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Poll: how are you?

❖ Meow
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Administrivia

❖ HW08 – Threads Image Blurring

▪ Posted☺

▪ Due Friday 4/04 at midnight, leaving open till Sunday night tho

▪ AG posted soon NOW (I encountered issues but they should be resolved soon NOW)

▪ Some hints gone over in Recitation this week

❖ Next Check-in posted soon-ish
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Lecture Outline

❖ Producer / Consumer

❖ Spinning & Condition Variables

❖ Benefits of Concurrency

❖ Parallel Analysis
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pollev.com/tqm

❖ Does this code have a data race?

▪ Assume that there is one thread running produce()
and another thread running consume()

▪ Can this program enter an “invalid” (unexpected or 
error) state from having concurrent memory accesses?

▪ Assume lock initialized and funcs don’t fail

❖ Any issues with this code?

pthread_mutex_t lock;
string data;

void* produce(void* arg) {
 int fd = open(some_file, O_RDONLY);
 char buf[1024];
 ssize_t res = read(fd, buf, 1023);
 buf[res] = '\0'; 

 pthread_mutex_lock(&lock);
 data = string(buf);
 pthread_mutex_unlock(&lock);

 pthread_exit(NULL);
}

void* consume(void* arg) {
 pthread_mutex_lock(&lock);
 if (!data.empty()) {
  print(data);
 }
 thread_mutex_unlock(&lock);
 pthread_exit(NULL);
}
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Race Condition vs Data Race

❖ Data-Race: when there are concurrent accesses to a shared resource, with at 
least one write, that can cause the shared resource to enter an invalid or 
“unexpected” state.

❖ Race-Condition: Where the program has different behaviour depending on the 
ordering of concurrent threads. This can happen even if all accesses to shared 
resources are “atomic” or “locked”

❖ The previous example has no data-race, but it does have a race condition 

6
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Thread Communication

❖ Sometimes threads may need to communicate with each other to know when 
they can perform operations

❖ Example: Producer and consumer threads

▪ One thread creates tasks/data

▪ One thread consumes the produced tasks/data to perform some operation

▪ The consumer thread can only consume things once the producer has produced them 

❖ Need to make sure this communication has no data race or race condition

7
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Producer & Consumer Problem

❖ Common design pattern in concurrent programming.

▪ There are at least two threads, at least one producer and at least one consumer.

▪ The producer threads create some data that is then added to a shared data structure

▪ Consumers will process and remove data from the shared data structure

❖ We need to make sure that the threads play nice 

8
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Aside: C++ deque

❖ I am using a c++ deque for this example so that we don’t have to write our 
own data structure.  This is not legal C

❖ Deque is a double ended queue, you can push to the front or back and pop 
from the front or back

9

// global deque of integers

// will be initialized to be empty

deque<int> dq {};

int main() {

  dq.push_back(3);      // adds 3

  int val = dq.at(0);   // access index 0

  dq.pop_front()        // delete first element

  printf("%d\n", val);  // should print 3

}
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Producer Consumer Example

❖ Does this work?

❖ Assume that two threads are 
created, one assigned to each 
function

10

deque<int> dq {};

void* producer_thread(void* arg) {

  while (true) {

    dq.push_back(long_computation()); 

  }

}

void* consumer_thread(void* arg) {

  while (true) {

    while (dq.size() == 0) {

      // do nothing

    }

    int val = dq.at(0);

    dq.pop_front();

    do_something(val);

  }

}
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Producer Consumer Example

❖ How do we use mutex to fix 
this? To make sure that the 
threads access dq safely.

▪ You are only allowed to add calls 
to pthread_mutex_lock and 
pthread_mutex_unlock

▪ Can add other mutexes if needed

❖ Similar code: no_sync.cpp

11

deque<int> dq {};

pthread_mutex_t dq_lock;

void* producer_thread(void* arg) {

  while (true) {

    dq.push_back(long_computation()); 

  }

}

void* consumer_thread(void* arg) {

  while (true) {

    while (dq.size() == 0) {

      // do nothing

    }

    int val = dq.at(0);

    dq.pop_front();

    do_something(val);

  }

}

pollev.com/tqm
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Any issue?

❖ The code is correct, but do we notice anything wrong with this code?

❖ Maybe a common inefficiency that I have told you about several times before 
(just in other contexts?)

❖ The consumer code “busy waits” when there is nothing for it to consume.

▪ It is particularly bad if we have multiple consumers, the locks make the busy waiting of the 
consumers sequential and use more CPU resources. 

