
CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Condition Variables & Thread Wrapup
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao

Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Poll: how are you?

❖ Meow

2

pollev.com/tqm

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Administrivia

❖ HW08 – Threads Image Blurring

▪ Posted☺

▪ Due Friday 4/04 at midnight, leaving open till Sunday night tho

▪ AG posted soon NOW (I encountered issues but they should be resolved soon NOW)

▪ Some hints gone over in Recitation this week

❖ Next Check-in posted soon-ish

3

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Lecture Outline

❖ Producer / Consumer

❖ Spinning & Condition Variables

❖ Benefits of Concurrency

❖ Parallel Analysis

4

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

5

pollev.com/tqm

❖ Does this code have a data race?

▪ Assume that there is one thread running produce()
and another thread running consume()

▪ Can this program enter an “invalid” (unexpected or
error) state from having concurrent memory accesses?

▪ Assume lock initialized and funcs don’t fail

❖ Any issues with this code?

pthread_mutex_t lock;
string data;

void* produce(void* arg) {
 int fd = open(some_file, O_RDONLY);
 char buf[1024];
 ssize_t res = read(fd, buf, 1023);
 buf[res] = '\0';

 pthread_mutex_lock(&lock);
 data = string(buf);
 pthread_mutex_unlock(&lock);

 pthread_exit(NULL);
}

void* consume(void* arg) {
 pthread_mutex_lock(&lock);
 if (!data.empty()) {
 print(data);
 }
 thread_mutex_unlock(&lock);
 pthread_exit(NULL);
}

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Race Condition vs Data Race

❖ Data-Race: when there are concurrent accesses to a shared resource, with at
least one write, that can cause the shared resource to enter an invalid or
“unexpected” state.

❖ Race-Condition: Where the program has different behaviour depending on the
ordering of concurrent threads. This can happen even if all accesses to shared
resources are “atomic” or “locked”

❖ The previous example has no data-race, but it does have a race condition

6

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Thread Communication

❖ Sometimes threads may need to communicate with each other to know when
they can perform operations

❖ Example: Producer and consumer threads

▪ One thread creates tasks/data

▪ One thread consumes the produced tasks/data to perform some operation

▪ The consumer thread can only consume things once the producer has produced them

❖ Need to make sure this communication has no data race or race condition

7

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Producer & Consumer Problem

❖ Common design pattern in concurrent programming.

▪ There are at least two threads, at least one producer and at least one consumer.

▪ The producer threads create some data that is then added to a shared data structure

▪ Consumers will process and remove data from the shared data structure

❖ We need to make sure that the threads play nice

8

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Aside: C++ deque

❖ I am using a c++ deque for this example so that we don’t have to write our
own data structure. This is not legal C

❖ Deque is a double ended queue, you can push to the front or back and pop
from the front or back

9

// global deque of integers

// will be initialized to be empty

deque<int> dq {};

int main() {

 dq.push_back(3); // adds 3

 int val = dq.at(0); // access index 0

 dq.pop_front() // delete first element

 printf("%d\n", val); // should print 3

}

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Producer Consumer Example

❖ Does this work?

❖ Assume that two threads are
created, one assigned to each
function

10

deque<int> dq {};

void* producer_thread(void* arg) {

 while (true) {

 dq.push_back(long_computation());

 }

}

void* consumer_thread(void* arg) {

 while (true) {

 while (dq.size() == 0) {

 // do nothing

 }

 int val = dq.at(0);

 dq.pop_front();

 do_something(val);

 }

}

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Producer Consumer Example

❖ How do we use mutex to fix
this? To make sure that the
threads access dq safely.

▪ You are only allowed to add calls
to pthread_mutex_lock and
pthread_mutex_unlock

▪ Can add other mutexes if needed

❖ Similar code: no_sync.cpp

11

deque<int> dq {};

pthread_mutex_t dq_lock;

void* producer_thread(void* arg) {

 while (true) {

 dq.push_back(long_computation());

 }

}

void* consumer_thread(void* arg) {

 while (true) {

 while (dq.size() == 0) {

 // do nothing

 }

 int val = dq.at(0);

 dq.pop_front();

 do_something(val);

 }

}

pollev.com/tqm

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Any issue?

❖ The code is correct, but do we notice anything wrong with this code?

