
CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Threads & Mutex
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao

Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Poll: how are you?

❖ What is your favourite programming language?

2

pollev.com/tqm

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Administrivia

❖ HW07 – File Readers

▪ Posted☺

▪ Due Friday 3/28 at midnight, leaving open till Sunday night tho

▪ AG posted soon

❖ Check-in to be posted soon

3

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Lecture Outline

❖ Threads

❖ Data Sharing & Mutex

4

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Recall: past poll

❖ What does this print?

5

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Introducing Threads

❖ Separate the concept of a process from the “thread of execution”

▪ Threads are contained within a process

▪ Usually called a thread, this is a sequential execution stream within a process

❖ In most modern OS’s:

▪ Threads are the unit of scheduling.

6

thread

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
 & security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
 & registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

7

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Threads vs. Processes

8

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Threads vs. Processes

9

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Threads

❖ Threads are like lightweight processes

▪ They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores

▪ Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can communicate with each other
through variables and memory

– But, they can interfere with each other – need synchronization for shared resources

• Each thread has its own stack

❖ Analogy: restaurant kitchen

▪ Kitchen is process

▪ Chefs are threads

10

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running
in the address space

• One PC, stack, SP

▪ That main thread invokes a
function to create a new thread

• Typically pthread_create()

11

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running
in the address space

• Original thread (parent) and new
thread (child)

• New stack created for child thread

• Child thread has its own values of
the PC and SP

▪ Both threads share the other
segments (code, heap, globals)

• They can cooperatively modify
shared data

12

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads
▪ Declared in pthread.h

• Not part of the C/C++ language

▪ To enable support for multithreading, must include -pthread
flag when compiling and linking with gcc command

• g++ –g –Wall –std=c++23 –pthread –o main main.c

▪ Implemented in C

• Must deal with C programming practices and style

13

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Creating and Terminating Threads

❖

▪ Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check
against error constants)

▪ The new thread runs start_routine(arg)

14

int pthread_create(

 pthread_t* thread,

 const pthread_attr_t* attr,

 void* (*start_routine)(void*),

 void* arg);

Output parameter.

Gives us a “thread_descriptor”

Function pointer!

Takes & returns void*

to allow “generics” in C

Argument for the thread function

start_routine

continues

parentpthread_create

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

What To Do After Forking Threads?

❖

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

15

int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child

thread to exit, gets the child’s

return value, and child thread is

cleaned up

start_routine

continues

parentcreate join

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Poll: how are you?

❖ What does this print?

16

pollev.com/tqm

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Thread Example

❖ See cthreads.cpp

▪ How do you properly handle memory management?

• Who allocates and deallocates memory?

• How long do you want memory to stick around?

17

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

What To Do After Forking Threads?

❖

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

❖

▪ Mark thread specified by thread as detached – it will clean up its resources as soon as it
terminates

18

int pthread_detach(pthread_t thread);

int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child

thread to exit, gets the child’s

return value, and child thread is

cleaned up

start_routine

continues

parentcreate join

Detach a thread.

Thread is cleaned up when it is

finished

continues

parentcreate detach

start_routine
x

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Process Isolation

❖ Process Isolation is a set of mechanisms implemented to protect processes
from each other and protect the kernel from user processes.

▪ Processes have separate address spaces

▪ Processes have privilege levels to restrict access to resources

▪ If one process crashes, others will keep running

❖ Inter-Process Communication (IPC) is limited, but possible

▪ Pipes via pipe()

▪ Sockets via socketpair()

▪ Shared Memory via shm_open()

19

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Parallelism

❖ You can gain performance by running things in parallel

▪ Each thread can use another core

❖ I have a 3800 x 3800 integer matrix, and I want to count the number of odd
integers in the matrix

20

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Parallelism

❖ I have a 3800 x 3800 integer matrix, and I want to count the number of odd
integers in the matrix

❖ I can speed this up by giving each thread a part of the matrix to check!

▪ Works with threads since they share memory

21

Diminishing returns

After 4 threads, no

gain in speed

why? Machine run on

only has 4 cores

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Parallelism vs Concurrency

❖ Two commonly used terms (often mistakenly used interchangeably).