14
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Thread Communication: Naïve Solution

❖ Consider the example where a thread must wait to be notified before it can 
print something out and terminate

❖ Possible solution: “Spinning”

▪ Infinitely loop until the producer thread notifies that the consumer thread can print

❖ See spinning.cpp

▪ The thread in the loop uses A LOT of cpu just checking until the value is safe

▪ Use top to see CPU util

❖ Alternative: Condition variables

15
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Condition Variables

❖ Variables that allow for a thread to wait until they are notified to resume

❖ Avoids waiting clock cycles “spinning”

❖ Done in the context of mutual exclusion

▪ a thread must already have a lock, which it will temporarily release while waiting

▪ Once notified, the thread will re-acquire a lock and resume execution

16
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pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Initializes a condition variable with specified attributes

❖  

▪ “Uninitializes” a condition variable – clean up when done

17

int pthread_cond_init(pthread_cond_t* cond,

                const pthread_condattr_t* attr);

int pthread_cond_destroy(pthread_cond_t* cond);
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pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Atomically releases the mutex and blocks on the condition variable. Once unblocked (by 
one of the functions below), function will return and calling thread will have the mutex 
locked

❖ pthread_mutex_lock()

▪ Unblock at least one of the threads on the specified condition

❖ pthread_mutex_unlock()

▪ Unblock all threads blocked on the specified condition

18

int pthread_cond_broadcast(pthread_cond_t* cond);

int pthread_cond_signal(pthread_cond_t* cond);

int pthread_cond_wait(pthread_cond_t* cond,

                pthread_mutex_t* mutex);
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pthread_cond_t Internal Pseudo-Code

❖ Here is some pseudo code to help understand condition variables

19

int pthread_cond_wait(pthread_cond_t* cond, pthead_mutex_t* mutex) {
 pthread_mutex_unlock(&lock);
 sleep_on_cond(cond); // sleeps till cond wakes them up
 pthread_mutex_lock(&lock);
 return 0;

}

int pthread_cond_signal(pthread_cond_t* cond) {
 wakeup_a_thread(cond); // wake's up a thread sleeping on the cond
 return 0;

}

int pthread_cond_broadcast(pthread_cond_t* cond) { 
 for (thread_sleeping : cond->asleep) { // wake's up all threads
  wakeup(thread_sleeping); 
 }
 return 0;

}
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Demo: cond.cpp

❖ See cond.cpp

▪ Changes our spinning code to use a condition variable properly

▪ No issues with cpu utilization!

20



CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

21
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

22

Critical SectionEntrance Exit

sleeping 
room

Waiting
room

pthread_mutex_lock

A thread enters the critical section by acquiring a lock 
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

23

Critical SectionEntrance Exit

sleeping 
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A thread can exit the critical section by acquiring a lock 
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

24

Critical SectionEntrance Exit

sleeping 
room

Waiting
room

pthread_mutex_lock
pthread_mutex_unlock

pthread_cond_wait

If a thread can’t complete its action, or must wait for some change in 
state, it can “go to sleep” until someone wakes it up later.
It will release the lock implicitly when it goes to sleep
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example

25

Critical SectionEntrance Exit

sleeping 
room

Waiting
room

pthread_mutex_lock
pthread_cond_signal

pthread_mutex_unlock

pthread_cond_wait

When a thread modifies state and then leaves the critical section, it can also call 
pthread_cond_signal to wake up threads sleeping on that condition variable

“WAKEUP”
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Condition Variable & Mutex Visualization

❖ This is to visualize how we are using condition variables in this example
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Critical SectionEntrance Exit
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room
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pthread_mutex_lock
pthread_cond_signal

pthread_mutex_unlock

pthread_cond_wait

One or more sleeping threads wake up and attempt to acquire the lock.
Like a normal call to pthread_mutex_lock the thread will block until it can acquire the lock

Implicit call to

pthread_mutex_lock
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Lecture Outline

❖ Producer / Consumer

❖ Spinning & Condition Variables

❖ Benefits of Concurrency

❖ Parallel Analysis

27
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Building a Web Search Engine

❖ We have:

▪ A web index

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set

28
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Search Engine Architecture
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Search Engine (Pseudocode)

30

doclist Lookup(string word) {

  bucket = hash(word);

  hitlist = file.read(bucket);

  foreach hit in hitlist {

    doclist.append(file.read(hit));

  }

  return doclist;

}

main() {

  SetupServerToReceiveConnections();

  while (1) {

    string query_words[] = GetNextRequest();

    results = Lookup(query_words[0]);

    foreach word in query[1..n] {

      results = results.intersect(Lookup(word));

    }

    send_results(results);

  }

}

pollev.com/tqm

❖ This is pseudo code for
what our multi threaded
server does.