❖ Maybe a common inefficiency that I have told you about several times before
(just in other contexts?)

❖ The consumer code “busy waits” when there is nothing for it to consume.

▪ It is particularly bad if we have multiple consumers, the locks make the busy waiting of the
consumers sequential and use more CPU resources.

14

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Thread Communication: Naïve Solution

❖ Consider the example where a thread must wait to be notified before it can
print something out and terminate

❖ Possible solution: “Spinning”

▪ Infinitely loop until the producer thread notifies that the consumer thread can print

❖ See spinning.cpp

▪ The thread in the loop uses A LOT of cpu just checking until the value is safe

▪ Use top to see CPU util

❖ Alternative: Condition variables

15

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Condition Variables

❖ Variables that allow for a thread to wait until they are notified to resume

❖ Avoids waiting clock cycles “spinning”

❖ Done in the context of mutual exclusion

▪ a thread must already have a lock, which it will temporarily release while waiting

▪ Once notified, the thread will re-acquire a lock and resume execution

16

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Initializes a condition variable with specified attributes

❖

▪ “Uninitializes” a condition variable – clean up when done

17

int pthread_cond_init(pthread_cond_t* cond,

 const pthread_condattr_t* attr);

int pthread_cond_destroy(pthread_cond_t* cond);

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Atomically releases the mutex and blocks on the condition variable. Once unblocked (by
one of the functions below), function will return and calling thread will have the mutex
locked

❖ pthread_mutex_lock()

▪ Unblock at least one of the threads on the specified condition

❖ pthread_mutex_unlock()

▪ Unblock all threads blocked on the specified condition

18

int pthread_cond_broadcast(pthread_cond_t* cond);

int pthread_cond_signal(pthread_cond_t* cond);

int pthread_cond_wait(pthread_cond_t* cond,

 pthread_mutex_t* mutex);

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

pthread_cond_t Internal Pseudo-Code

❖ Here is some pseudo code to help understand condition variables

19

int pthread_cond_wait(pthread_cond_t* cond, pthead_mutex_t* mutex) {
 pthread_mutex_unlock(&lock);
 sleep_on_cond(cond); // sleeps till cond wakes them up
 pthread_mutex_lock(&lock);
 return 0;

}

int pthread_cond_signal(pthread_cond_t* cond) {
 wakeup_a_thread(cond); // wake's up a thread sleeping on the cond
 return 0;

}

int pthread_cond_broadcast(pthread_cond_t* cond) {
 for (thread_sleeping : cond->asleep) { // wake's up all threads
 wakeup(thread_sleeping);
 }
 return 0;

}

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Demo: cond.cpp

❖ See cond.cpp

▪ Changes our spinning code to use a condition variable properly

▪ No issues with cpu utilization!

20

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

21

Critical SectionEntrance Exit

sleeping
room

Waiting
room

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

22

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock

A thread enters the critical section by acquiring a lock

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

23

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_mutex_unlock

A thread can exit the critical section by acquiring a lock

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

24

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_mutex_unlock

pthread_cond_wait

If a thread can’t complete its action, or must wait for some change in
state, it can “go to sleep” until someone wakes it up later.
It will release the lock implicitly when it goes to sleep

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

25

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_cond_signal

pthread_mutex_unlock

pthread_cond_wait

When a thread modifies state and then leaves the critical section, it can also call
pthread_cond_signal to wake up threads sleeping on that condition variable

“WAKEUP”

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

26

Critical SectionEntrance Exit

sleeping
room

Waiting
room

pthread_mutex_lock
pthread_cond_signal

pthread_mutex_unlock

pthread_cond_wait

One or more sleeping threads wake up and attempt to acquire the lock.
Like a normal call to pthread_mutex_lock the thread will block until it can acquire the lock

Implicit call to

pthread_mutex_lock

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Lecture Outline

❖ Producer / Consumer

❖ Spinning & Condition Variables

❖ Benefits of Concurrency

❖ Parallel Analysis

27

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Building a Web Search Engine

❖ We have:

▪ A web index

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set

28

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Search Engine Architecture

29

query
processor

client
index

file

index
file

index
file

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Search Engine (Pseudocode)

30

doclist Lookup(string word) {

 bucket = hash(word);

 hitlist = file.read(bucket);

 foreach hit in hitlist {

 doclist.append(file.read(hit));

 }

 return doclist;

}

main() {

 SetupServerToReceiveConnections();

 while (1) {

 string query_words[] = GetNextRequest();

 results = Lookup(query_words[0]);

 foreach word in query[1..n] {

 results = results.intersect(Lookup(word));

 }

 send_results(results);

 }

}

pollev.com/tqm

❖ This is pseudo code for
what our multi threaded
server does.

