
CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Socket Programming
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao

Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Administrivia

❖ HW09 – Threads “Grep”

▪ Posted☺

▪ Due Friday 4/11 at midnight, leaving open till Sunday night tho

▪ AG posted soon

▪ Some hints gone over in Recitation this week

▪ We will check your submissions manually

❖ Final Project Details Coming soon-ish

❖ Check-in to be posted soon

2

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Poll: how are you?

❖ Which layer handles this problem?

❖ Host A tries to send a long message to Host B in another city, broken up into
many packets. A packet in the middle does not arrive, so Host A sends it again.

3

pollev.com/tqm

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Poll: how are you?

❖ Which layer handles this problem?

❖ Host A tries to send a message to Host B, but Host C and Host D are also trying
to communicate on the same network, so Host A has to avoid interfering

4

pollev.com/tqm

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Lecture Outline

❖ IP Addresses

❖ Sockets

❖ Socket API

▪ DNS

▪ Client Side Socket Programming

5

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Poll: how are you?

❖ Approximately how many internet connected devices do you own?

6

pollev.com/tqm

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

The Sockets API

❖ Berkeley sockets originated in 4.2BSD Unix (1983)

▪ It is the standard API for network programming

• Available on most OSs

▪ Written in C

❖ POSIX Socket API

▪ A slight update of the Berkeley sockets API

• A few functions were deprecated or replaced

• Better support for multi-threading was added

7

Can still use these in C++ code

You’ll see some C-idioms and design practices.

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

IPv4 Network Addresses

❖ An IPv4 address is a 4-byte tuple

▪ For humans, written in “dotted-decimal notation”

▪ e.g. 128.95.4.1 (80:5f:04:01 in hex)

❖ IPv4 address exhaustion

▪ There are 232 ≈ 4.3 billion IPv4 addresses

▪ There are ≈ 8.2 billion people in the world (April 2025)

8

(232 addresses)

How many internet connected devices do each of us have?

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

IPv6 Network Addresses

❖ An IPv6 address is a 16-byte tuple

▪ Typically written in “hextets” (groups of 4 hex digits)

• Can omit leading zeros in hextets

• Double-colon replaces consecutive sections of zeros

▪ e.g. 2d01:0db8:f188:0000:0000:0000:0000:1f33

• Shorthand: 2d01:db8:f188::1f33

▪ Transition is still ongoing

• IPv4-mapped IPv6 addresses

– 128.95.4.1 mapped to ::ffff:128.95.4.1 or ::ffff:805f:401

• This unfortunately makes network programming more of a headache

9

(2128 addresses ~about 3.4×1038)

2 rules for

human

readability

1

2

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Linux Socket Addresses

❖ Structures, constants, and helper functions available in #include
<arpa/inet.h>

❖ Addresses stored in network byte order (big endian)

❖ Converting between host and network byte orders:
▪ uint32_t htonl(uint32_t hostlong);

▪ uint32_t ntohl(uint32_t netlong);

• ‘h’ for host byte order and ‘n’ for network byte order

• Also versions with ‘s’ for short (uint16_t instead)

❖ How to handle both IPv4 and IPv6?

▪ Use C structs for each, but make them somewhat similar

▪ Use defined constants to differentiate when to use each:
AF_INET for IPv4 and AF_INET6 for IPv6

10

First field in

a struct is

always an

ID

“AF” = Address Family

(other types of sockets

exist, not just ipv4 & ipv6)

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

IPv4 Address Structures

11

// IPv4 4-byte address

struct in_addr {

 uint32_t s_addr; // Address in network byte order

};

// An IPv4-specific address structure

struct sockaddr_in {

 sa_family_t sin_family; // Address family: AF_INET

 in_port_t sin_port; // Port in network byte order

 struct in_addr sin_addr; // IPv4 address

 unsigned char sin_zero[8]; // Pad out to 16 bytes

};

family port addr zero

struct sockaddr_in:

160 2 4 8

Always big endian

should always be AF_INET

(2 bytes)

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

“Practice Question”

❖ Assume we have a struct sockaddr_in that
represents a socket connected to 198.35.26.96
(c6:23:1a:60) on port 80 (0x50) stored on a little-endian
machine.
▪ AF_INET = 2

▪ Fill in the bytes in memory below (in hex):

12

0

8

sin_family sin_port sin_addr

02 00 00 50 C6 23 1A 60

00 00 00 00 00 00 00 00 zeroes

(host) (network) (network)

