
CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Virtual Memory & Threads
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao

Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ How are you?

2

pollev.com/tqm

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Administrivia

❖ HW07 – File Readers

▪ Posted☺

▪ Due Friday 3/28 at midnight, leaving open till Sunday night tho

▪ AG posted soon

❖ Midterm grades to be posted today

▪ Wide range in scores

▪ Do not panic if it didn’t go well, there is the clobber policy

▪ Coding on paper will be on the final too

3

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Virtual Memory

❖ Threads

4

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Memory Hierarchy

5

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Memory as an array of bytes

❖ Everything in memory is made of bits and bytes

▪ Bits: a single 1 or 0

▪ Byte: 8 bits

❖ Memory is a giant array of bytes where
everything* is stored

▪ Each byte has its own address (“index”)

❖ Some types take up one byte, others more

6

int main() {
 char c = 'A';
 char other = '0';
 int x = 5950;
 int* ptr = &x;
}

0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12

'A' '0' 5950 0x0000000000000008 …

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Poll from last time

❖ What does this print for x and the ptr?

❖ ptr is printed as the same address
from child and parent. Each has
their own value.

7

int main() {
 int x = 5;
 int* ptr = &x;
 pid_t pid = fork();

 if (pid == 0) {
 *ptr += 1;
 cout << x << endl;
 cout << ptr << endl;
 exit(EXIT_SUCCESS);
 }

 waitpid(pid, NULL, 0);
 *ptr += 1;
 cout << x << endl;
 cout << ptr << endl;
}

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Memory (as we know it now)

❖ The CPU directly uses an address to access a location in
memory

8

CPU

0:

1:

2:

3:

4:

5:

...

data

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users

• Web browsers, email clients, editors, …

▪ Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved (multitasking)
▪ Address spaces managed by virtual memory system (later in course)
▪ Register values for nonexecuting processes saved in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Problem 1: How does everything fit?

On a 64-bit machine, there are 264
bytes, which is:
18,446,744,073,709,551,616 Bytes
(1.844 x 1019)

11

Laptops usually have around 8GB which is
8,589,934,592 Bytes (8.589 x 109)

(Not to scale; physical memory is smaller than the
period at the end of the sentence compared to the
virtual address space.)

This is just one address space,

consider multiple processes…

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Problem 2: Sharing Memory

❖ How do we enforce process isolation?

▪ Could one process just calculate an address into another process?

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

This doesn’t work anymore

❖ The CPU directly uses an address to access a location in
memory

13

CPU

0:

1:

2:

3:

4:

5:

...

data

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Idea:

❖ We don’t need all processes to have their data in physical memory, just the
ones that are currently running

❖ For the process’ that are currently running: we don’t need all their data to be
in physical memory, just the parts that are currently being used

❖ Data that isn’t currently stored in physical memory, can be stored elsewhere
(disk).

▪ Disk is "permanent storage" usually used for the file system

▪ Disk has a longer access time than physical memory (RAM)

14

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Indirection

❖ "Any problem in computer science can be solved by adding another level of
indirection."

▪ David wheeler, inventor of the subroutine (e.g. functions)

❖ The ability to indirectly reference something using a name, reference or
container instead of the value itself. A flexible mapping between a name and a
thing allows chagcing the thing without notifying holders of the name.

▪ May add some work to use indirection

▪ Example: Phone numbers can be transferred to new phones

❖ Idea: instead of directly referring to physical memory, add a level of indirection

16

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Definitions

❖ Addressable Memory: the total amount of memory that can be theoretically
be accessed based on:

▪ number of addresses (“address space”)

▪ bytes per address (“addressability”)

❖ Physical Memory: the total amount of memory that is physically available on
the computer

❖ Virtual Memory: An abstraction technique for making memory look larger than
it is and hides many details from the programs.

17

Sometimes called “virtual memory”

or the “virtual address space”

IT MAY OR MAY NOT

EXIST ONHARDWARE

(like if that memory is

never used)

Physical memory holds a subset of the addressable memory being used

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

This doesn’t work anymore

❖ The CPU directly uses an address to access a location in
memory

18

CPU

0:

1:

2:

3:

4:

5:

...

data

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Virtual Address Translation

❖ Programs don’t know about physical addresses; virtual
addresses are translated into them by the MMU

19

CPU

0:

1:

2:

3:

4:

5:

...

