Stack heap

ptr_

len_ 0

b l e g \0

b ptr_

len_ 4

nullptr

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Move Semantics: Use Cases

❖ Useful for optimizing away temporary copies

❖ Preferred in cases where copying may be expensive

▪ Consider we had a vector of strings… we could transfer ownership of memory to avoid
copying the vector and each string inside of it.

❖ Can be used to help enforce uniqueness

❖ Rust is a systems programming language that is gaining popularity and by
default it will move variables instead of copy them.

18

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Move Semantics: Details

❖ Implement a “Move Constructor” with something like:

❖ Implement a “Move assignment” with something like:

19

Point& Point::operator=(Point&& rhs) {

 // ...

}

Point::Point(Point&& other) {

 // ...

}

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Move Semantics: Details

❖ “Move Constructor” example for a fake String class:

20

String::String(String&& other) {

 this->len_ = other.len_;

 this->ptr_ = other.ptr_;

 other.len_ = 0;

 other.ptr_ = nullptr;

}

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

std::move

❖ Use std::move to indicate that you want to move something and not copy it

21

Point p {3, 2}; // constructor

Point a {p}; // copy constructor

Point b {std::move(p)}; // move constructor

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Demo: Verbose Integer

❖ What happens when we resize?

❖ Making move operations noexcept

❖ What if this were strings and not ints?

22

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

❖ Given a linked list object:

▪ What do you think the copy constructor does?

▪ What do you think the move constructor does?

▪ (I don’t need code, high level idea is fine)

23

pollev.com/tqm

class LinkedList {
public:
 LinkedList() {
 head_ = nullptr;
 tail_ = nullptr;
 len_ = 0;
 }

 LinkedList(const LinkedList& other) {
 // TODO: copy constructor
 }

 LinkedList(LinkedList&& other) {
 // TODO: move constructor
 }

private:
 node* head_;
 node* tail_;
 size_t len_;
};

struct node {
 node* next;
 string value;
};

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Lecture Outline

❖ C++ Programming Refresher

❖ Move Semantics

❖ File Descriptors & Buffering

24

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

From C to POSIX

❖ Most UNIX-en support a common set of lower-level file access APIs: POSIX –
Portable Operating System Interface
▪ open(), read(), write(), close(), lseek()

• Similar in spirit to their f*() counterparts from the C std lib

• Lower-level and unbuffered compared to their counterparts

• Also less convenient

▪ C and C++ stdlib doesn’t provide everything POSIX does

• You will have to use these to read file system directories and for network I/O, so we might as
well learn them now

25

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

open()/close()

❖ To open a file:

▪ Pass in the filename and access mode

▪ Get back a “file descriptor”

• Similar to FILE* from fopen(), but is just an int

– Returns -1 to indicate error

• Must manually close file when done

26

#include <fcntl.h> // for open()

#include <unistd.h> // for close()

 ...

 int fd = open("foo.txt", O_RDONLY);

 if (fd == -1) {

 perror("open failed");

 exit(EXIT_FAILURE);

 }

 ...

 close(fd);

Used to identify

a file w/ the OS

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Reading from a File

❖ ssize_t read(int fd, void* buf, size_t count);

▪ Function is written in C: follows C design

• Takes in a file descriptor

• Takes in an array and length (In bytes) of where to store the results of the read

• Returns number of bytes read

▪ EVERY TIME we read from a file,
this function is getting called somewhere

• Even in Java or Python

• There are wrappers around this, but
they are all implemented on top of
these system calls

• The OS doesn’t speak java or python, it “speaks” assembly and C
so all languages must have a way to invoke these C functions.

27

ssize_t read(int fd, void* buf, size_t count);

Number of bytes
Stores read

result in buf

signed

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Reading from a File

❖ ssize_t read(int fd, void* buf, size_t count);

▪ Function is written in C: follows C design

• Takes in a file descriptor

• Takes in an array and length of where to store the results of the read

▪ Returns the number of bytes read

• Might be fewer bytes than you requested (!!!)

• Returns 0 if you’re already at the end-of-file

• Returns -1 on error (and sets errno)

• Advances forward in the file by number
of bytes read

28

ssize_t read(int fd, void* buf, size_t count);

Number of bytes
Stores read

result in buf

signed

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Example Read Code

29

int fd = open(filename, O_RDONLY);

array<char, 1024> buf {}; // buffer of appropriate size

ssize_t result;

result = read(fd, buf.data(), 1024 * sizeof(char));

if (result == -1) {

 // an error happened, so exit the program

 // print out some error message to cerr

 exit(EXIT_FAILURE);

}

// If we want to construct a string from the bytes read

// we need to say how many bytes to take from the array.

string data_read(buf.data(), result);

// Whenever we are done with the file, we must close it

close(fd);

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

❖ This code has some bugs, what are they? How do we fix this code?

30

pollev.com/tqm

char* read_stdin() {
 array<char, 1024> buf {};

 read(STDOUT_FILENO, buf.data(), 1024 * sizeof(char));

 return buf.data();
}

int main() {
 string input(read_stdin());

 cout << "You typed: " << input << endl;
}

Demo: read_stdin.cpp

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Everything is a File (Descriptor)

❖ In Unix/Linux design, there is a uniform interface to interact with many aspects
of the computer

▪ Files

▪ Network Sockets

▪ Pipes

▪ Special Device files

• /dev/random

• /usr/proc/<proc_id>/fds

31

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

Everything is Bytes

❖ In our computers, everything is stored as bits and bytes. We can read/write
things other than characters. We just need to tell how many bytes to read

❖ Read an integer:

❖ Write a struct:

❖ Read a string? Why doesn’t this work
32

int fd = open(...);
int x;
read(fd, &x, sizeof(x));

struct Point {
 float x, y;
};

Point p{3.0F, 2.0F};
write(fd, &p, sizeof(p));

string x;
read(fd, &x, sizeof(x));

CIT 5950, Spring 2025L11: C++ Refresher & File DescriptorsUniversity of Pennsylvania

That’s it for now

❖ More next time!

▪ Buffering refresher

▪ Some misc C++ stuff we haven’t covered

• Initializer list

• Assignment operator

• Casts

▪ Maybeee virtual memory (briefly)

33

	Default Section
	Slide 1: C++ Refresher, Move & File Descriptors Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: C++ Programming Refresher
	Slide 8: Lecture Outline
	Slide 9: Memory Allocation in C++
	Slide 10
	Slide 11
	Slide 12: Minimizing Allocations
	Slide 13: Copy Semantics: close up look
	Slide 14: Copy Semantics: close up look
	Slide 15: Move Semantics (C++11)
	Slide 16: Move Semantics: close up look
	Slide 17: Move Semantics: close up look
	Slide 18: Move Semantics: Use Cases
	Slide 19: Move Semantics: Details
	Slide 20: Move Semantics: Details
	Slide 21: std::move
	Slide 22: Demo: Verbose Integer
	Slide 23
	Slide 24: Lecture Outline
	Slide 25: From C to POSIX
	Slide 26: open()/close()
	Slide 27: Reading from a File
	Slide 28: Reading from a File
	Slide 29: Example Read Code
	Slide 30
	Slide 31: Everything is a File (Descriptor)
	Slide 32: Everything is Bytes
	Slide 33: That’s it for now