❖ Concurrency: When there are one or more “tasks” that have overlapping
lifetimes (between starting, running and terminating).

▪ That these tasks are both running within the same period.

❖ Parallelism: when one or more “tasks” run at the same instant in time.

❖ Consider the lifetime of these
threads. Which are concurrent with A?
Which are parallel with A?

22

A

B

C

D

thread

time

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

How fast is fork()?

❖ ~ 0.5 milliseconds per fork*

❖ ~ 0.05 milliseconds per thread creation*

▪ 10x faster than fork()

❖ *Past measurements are not indicative of future performance – depends on hardware, OS, software versions, …

▪ Processes are known to be even slower on Windows

23

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Context Switching

❖ Processes are considered “more expensive” than threads. There is more
overhead to enforce isolation

❖ Advantages:

▪ No shared memory between processes

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context switching

▪ Cannot easily share memory between processes – typically communicate through the file
system

24

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Polling Question

❖ What are all possible outputs of this program?

25

void* thrd_fn(void* arg) {

 int* ptr = reinterpret_cast<int*>(arg);

 cout << *ptr << endl;

}

int main() {

 pthread_t thd1{};

 pthread_t thd2{};

 int x = 1;

 pthread_create(&thd1, nullptr, thrd_fn, &x);

 x = 2;

 pthread_create(&thd2, nullptr, thrd_fn, &x);

 pthread_join(thd1, nullptr);

 pthread_join(thd2, nullptr);

}

Are these output
possible?

1
2

2
2

1
1

2
1

pollev.com/tqm

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Visualization

26

int main() {

 int x = 1;

 pthread_create(...);

 x = 2;

 pthread_create(...);

 pthread_join(...);

 pthread_join(...);

}

thrd_fn() {

 cout << *ptr ...;

 return nullptr;

}

thrd_fn() {

 cout << *ptr ...;

 return nullptr;

}

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

❖ The variable x is shared across all threads.

Visualization: Memory

27

int x

main()

1

int main() {

 int x = 1;

 pthread_create(thd1);

 x = 2;

 pthread_create(thd2);

 pthread_join(thd1);

 pthread_join(thd2);

}

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

❖ The variable x is shared across all threads.

Visualization: Memory

28

int main() {

 int x = 1;

 pthread_create(thd1);

 x = 2;

 pthread_create(thd2);

 pthread_join(thd1);

 pthread_join(thd2);

}

int x

main()

1

thd1

int* ptr

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

❖ The variable x is shared across all threads.

Visualization: Memory

29

int main() {

 int x = 1;

 pthread_create(thd1);

 x = 2;

 pthread_create(thd2);

 pthread_join(thd1);

 pthread_join(thd2);

}

int x

main()

2

thd1

int* ptr

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

❖ The variable x is shared across all threads.

Visualization: Memory

30

int main() {

 int x = 1;

 pthread_create(thd1);

 x = 2;

 pthread_create(thd2);

 pthread_join(thd1);

 pthread_join(thd2);

}

int x

main()

2

thd1

int* ptr

thd2

int* ptr

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Sequential Consistency

❖ Within a single thread, we assume* that there is sequential consistency.
That the order of operations within a single thread are the same as the
program order.

31

int x = 1

main()

create thd1

x = 2

create thd2

Within main(), x is set to 1 before thread 1 is created
then thread 1 is created
then x is set to 2
then thread 2 is created

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

32

int x = 1

main() thd1 thd2

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

33

int x = 1

main() thd1 thd2

create thd1

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

34

int x = 1

main() thd1 thd2

create thd1

x = 2

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

35

int x = 1

main() thd1 thd2

create thd1

x = 2

create thd2

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

36

int x = 1

main() thd1 thd2

create thd1

x = 2

create thd2

print x print x

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Visualization: Ordering

❖ Threads run concurrently; we can’t be sure of the ordering of things across
threads.

37

int x = 1

main() thd1 thd2

create thd1

x = 2

create thd2

print x print x

We know that x is initialized to 1 before thd1 is created
We know that x is set to 2 and thd1 is created before thd2 is created

Anything else that we know? No. Beyond those statements, we do not know the ordering
of main and the threads running.