Virtual address
(0x300)

data

MMU

Physical address
(0x3)

Memory
Management
Unit

THIS SLIDE IS KEY TO THE WHOLE IDEA

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Pages

❖ Memory can be split up into units called “pages”

20

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

 Ram may contain pages from
other active processes

Pages are of fixed size ~4KB

4KB -> (4 * 1024 = 4096 bytes.)

Pages in physical memory

are called “Page frames”

A page may not have an

accompanying page frame

until the page is used

(what the process thinks it has)

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Page Tables

❖ Virtual addresses can be converted into physical addresses via a page table.

❖ There is one page table per processes, managed by the MMU

21

More details about

translation later

Virtual page # Valid Physical Page Number

0 0 null //page hasn’t been used yet

1 1 0

2 1 1

3 0 disk

Valid determines if the

page is in physical memory

If a page is on disk,

MMU will fetch it

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Paging

❖ What happens if this process tries to access an address in page 3?

22

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

pollev.com/tqm

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Paging

❖ What happens if this process tries to access an address in page 3?

23

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

The MMU access the

corresponding frame

(frame 2)

pollev.com/tqm

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Page Fault Exception

❖ An Exception is a transfer of control to the OS kernel in
response to some synchronous event (directly caused by
what was just executed)

❖ In this case, writing to a memory location that is not in
physical memory currently

User code Kernel code

Exception: page fault
Handle page fault:
How it is handled
depends on if this
page has been
handled before

Returns to running thread

Access a
virtual page
not in RAM

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Problem: Paging Replacement

❖ We don’t have space to store all active pages in physical memory.

❖ If physical memory is full and we need to load in a page, then we choose a
page in physical memory to store on disk in the swap file

❖ If we need to load in a page from disk, how do we decide which page in
physical memory to “evict”

❖ Goal: Minimize the number of times we have to go to disk. It takes a while to
go to disk.

25

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Paging

❖ What happens if we need to load in page 1 and physical memory is full?

26

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

pollev.com/tqm

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Paging

❖ What happens if we need to load in page 1 and physical memory is full?

27

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
(but were used in the past)
are stored on disk

Unused pages may
not have any mapping

disk

Page 0

Page 1

Page 2

Page 3

Page 5

Page 4

Frame 0

Frame 1

Frame 2

We get a page fault,

the OS evicts a page

from a frame, loads in

new page into that

frame

pollev.com/tqm

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Problem: Paging Replacement

❖ We don’t have space to store all active pages in physical memory.

❖ If we need to load in a page from disk, how do we decide which page in
physical memory to “evict”

❖ Goal: Minimize the number of times we have to go to disk. It takes a while to
go to disk.

28

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Paging Replacement Algorithms

❖ Simple Algorithms:

▪ Random choice

• “dumbest” method, easy to implement

▪ FIFO

• Replace the page that has been in physical memory the longest

❖ Both could evict a page that is used frequently and would require going to disk
to retrieve it again.

29

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

FIFO Example:

❖ FIFO: Replace the page that has been in physical memory the longest

❖ If Memory can hold 4 physical pages, memory starts empty, and we access the
pages numbered 1 2 1 2 3 1 2 4 1 2 5 1 2 6

▪ How many page faults occur?

30

pollev.com/tqm

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

(Theoretically) Optimal Algorithm

❖ If we knew the precise sequence of requests for pages in advance, we could
optimize for smallest overall number of faults

▪ Always replace the page to be used at the farthest point in future

▪ Optimal (but unrealizable since it requires us to know the future)

❖ Off-line simulations can estimate the performance of a page replacement
algorithm and can be used to measure how well the chosen scheme is doing

❖ Optimal algorithm can be approximated by using the past to predict the future

31

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Least Recently Used (LRU)

❖ Assume pages used recently will be used again soon

▪ Throw out page that has been unused for longest time

❖ Past is usually a good indicator for the future

❖ LRU has significant overhead:

▪ A timestamp for each memory access that is updated in the page table

▪ Sorted list of pages by timestamp

32

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ "Prove" (or provide a counter example) that LRU is always better than LIFO in
every case.