❖ When do you think our
code reads from the
network?

❖ When does it read from
a file?

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Execution Timeline: a Multi-Word Query

32

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

n
e
t
w
o
r
k

I
/
O

D
i
s
p
l
a
y
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

• • •

time

query
C
P
U

C
P
U

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

33

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Execution Timeline: To Scale

34

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

d
i
s
k

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

• • •

time

query

n
e
t
w
o
r
k

I
/
O

C
P
U

C
P
U

Model isn’t perfect:

Technically also some cpu usage to setup I/O.

Network output also (probably) won’t block program …..

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Uh-Oh: Handling Multiple Clients

35

query
processor

client

client

client

client

client

index
file

index
file

index
file

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Uh-Oh: Handling Multiple Clients

36

time

query 2

query 3

query 1

The CPU is idle most
of the time!

(picture not to scale)

Only one I/O request at
a time is “in flight”

Queries don’t run until
earlier queries finish

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

I
/
O

2
.
f

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

I
/
O

3
.
f

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

I
/
O

1
.
f

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

▪ And clients queue up behind the queries …

❖ Even while processing one query, the CPU is idle the vast majority of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

37

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

A Concurrent Implementation

❖ Use multiple threads

▪ As a query arrives, create a new threads to handle it

• The thread reads the query from the network, issues read requests against files, assembles
results and writes to the network

• The thread uses blocking I/O; the thread alternates between consuming CPU cycles and blocking
on I/O

▪ The OS context switches between threads

• While one is blocked on I/O, another can use the CPU

• Multiple threads I/O requests can be issued at once

38

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Multithreaded Server

39

client

server

accept()

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Multithreaded Server

40

client

server

pthread_create()

pthread_detach()

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Multithreaded Server

41

client

server

accept()

client

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Multithreaded Server

42

client

client

server

pthread_create()

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Multithreaded Server

43

client

client

client

client

client

client
server

shared
data

structures

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Multi-threaded Search Engine (Execution)

44

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

*Running with 1 CPU

Note how only one thread

uses any specific resource

at a time

The OS schedules all of

this for us ☺

The CPU is the Central Processing Unit

Other pieces of hardware have their

own small processors to do specialized

work.

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel on CPU if you have multiple CPUs/cores

▪ Threads can run in “parallel” on different pieces of hardware

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Thread Creation / Destruction, Lock contention, context switch overhead, and other issues

▪ Need programming language support for threads

• As long as you have a shell, you can fork a process

45

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Limiting Overhead w/ Thread Pools

❖ Creation and destruction of threads can be expensive.

❖ What if we maintained a collection (a “pool”) of threads we could then reuse?

▪ Often called a “worker-crew” model or “replicated workers” model

❖ Threads would wait for some task to be PRODUCED and then a thread would
then go perform that task.

❖ You will have to implement one of these for the final project

▪ More details next week on this

46

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Multithreaded Server: Thread Pool

47

client

server

accept()

shared
data

structures

pool

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Multithreaded Server: Thread Pool

48

server

accept()

shared
data

structures

pool

enqueue_job()client

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Multithreaded Server: Thread Pool

49

server

shared
data

structures

pool

client

do_job()

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Multithreaded Server: Thread Pool

50

server

shared
data

structures

pool

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Multithreaded Server: Thread Pool

51

server

shared
data

structures

pool

client

client

client

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Lecture Outline

❖ Producer / Consumer

❖ Spinning & Condition Variables

❖ Benefits of Concurrency

❖ Parallel Analysis

52

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Parallel Algorithms

❖ One interesting applications of threads is for faster algorithms

❖ Common Example: Merge sort

53

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

Output array

firstIndex secondIndex

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1Output array

firstIndex secondIndex

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2Output array

firstIndex secondIndex

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3Output array

firstIndex secondIndex

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4Output array

firstIndex secondIndex

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4 5Output array

firstIndex secondIndex

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4 5 6Output array

firstIndex secondIndex

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4 5 6 7Output array

firstIndex secondIndex

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays:

2 4 7 81 3 5 6

1 2 3 4 5 6 7 8Output array

firstIndex secondIndex

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78

10 11 14 15 20 54 55 78

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

❖ Algorithmic analysis of merge sort gets us to O(n * log(n)) runtime.