This is also why total.c malloc’d individual
integers for each thread.
Though it could have also just made an array on the stack

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Lecture Outline

❖ Threads

❖ Data Sharing & Mutex

38

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Shared Resources

❖ Some resources are shared between threads and processes

❖ Thread Level:

▪ Memory

▪ Things shared by processes

❖ Process level

▪ I/O devices

• Files

• terminal input/output

• The network

39

Issues arise when we

try to shared things

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Data Races

❖ Two memory accesses form a data race if different threads access the same
location, and at least one is a write, and they occur one after another

▪ Means that the result of a program can vary depending on chance (which thread ran first?
When did a thread get interrupted?)

40

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Data Race Example

❖ If your fridge has no milk,
then go out and buy some more

▪ What could go wrong?

❖ If you live alone:

❖ If you live with a roommate:

41

if (!milk) {

 buy milk

}

! !

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

42

if (!note) {

 if (!milk) {

 leave note

 buy milk

 remove note

 }

}

pollev.com/tqm

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

43

if (!note) {

 if (!milk) {

 leave note

 buy milk

 remove note

 }

}

time

you roommate

Check note

Check milk

Leave note

Buy milk

Check note

Check milk

Leave note

Buy milk

*There are other

possible scenarios

that result in

multiple milks

We can be interrupted

between checking note and

leaving note

pollev.com/tqm

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Threads and Data Races

❖ Data races might interfere in painful, non-obvious ways, depending on the
specifics of the data structure

❖ Example: two threads try to read from and write to the same shared memory
location

▪ Could get “correct” answer

▪ Could accidentally read old value

▪ One thread’s work could get “lost”

❖ Example: two threads try to push an item onto the head of the linked list at the
same time

▪ Could get “correct” answer

▪ Could get different ordering of items

▪ Could break the data structure!
44

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Remember this?

❖ What does this print?

45

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Increment Data Race

❖ What seems like a single operation
is actually multiple operations in one. The increment
looks something like this in assembly:

❖ What happens if we context switch to a different thread while executing these
three instructions?

❖ Reminder: Each thread has its own registers to work with. Each thread would
have its own R0

46

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

++sum_total

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

47

LOAD sum_total into R0

++sum_total

Thread 0

Thread 1

R0 = 0

sum_total = 0

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

48

LOAD sum_total into R0

++sum_total

LOAD sum_total into R0

Thread 0

Thread 1

R0 = 0

sum_total = 0

R0 = 0

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

49

LOAD sum_total into R0

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

Thread 0

Thread 1

R0 = 0

sum_total = 0

R0 = 1

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

50

LOAD sum_total into R0

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 0

sum_total = 1

R0 = 1

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

51

LOAD sum_total into R0

ADD R0 R0 #1

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 1

sum_total = 1

R0 = 1

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Increment Data Race

❖ Consider that sum_total starts at 0 and two threads try to execute

❖ With this example, we could get 1 as an output instead of 2, even though we
executed ++sum_total twice

52

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

++sum_total

LOAD sum_total into R0

ADD R0 R0 #1

STORE R0 into sum_total

Thread 0

Thread 1

R0 = 1

sum_total = 1

R0 = 1

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Synchronization

❖ Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data

▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented

❖ Goals of synchronization:

▪ Liveness – ability to execute in a timely manner
(informally, “something good eventually happens”)

▪ Safety – avoid unintended interactions with shared data
structures (informally, “nothing bad happens”)

53

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that only one thread can
operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ Wait until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to

54

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

block
if locked

❖ Pseudocode:

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Lock API

❖ Locks are constructs that are provided by the operating system to help ensure
synchronization

▪ Often called a mutex or a semaphore

❖ Only one thread can acquire a lock at a time,
No thread can acquire that lock until it has been released

❖ Has memory barriers built into it and usually uses TSL to ensure that acquiring
the lock is atomic (more on TSL and memory barriers in a little bit)

55

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

❖

▪ “Uninitializes” a mutex – clean up when done

56

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

 const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Un-blocks when lock is acquired

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

pthread Mutex Examples

❖ See total.cpp

▪ Data race between threads

❖ See total_locking.cpp

▪ Adding a mutex fixes our data race

❖ How does total_locking compare to sequential code and to total?