❖ When do you think our
code reads from the
network?

❖ When does it read from
a file?
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Execution Timeline: a Multi-Word Query

32
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What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

33
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Execution Timeline: To Scale

34

n
e
t
w
o
r
k
 
I
/
O

m
a
i
n
(
)

d
i
s
k
 
I
/
O

d
i
s
k
 
I
/
O

d
i
s
k
 
I
/
O

• • •

time

query

n
e
t
w
o
r
k
 
I
/
O

C
P
U

C
P
U

Model isn’t perfect:

Technically also some cpu usage to setup I/O.

Network output also (probably) won’t block program …..



CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

Uh-Oh: Handling Multiple Clients
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Uh-Oh: Handling Multiple Clients
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Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

▪ And clients queue up behind the queries …

❖ Even while processing one query, the CPU is idle the vast majority of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

37



CIT 5950, Spring 2025L16: Condition Variables & Threads ConcurrencyUniversity of Pennsylvania

A Concurrent Implementation 

❖ Use multiple threads

▪ As a query arrives, create a new threads to handle it

• The thread reads the query from the network, issues read requests against files, assembles 
results and writes to the network

• The thread uses blocking I/O; the thread alternates between consuming CPU cycles and blocking 
on I/O

▪ The OS context switches between threads

• While one is blocked on I/O, another can use the CPU

• Multiple threads I/O requests can be issued at once

38
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Multithreaded Server

39

client

server

accept()
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Multithreaded Server

40

client

server

pthread_create()

pthread_detach()
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Multithreaded Server

41

client

server

accept()

client
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Multithreaded Server

42

client

client
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pthread_create()
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Multithreaded Server

43
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Multi-threaded Search Engine (Execution)
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Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel on CPU if you have multiple CPUs/cores

▪ Threads can run in “parallel” on different pieces of hardware

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Thread Creation / Destruction, Lock contention, context switch overhead, and other issues

▪ Need programming language support for threads

• As long as you have a shell, you can fork a process

45
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Limiting Overhead w/ Thread Pools

❖ Creation and destruction of threads can be expensive.

❖ What if we maintained a collection (a “pool”) of threads we could then reuse?

▪ Often called a “worker-crew” model or “replicated workers” model

❖ Threads would wait for some task to be PRODUCED and then a thread would 
then go perform that task.

❖ You will  have to implement one of these for the final project

▪ More details next week on this

46
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Multithreaded Server: Thread Pool

47
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Multithreaded Server: Thread Pool

48
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Multithreaded Server: Thread Pool

49
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Multithreaded Server: Thread Pool

50
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Multithreaded Server: Thread Pool

51
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Lecture Outline

❖ Producer / Consumer

❖ Spinning & Condition Variables

❖ Benefits of Concurrency

❖ Parallel Analysis

52
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Parallel Algorithms 

❖ One interesting applications of threads is for faster algorithms

❖ Common Example: Merge sort

53
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3 4Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3 4 5Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3 4 5 6Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3 4 5 6 7Output array

firstIndex secondIndex
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Merge Sort: Core Ideas

❖ It is easier to sort small arrays than big arrays

❖ It is quicker to merge two sorted arrays than sort an unsorted array

▪ Consider the two sorted arrays: 

2 4 7 81 3 5 6

1 2 3 4 5 6 7 8Output array

firstIndex secondIndex
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78
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Merge Sort: High Level Example

20 10 15 54 55 11 78 14

55 11 78 1420 10 15 54

20 10 15 54 55 11 78 14

20 10 15 54 55 11 78 14

10 20 15 54 11 55 14 78

10 15 20 54 11 14 55 78

10 11 14 15 20 54 55 78
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Merge Sort Algorithmic Analysis

❖ Algorithmic analysis of merge sort gets us to O(n * log(n)) runtime.