(host)

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

IPv6 Address Structures

13

// IPv6 16-byte address

struct in6_addr {

 uint8_t s6_addr[16]; // Address in network byte order

};

// An IPv6-specific address structure

struct sockaddr_in6 {

 sa_family_t sin6_family; // Address family: AF_INET6

 in_port_t sin6_port; // Port number

 uint32_t sin6_flowinfo; // IPv6 flow information

 struct in6_addr sin6_addr; // IPv6 address

 uint32_t sin6_scope_id; // Scope ID

};

fam port flow scope

struct sockaddr_in6:
addr

240 2 4 8 28

should always be AF_INET6

Can ignore

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Generic Address Structures

▪ Commonly create struct sockaddr_storage, then pass pointer cast as struct
sockaddr* to connect()

14

// A mostly-protocol-independent address structure.

// Pointer to this is parameter type for socket system calls.

struct sockaddr {

 sa_family_t sa_family; // Address family (AF_* constants)

 char sa_data[14]; // Socket address (size varies

 // according to socket domain)

};

// A structure big enough to hold either IPv4 or IPv6 structs

struct sockaddr_storage {

 sa_family_t ss_family; // Address family

 // padding and alignment; don’t worry about the details

 char __ss_pad1[_SS_PAD1SIZE];

 int64_t __ss_align;

 char __ss_pad2[_SS_PAD2SIZE];

};

Family is always first to identify the socket type

struct sockaddr*

struct sockaddr

isn’t big enough for

ipv6

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Explaining the weird struct relationship

❖ Does C have objects? Does C Have Inheritance?

❖ The Socket API was designed to support a bunch of different Socket Types

15

struct sockaddr

Generic Structure

sa_family_t

"bytes"

The struct stockaddr is designed to be the “Base class”
or “generic” struct for a socket address.

First two bytes identify which type of socket address it is

The rest is generic “bytes” (14 of them) that don’t have
a clear meaning on their own

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Explaining the weird struct relationship

❖ Does C have objects? Does C Have Inheritance?

❖ The Socket API was designed to support a bunch of different Socket Types

16

AF_INET

struct sockaddr

Generic Structure

sa_family_t

"bytes"

Based on what the sa_family is set to, that’s how the C
functions interpret the rest of the bytes.

OH this is an AF_INET struct well then….

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Explaining the weird struct relationship

❖ Does C have objects? Does C Have Inheritance?

❖ The Socket API was designed to support a bunch of different Socket Types

17

AF_INET

struct sockaddr

Generic Structure

sa_family_t Based on what the sa_family is set to, that’s how the C
functions interpret the rest of the bytes.

OH this is an AF_INET struct well then….

port

Those 14 bytes should be read like this!

If it was a different sa_family then we would have
read these 14 bytes differently

address

zeros

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Poll: how are you?

❖ Why do you think there are 8 bytes of zeroes in the sockaddr_in? (ipv4 struct)

▪ Code says “Pad out to 16 bytes” why?

18

pollev.com/tqm

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

IPV6 & Storage Structs

❖ Whew, this worked really well. Ok, now we need to handle IPV6…

19

AF_INET6

struct sockaddr

Generic Structure

sa_family_t

"bytes"

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

IPV6 & Storage Structs

❖ Whew, this worked really well. Ok, now we need to handle IPV6…

20

AF_INET6

struct sockaddr

Generic Structure

sa_family_t

port

Flow info

address

Crap. Sockets were not designed to be this big!

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

IPV6 & Storage Structs

❖ Okay new plan, make a new sockaddr that is big enough to hold everything

21

AF_INET6

struct sockaddr_storage

sa_family_t
Crap. Sockets were not designed to be this big!

"bytes"

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

IPV6 & Storage Structs

❖ Okay new plan, make a new sockaddr that is big enough to hold everything

22

AF_INET6

struct sockaddr_storage

sa_family_t

port

Flow info

address

Ok, now we have enough space!