▪ Likely slower than both– only 1 thread can increment at a time, and must deal with
checking the lock and switching between threads

▪ One possible fix: each thread increments a local variable and then adds its value (once!) to
the shared variable at the end

• See total_locking_better.cpp

57

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Milk Example – What is the Critical Section?

❖ What if we use a lock on the
refrigerator?

▪ Probably overkill – what if
roommate wanted to get eggs?

❖ For performance reasons, only
put what is necessary in the
critical section

▪ Only lock the milk

▪ But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

58

fridge.lock()

if (!milk) {

 buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

 buy milk

}

milk_lock.unlock()

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

Concurrency

❖ There are at least 4 bad
practices/mistakes done with
locks in the following code.
Find them.
▪ Assume g_lock and k_lock

have been initialized and will be
cleaned up.

▪ Assume that these functions will
be called by multi-threaded
code.

59

pollev.com/tqm

pthread_mutex_t g_lock, k_lock;
int g = 0, k = 0;

void fun1() {
pthread_mutex_lock(&g_lock);
g += 3;
pthread_mutex_unlock(&g_lock);
k++;

}

void fun2(int a, int b) {
pthread_mutex_lock(&g_lock);
g += a;
pthread_mutex_unlock(&g_lock);
pthread_mutex_lock(&k_lock);
a += b;
pthread_mutex_unlock(&k_lock);

}

void fun3() {
int c;
pthread_mutex_lock(&g_lock);
cin >> c; // have the user enter an int
k += c;
pthread_mutex_unlock(&g_lock);

}

CIT 5950, Spring 2025L14: Threads & MutexUniversity of Pennsylvania

That’s all!

❖ Next time:

▪ Deadlocks

▪ Spinning

▪ Condition variables!

61

	Default Section
	Slide 1: Threads & Mutex Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Recall: past poll
	Slide 6: Introducing Threads
	Slide 7: Threads vs. Processes
	Slide 8: Threads vs. Processes
	Slide 9: Threads vs. Processes
	Slide 10: Threads
	Slide 11: Single-Threaded Address Spaces
	Slide 12: Multi-threaded Address Spaces
	Slide 13: POSIX Threads (pthreads)
	Slide 14: Creating and Terminating Threads
	Slide 15: What To Do After Forking Threads?
	Slide 16: Poll: how are you?
	Slide 17: Thread Example
	Slide 18: What To Do After Forking Threads?
	Slide 19: Process Isolation
	Slide 20: Parallelism
	Slide 21: Parallelism
	Slide 22: Parallelism vs Concurrency
	Slide 23: How fast is fork()?
	Slide 24: Context Switching
	Slide 25: Polling Question
	Slide 26: Visualization
	Slide 27: Visualization: Memory
	Slide 28: Visualization: Memory
	Slide 29: Visualization: Memory
	Slide 30: Visualization: Memory
	Slide 31: Sequential Consistency
	Slide 32: Visualization: Ordering
	Slide 33: Visualization: Ordering
	Slide 34: Visualization: Ordering
	Slide 35: Visualization: Ordering
	Slide 36: Visualization: Ordering
	Slide 37: Visualization: Ordering
	Slide 38: Lecture Outline
	Slide 39: Shared Resources
	Slide 40: Data Races
	Slide 41: Data Race Example
	Slide 42: Data Race Example
	Slide 43: Data Race Example
	Slide 44: Threads and Data Races
	Slide 45: Remember this?
	Slide 46: Increment Data Race
	Slide 47: Increment Data Race
	Slide 48: Increment Data Race
	Slide 49: Increment Data Race
	Slide 50: Increment Data Race
	Slide 51: Increment Data Race
	Slide 52: Increment Data Race
	Slide 53: Synchronization
	Slide 54: Lock Synchronization
	Slide 55: Lock API
	Slide 56: pthreads and Locks
	Slide 57: pthread Mutex Examples
	Slide 58: Milk Example – What is the Critical Section?
	Slide 59: Concurrency
	Slide 61: That’s all!