❖ We recurse log2(N) times, each recursive “layer” does O(N) work 

70

void merge_sort(int[] arr, int lo, int hi) {

  // lo high start at 0 and arr.length respectively

  int mid = (lo + hi) / 2; 

  merge_sort(arr, lo, mid);  // sort the bottom half

  merge_sort(arr, mid, hi);  // sort the upper half

  // combine the upper and lower half into one sorted

  // array containing all eles

  merge(arr[lo : mid], arr[mid : hi]);

}
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Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

71

void merge_sort(int[] arr, int lo, int hi) {

  // lo high start at 0 and arr.length respectively

  int mid = (lo + hi) / 2; 

  // sort bottom half in parallel

  pthread_create(merge_sort(arr, lo, mid)); 

  merge_sort(arr, mid, hi);  // sort the upper half

  

  pthread_join(); // join the thread that did bottom half

  // combine the upper and lower half into one sorted

  // array containing all eles

  merge(arr[lo : mid], arr[mid : hi]);

}
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Merge Sort Algorithmic Analysis

❖ We can use threads to speed this up:

▪ Now we are sorting both halves of the array in parallel!

▪ How long does this take to run?

▪ How much work is being done? 72

void merge_sort(int[] arr, int lo, int hi) {

  // lo high start at 0 and arr.length respectively

  int mid = (lo + hi) / 2; 

  // sort bottom half in parallel

  pthread_create(merge_sort(arr, lo, mid)); 

  merge_sort(arr, mid, hi);  // sort the upper half

  

  pthread_join(); // join the thread that did bottom half

  // combine the upper and lower half into one sorted

  // array containing all eles

  merge(arr[lo : mid], arr[mid : hi]);

}

pollev.com/tqm
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Parallel Algos:

❖ We can define T(n) to be the running time of our algorithm

❖ We can split up our work between two parts, the part done sequentially, and 
the part done in parallel

▪ T(n) = sequential_part + parallel_part

▪ T(n) = O(n) merging + T(n/2) sort half the array 

• This is a recursive definition

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

73

Will not test you on this
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Parallel Algos:

❖ If we start recurring…

▪ T(n) = O(n) + O(n/2) + T(n/4)

▪ T(n) = O(n) + O(n/2) + O(n/4) + T(n/8)

▪ …

▪ Eventually we stop, there is a limit to the length of the array.
And we can say an array of size 1 is already sorted, so T(1) = O(1)

❖ This approximates to T(n) = ~2 * O(n) = O(n)

▪ This parallel merge sort is O(n), but there are further optimizations that can be done to 
reach ~O(log(n))

❖ There is a lot more to parallel algo analysis than just this, I am just giving you a 
sneak peek

74

Will not test you on this
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Amdahl's Law

❖ For most algorithms, there are parts that parallelize well and parts that don’t. 
This causes adding threads to have diminishing returns

▪ (even ignoring the overhead costs of creating & scheduling threads)

❖ Consider we have some parallel algorithm T1 = 1

▪ The 1 subscript indicates this is run on 1 thread

▪ we define the work for the entire algorithm as 1

❖ We define S as being the part that can be parallelized

▪ T1 = S + (1 – S)  // (1-S) is the sequential part
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Amdahl's Law

❖ For running on one thread:

▪ T1 = (1 – S) + S

❖ If we have P threads and perfect linear speedup on the parallelizable part, we 
get

▪ TP = (1-S) + 
𝑆

𝑃

❖ Speed up multiplier for P threads from sequential is:

▪
𝑇1

𝑇𝑝
 =  

1

1−𝑆+
𝑆

𝑃
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Amdahl's Law

❖ Let’s say that we have 100000 threads (P = 100000) and our algorithm is only 
2/3 parallel? (s = 0.6666..)

▪
𝑇1

𝑇𝑝
 =  

1

1−0.6666+
0.6666

100000

= 2.9999 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 90% parallel? (S = 0.9):

▪
𝑇1

𝑇𝑝
 =  

1

1−0.9+
0.9

100000

= 9.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

❖ What if it is 99% parallel? (S = 0.99):

▪
𝑇1

𝑇𝑝
 =  

1

1−0.99+
0.99

100000

= 99.99 𝑡𝑖𝑚𝑒𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙
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Limitation: Hardware Threads

❖ These algorithms are limited by hardware. 

❖ Number of Hardware Threads: The number of threads can genuinely run in 
parallel on hardware 

❖ We may be able to create a huge number of threads, but only run a few (e.g. 4) 
in parallel at a time.

❖ Can see this information in with lscpu in bash

▪ A computer can have some number of CPU sockets

▪ Each CPU can have one or more cores

▪ Each Core can run 1 or more threads
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Limitations: Other Hardware

❖ This algorithm analysis assumes we are spending time purely in the CPU

❖ It doesn’t account for threads blocking on I/O or other hardware.
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Next Lecture

❖ Intro to networking ☺
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