▪ LIFO: Replace the page that has been in physical memory the longest

▪ LRU: throw out page that has been unused for longest time

▪ Can assume Physical memory can hold 4 pages

33

pollev.com/tqm

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

How to Implement LRU?

❖ Counter-based solution:

▪ Maintain a counter that gets incremented with each memory access

▪ When we need to evict a page, pick the page with lowest counter

❖ List based solution

▪ Maintain a linked list of pages in memory

▪ On every memory access, move the accessed page to end

▪ Pick the front page to evict

❖ HashMap and LinkedList

▪ Maintain a hash map and a linked list

▪ The list acts the same as the list-based solution

▪ The HashMap has keys that are the page number, values that are pointers to the nodes in
the linked list to support O(1) lookup

34

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

LRU Data Structure

❖ We can use a linked list to implement LRU

❖ What is the algorithmic runtime analysis to:

▪ lookup a specific block?

▪ Removal time?

▪ Time to move a block to the front or back?

35

Discuss

Page Num Page Num Page Num Page NumPage Num

Most Recently Used Least Recently Used

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

LRU Data Structure

❖ We can use a linked list to implement LRU

❖ What is the algorithmic runtime analysis to:

▪ lookup a specific block?

▪ Removal time?

▪ Time to move a block to the front or back?

36

Discuss

Page Num Page Num Page Num Page NumPage Num

Most Recently Used Least Recently Used

O(n)

O(1)

O(1)

Is there a structure we know of that has O(1) lookup time?

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Chaining Hash Cache

❖ We can use a combination of two data structures:
▪ linked_list<page_info>

▪ hash_map<page_num, node*>

37

Page Num Page Num Page Num Page NumPage Num

Most Recently Used Least Recently Used
list

key value

0

0xFDEA

4312

75

13

O(1) lookup
O(1) remove
O(1) move to front

Implementing and coming up with
this was an interview question for me.
Full time position @ Microsoft

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ What happens when a program dereferences memory to a page that we
haven’t accessed before?

▪ CONSIDER EVERYTHING

▪ What happens when we access that memory again?

38

pollev.com/tqm

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Memory Hierarchy

40

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Virtual Memory

❖ Threads

41

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ What does this print?

42

pollev.com/tqm

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Introducing Threads

❖ Separate the concept of a process from the “thread of execution”

▪ Threads are contained within a process

▪ Usually called a thread, this is a sequential execution stream within a process

❖ In most modern OS’s:

▪ Threads are the unit of scheduling.

43

thread

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
 & security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
 & registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

44

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Threads vs. Processes

45

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Threads vs. Processes

46

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Threads

❖ Threads are like lightweight processes

▪ They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores

▪ Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can communicate with each other
through variables and memory

– But, they can interfere with each other – need synchronization for shared resources

• Each thread has its own stack

❖ Analogy: restaurant kitchen

▪ Kitchen is process

▪ Chefs are threads

47

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running
in the address space

• One PC, stack, SP

▪ That main thread invokes a
function to create a new thread

• Typically pthread_create()

48

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running
in the address space

• Original thread (parent) and new
thread (child)

• New stack created for child thread

• Child thread has its own values of
the PC and SP

▪ Both threads share the other
segments (code, heap, globals)

• They can cooperatively modify
shared data

49

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads
▪ Declared in pthread.h

• Not part of the C/C++ language

▪ To enable support for multithreading, must include -pthread
flag when compiling and linking with gcc command

• g++ –g –Wall –std=c++23 –pthread –o main main.c

▪ Implemented in C

• Must deal with C programming practices and style

50

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Creating and Terminating Threads

❖

▪ Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check
against error constants)

▪ The new thread runs start_routine(arg)

51

int pthread_create(

 pthread_t* thread,

 const pthread_attr_t* attr,

 void* (*start_routine)(void*),

 void* arg);

Output parameter.