C functions still take pointers to sockadrr…

1. Create a sockaddr_storage
2. populate it with either an ipv4 or ipv6 addr
3. cast pointer it to a sockaddr* and pass it to the
 socket functions

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Address Conversion

❖ int inet_pton(int af, const char* src, void* dst);

▪ Converts human-readable string representation (“presentation”)
to network byte ordered address

▪ Returns 1 (success), 0 (bad src), or -1 (error)

23

#include <stdlib.h>

#include <arpa/inet.h>

int main(int argc, char **argv) {

 struct sockaddr_in sa; // IPv4

 struct sockaddr_in6 sa6; // IPv6

 // IPv4 string to sockaddr_in (192.0.2.1 = C0:00:02:01).

 inet_pton(AF_INET, "192.0.2.1", &(sa.sin_addr));

 // IPv6 string to sockaddr_in6.

 inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

 return EXIT_SUCCESS;

}

genaddr.cc

int inet_pton(int af, const char* src, void* dst);

Address family String representation

Addr destination:

struct in_addr*

// or

struct in_6addr*

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Address Conversion

❖ int inet_pton(int af, const char* src, void* dst);

▪ Converts network addr in src into buffer dst of size size

▪ Returns dst on success; NULL on error

24

#include <stdlib.h>

#include <arpa/inet.h>

int main(int argc, char **argv) {

 struct sockaddr_in6 sa6; // IPv6

 char astring[INET6_ADDRSTRLEN]; // IPv6

 // IPv6 string to sockaddr_in6.

 inet_pton(AF_INET6, "2001:0db8:63b3:1::3490", &(sa6.sin6_addr));

 // sockaddr_in6 to IPv6 string.

 inet_ntop(AF_INET6, &(sa6.sin6_addr), astring, INET6_ADDRSTRLEN);

 std::cout << astring << std::endl;

 return EXIT_SUCCESS;

}

genstring.cc

const char* inet_ntop(int af, const void* src,

 char* dst, socklen_t size);

Address family

Addr src:

struct in_addr*

// or

struct in_6addr*

If converting ipv4:

INET_ADDRSTRLEN

// 2001:0db8:63b3:1::3490

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Lecture Outline

❖ IP Addresses

❖ Sockets

❖ Socket API

▪ DNS

▪ Client Side Socket Programming

25

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Poll: how are you?

❖ Do you think we can have multiple connections on a computer to the same
port?

▪ Example Ports:

• 80 for HTTP (web traffic)

• 443 for HTTPS (Secure web traffic)

26

pollev.com/tqm

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Socket

❖ A Socket is an endpoint for a specific connection

▪ If we think of a connection like a wire, then it must “plug in” to each end of the
connection. Sort of like how you plug a charger into an outlet/wall socket

❖ A connection is identified by four things:

▪ Client IP address

▪ Client Port Number

▪ Server IP Address

▪ Server Port Number

❖ Going back to our apartment and post office analogy. For real packages we
don’t just put an address and apartment number of the destination, we also
include the address it came from.

27

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Files and File Descriptors

❖ Remember open(), read(), write(), and close()?

▪ POSIX system calls for interacting with files

▪ open() returns a file descriptor

• An integer that represents an open file

• This file descriptor is then passed to read(), write(), and close()

▪ Inside the OS, the file descriptor is used to index into a table that keeps track of any OS-
level state associated with the file, such as the file position

28

Parameters to

Can’t be a

pointer, don’t

want to give

address to

kernel

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Networks and Sockets

❖ UNIX likes to make all I/O look like file I/O
▪ You use read() and write() to communicate with remote computers over the

network!

▪ A file descriptor use for network communications is called a socket

▪ Just like with files:

• Your program can have multiple network channels open at once

• You need to pass a file descriptor to read() and write() to let the OS know which network
channel to use

29

In other words, we

specify the socket

to read/write on

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

File Descriptor Table

OS’s File Descriptor Table for the Process

File
Descriptor

Type Connection

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3
TCP

socket
local: 128.95.4.33:80

remote: 44.1.19.32:7113

5 file index.html

8 file pic.png

9
TCP

socket
local: 128.95.4.33:80

remote: 102.12.3.4:5544

30

Web Server

in
d

ex
.h

tm
l

p
ic

.p
n

g

client client

128.95.4.33

fd 5 fd 8 fd 9 fd 3

Can have multiple

files and network

connections open
0,1,2 always start as

stdin, stdout & stderr.