❖ We recurse log2(N) times, each recursive “layer” does O(N) work

70

void merge_sort(int[] arr, int lo, int hi) {

 // lo high start at 0 and arr.length respectively

 int mid = (lo + hi) / 2;

 merge_sort(arr, lo, mid); // sort the bottom half

 merge_sort(arr, mid, hi); // sort the upper half

 // combine the upper and lower half into one sorted

 // array containing all eles

 merge(arr[lo : mid], arr[mid : hi]);

}

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

71

void merge_sort(int[] arr, int lo, int hi) {

 // lo high start at 0 and arr.length respectively

 int mid = (lo + hi) / 2;

 // sort bottom half in parallel

 pthread_create(merge_sort(arr, lo, mid));

 merge_sort(arr, mid, hi); // sort the upper half

 pthread_join(); // join the thread that did bottom half

 // combine the upper and lower half into one sorted

 // array containing all eles

 merge(arr[lo : mid], arr[mid : hi]);

}

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

▪ How long does this take to run?

▪ How much work is being done? 72

void merge_sort(int[] arr, int lo, int hi) {

 // lo high start at 0 and arr.length respectively

 int mid = (lo + hi) / 2;

 // sort bottom half in parallel

 pthread_create(merge_sort(arr, lo, mid));

 merge_sort(arr, mid, hi); // sort the upper half

 pthread_join(); // join the thread that did bottom half

 // combine the upper and lower half into one sorted

 // array containing all eles

 merge(arr[lo : mid], arr[mid : hi]);

}

pollev.com/tqm

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Parallel Algos:

❖ We can define T(n) to be the running time of our algorithm

❖ We can split up our work between two parts, the part done sequentially, and
the part done in parallel

▪ T(n) = sequential_part + parallel_part

▪ T(n) = O(n) merging + T(n/2) sort half the array

• This is a recursive definition

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

73

Will not test you on this

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Parallel Algos:

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

▪ …

▪ Eventually we stop, there is a limit to the length of the array.
And we can say an array of size 1 is already sorted, so T(1) = O(1)

❖ This approximates to T(n) = ~2 * O(n) = O(n)

▪ This parallel merge sort is O(n), but there are further optimizations that can be done to
reach ~O(log(n))

❖ There is a lot more to parallel algo analysis than just this, I am just giving you a
sneak peek

74

Will not test you on this

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Amdahl's Law

❖ For most algorithms, there are parts that parallelize well and parts that don’t.
This causes adding threads to have diminishing returns

▪ (even ignoring the overhead costs of creating & scheduling threads)

❖ Consider we have some parallel algorithm T1 = 1

▪ The 1 subscript indicates this is run on 1 thread

▪ we define the work for the entire algorithm as 1

❖ We define S as being the part that can be parallelized

▪ T1 = S + (1 – S) // (1-S) is the sequential part

75

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Amdahl's Law

❖ For running on one thread:

▪ T1 = (1 – S) + S

❖ If we have P threads and perfect linear speedup on the parallelizable part, we
get

▪ TP = (1-S) +
𝑆

𝑃

❖ Speed up multiplier for P threads from sequential is:

▪
𝑇1

𝑇𝑝
 =

1

1−𝑆+
𝑆

𝑃

76

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Amdahl's Law

❖ Let’s say that we have 100000 threads (P = 100000) and our algorithm is only
2/3 parallel? (s = 0.6666..)

▪
𝑇1

𝑇𝑝
 =

1

1−0.6666+
0.6666

100000

= 2.9999 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 90% parallel? (S = 0.9):

▪
𝑇1

𝑇𝑝
 =

1

1−0.9+
0.9

100000

= 9.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 99% parallel? (S = 0.99):

▪
𝑇1

𝑇𝑝
 =

1

1−0.99+
0.99

100000

= 99.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

77

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Limitation: Hardware Threads

❖ These algorithms are limited by hardware.