Gives us a “thread_descriptor”

Function pointer!

Takes & returns void*

to allow “generics” in C

Argument for the thread function

start_routine

continues

parentpthread_create

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

What To Do After Forking Threads?

❖

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

52

int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child

thread to exit, gets the child’s

return value, and child thread is

cleaned up

start_routine

continues

parentcreate join

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Poll: how are you?

❖ What does this print?

53

pollev.com/tqm

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Thread Example

❖ See cthreads.cpp

▪ How do you properly handle memory management?

• Who allocates and deallocates memory?

• How long do you want memory to stick around?

54

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

What To Do After Forking Threads?

❖

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

❖

▪ Mark thread specified by thread as detached – it will clean up its resources as soon as it
terminates

55

int pthread_detach(pthread_t thread);

int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child

thread to exit, gets the child’s

return value, and child thread is

cleaned up

start_routine

continues

parentcreate join

Detach a thread.

Thread is cleaned up when it is

finished

continues

parentcreate detach

start_routine
x

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Thread Examples

❖ See cthreads.cpp

▪ How do you properly handle memory management?

• Who allocates and deallocates memory?

• How long do you want memory to stick around?

❖ See exit_thread.cpp

▪ Do we need to join every thread we create?

56

CIT 5950, Spring 2025L13: VM & ThreadsUniversity of Pennsylvania

Polling Question

❖ What gets printed?

57

void* thrd_fn(void* arg) {

 int* ptr = reinterpret_cast<int*>(arg);

 cout << *ptr << endl;

}

int main() {

 pthread_t thd1{};

 pthread_t thd2{};

 int x = 1;

 pthread_create(&thd1, nullptr, thrd_fn, &x);

 x = 2;

 pthread_create(&thd2, nullptr, thrd_fn, &x);

 pthread_join(thd1, nullptr);

 pthread_join(thd2, nullptr);

}

pollev.com/tqm

	Default Section
	Slide 1: Virtual Memory & Threads Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Memory Hierarchy
	Slide 6: Memory as an array of bytes
	Slide 7: Poll from last time
	Slide 8: Memory (as we know it now)
	Slide 9: Multiprocessing: The Illusion
	Slide 10: Multiprocessing: The (Traditional) Reality
	Slide 11: Problem 1: How does everything fit?
	Slide 12: Problem 2: Sharing Memory
	Slide 13: This doesn’t work anymore
	Slide 14: Idea:
	Slide 16: Indirection
	Slide 17: Definitions
	Slide 18: This doesn’t work anymore
	Slide 19: Virtual Address Translation
	Slide 20: Pages
	Slide 21: Page Tables
	Slide 22: Paging
	Slide 23: Paging
	Slide 24: Page Fault Exception
	Slide 25: Problem: Paging Replacement
	Slide 26: Paging
	Slide 27: Paging
	Slide 28: Problem: Paging Replacement
	Slide 29: Paging Replacement Algorithms
	Slide 30: FIFO Example:
	Slide 31: (Theoretically) Optimal Algorithm
	Slide 32: Least Recently Used (LRU)
	Slide 33: Poll: how are you?
	Slide 34: How to Implement LRU?
	Slide 35: LRU Data Structure
	Slide 36: LRU Data Structure
	Slide 37: Chaining Hash Cache
	Slide 38: Poll: how are you?
	Slide 40: Memory Hierarchy
	Slide 41: Lecture Outline
	Slide 42: Poll: how are you?
	Slide 43: Introducing Threads
	Slide 44: Threads vs. Processes
	Slide 45: Threads vs. Processes
	Slide 46: Threads vs. Processes
	Slide 47: Threads
	Slide 48: Single-Threaded Address Spaces
	Slide 49: Multi-threaded Address Spaces
	Slide 50: POSIX Threads (pthreads)
	Slide 51: Creating and Terminating Threads
	Slide 52: What To Do After Forking Threads?
	Slide 53: Poll: how are you?
	Slide 54: Thread Example
	Slide 55: What To Do After Forking Threads?
	Slide 56: Thread Examples
	Slide 57: Polling Question