❖ Number of Hardware Threads: The number of threads can genuinely run in
parallel on hardware

❖ We may be able to create a huge number of threads, but only run a few (e.g. 4)
in parallel at a time.

❖ Can see this information in with lscpu in bash

▪ A computer can have some number of CPU sockets

▪ Each CPU can have one or more cores

▪ Each Core can run 1 or more threads

78

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Limitations: Other Hardware

❖ This algorithm analysis assumes we are spending time purely in the CPU

❖ It doesn’t account for threads blocking on I/O or other hardware.

79

CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Next Lecture

❖ Intro to networking ☺

80

	Default Section
	Slide 1: Condition Variables & Thread Wrapup Computer Systems Programming, Spring 2025
	Slide 2: Poll: how are you?
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5
	Slide 6: Race Condition vs Data Race
	Slide 7: Thread Communication
	Slide 8: Producer & Consumer Problem
	Slide 9: Aside: C++ deque
	Slide 10: Producer Consumer Example
	Slide 11: Producer Consumer Example
	Slide 14: Any issue?
	Slide 15: Thread Communication: Naïve Solution
	Slide 16: Condition Variables
	Slide 17: pthreads and condition variables
	Slide 18: pthreads and condition variables
	Slide 19: pthread_cond_t Internal Pseudo-Code
	Slide 20: Demo: cond.cpp
	Slide 21: Condition Variable & Mutex Visualization
	Slide 22: Condition Variable & Mutex Visualization
	Slide 23: Condition Variable & Mutex Visualization
	Slide 24: Condition Variable & Mutex Visualization
	Slide 25: Condition Variable & Mutex Visualization
	Slide 26: Condition Variable & Mutex Visualization
	Slide 27: Lecture Outline
	Slide 28: Building a Web Search Engine
	Slide 29: Search Engine Architecture
	Slide 30: Search Engine (Pseudocode)
	Slide 32: Execution Timeline: a Multi-Word Query
	Slide 33: What About I/O-caused Latency?
	Slide 34: Execution Timeline: To Scale
	Slide 35: Uh-Oh: Handling Multiple Clients
	Slide 36: Uh-Oh: Handling Multiple Clients
	Slide 37: Sequential Can Be Inefficient
	Slide 38: A Concurrent Implementation
	Slide 39: Multithreaded Server
	Slide 40: Multithreaded Server
	Slide 41: Multithreaded Server
	Slide 42: Multithreaded Server
	Slide 43: Multithreaded Server
	Slide 44: Multi-threaded Search Engine (Execution)
	Slide 45: Why Threads?
	Slide 46: Limiting Overhead w/ Thread Pools
	Slide 47: Multithreaded Server: Thread Pool
	Slide 48: Multithreaded Server: Thread Pool
	Slide 49: Multithreaded Server: Thread Pool
	Slide 50: Multithreaded Server: Thread Pool
	Slide 51: Multithreaded Server: Thread Pool
	Slide 52: Lecture Outline
	Slide 53: Parallel Algorithms
	Slide 54: Merge Sort: Core Ideas
	Slide 55: Merge Sort: Core Ideas
	Slide 56: Merge Sort: Core Ideas
	Slide 57: Merge Sort: Core Ideas
	Slide 58: Merge Sort: Core Ideas
	Slide 59: Merge Sort: Core Ideas
	Slide 60: Merge Sort: Core Ideas
	Slide 61: Merge Sort: Core Ideas
	Slide 62: Merge Sort: Core Ideas
	Slide 63: Merge Sort: High Level Example
	Slide 64: Merge Sort: High Level Example
	Slide 65: Merge Sort: High Level Example
	Slide 66: Merge Sort: High Level Example
	Slide 67: Merge Sort: High Level Example
	Slide 68: Merge Sort: High Level Example
	Slide 69: Merge Sort: High Level Example
	Slide 70: Merge Sort Algorithmic Analysis
	Slide 71: Merge Sort Algorithmic Analysis
	Slide 72: Merge Sort Algorithmic Analysis
	Slide 73: Parallel Algos:
	Slide 74: Parallel Algos:
	Slide 75: Amdahl's Law
	Slide 76: Amdahl's Law
	Slide 77: Amdahl's Law
	Slide 78: Limitation: Hardware Threads
	Slide 79: Limitations: Other Hardware
	Slide 80: Next Lecture