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Types of Sockets

❖ Stream sockets

▪ For connection-oriented, point-to-point, reliable byte streams

• Using TCP, SCTP, or other stream transports

❖ Datagram sockets

▪ For connection-less, one-to-many, unreliable packets

• Using UDP or other packet transports

❖ Raw sockets

▪ For layer-3 communication (raw IP packet manipulation)

31

What we will focus on

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Stream Sockets

❖ Typically used for client-server communications

▪ Client: An application that establishes a connection to a server

▪ Server: An application that receives connections from clients

▪ Can also be used for other forms of communication like peer-to-peer

1) Establish connection:

2) Communicate:

3) Close connection:

32

client server

client server

client server

Client reaches out
Server is “passive” &

listens for clients

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Datagram Sockets

❖ Often used as a building block

▪ No flow control, ordering, or reliability, so used less frequently

▪ e.g. streaming media applications or DNS lookups

1) Create sockets:

2) Communicate:

33

host

host host

host

host

host host

host

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Lecture Outline

❖ IP Addresses

❖ Sockets

❖ Socket API

▪ DNS

▪ Client Side Socket Programming

34

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

The Sockets API

❖ Berkeley sockets originated in 4.2BSD Unix (1983)

▪ It is the standard API for network programming

• Available on most OSs

▪ Written in C

❖ POSIX Socket API

▪ A slight update of the Berkeley sockets API

• A few functions were deprecated or replaced

• Better support for multi-threading was added

35

Can still use these in C++ code

You’ll see some C-idioms and design practices.

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Socket API: Client TCP Connection

❖ We’ll start by looking at the API from the point of view of a client connecting to
a server over TCP

❖ There are five steps:

1) Figure out the IP address and port to which to connect

2) Create a socket

3) Connect the socket to the remote server

4) .read() and write() data using the socket

5) Close the socket

36

Same as

file I/O

New

stuff

** Today **

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Step 1: Figure Out IP Address and Port

❖ Several parts:

▪ Network addresses

▪ Data structures for address info

▪ DNS (Domain Name System) – finding IP addresses

37

C data structures

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Domain Name System

❖ People tend to use DNS names, not IP addresses

▪ The Sockets API lets you convert between the two

▪ It’s a complicated process, though:

• A given DNS name can have many IP addresses

• Many different IP addresses can map to the same DNS name

– An IP address will reverse map into at most one DNS name

• A DNS lookup may require interacting with many DNS servers

❖ You can use the Linux program “dig” to explore DNS

▪ dig @server name type (+short)

• server: specific name server to query

• type: A (IPv4), AAAA (IPv6), ANY (includes all types)

38

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

DNS Hierarchy

39

.

mail newsdocs www

cncom orgedu • • •

google netflixfacebook • • • wikipedia fsfapache • • •

Root
Name Servers

Top-level
Domain Servers

• • • news www• • •

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Resolving DNS Names

❖ The POSIX way is to use getaddrinfo()

▪ A complicated system call found in #include <netdb.h>

▪ Basic idea:

• Tell getaddrinfo() which host and port you want resolved

– String representation for host: DNS name or IP address

• Set up a “hints” structure with constraints you want respected

• getaddrinfo() gives you a list of results packed into an “addrinfo” structure/linked list

– Returns 0 on success; returns negative number on failure

• Free the struct addrinfo later using freeaddrinfo()

40

int getaddrinfo(const char* hostname,

 const char* service,

 const struct addrinfo* hints,

 struct addrinfo** res);
Output param

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

getaddrinfo

❖ getaddrinfo() arguments:

▪ hostname – domain name or IP address string

▪ service – port # (e.g. "80") or service name (e.g. "www")
 or NULL/nullptr

▪

41

struct addrinfo {

 int ai_flags; // additional flags

 int ai_family; // AF_INET, AF_INET6, AF_UNSPEC

 int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0

 int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0

 size_t ai_addrlen; // length of socket addr in bytes

 struct sockaddr* ai_addr; // pointer to socket addr

 char* ai_canonname; // canonical name

 struct addrinfo* ai_next; // can form a linked list

};

Hints Parameter

Can use 0 or nullptr to

indicate you don’t want to

filter results on that

characteristic

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

DNS Lookup Procedure

1) Create a struct addrinfo hints

2) Zero out hints for “defaults”

3) Set specific fields of hints as desired

4) Call getaddrinfo() using &hints

5) Resulting linked list res will have all fields appropriately set

❖ See dnsresolve.cpp
42

struct addrinfo {

 int ai_flags; // additional flags

 int ai_family; // AF_INET, AF_INET6, AF_UNSPEC

 int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0

 int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0

 size_t ai_addrlen; // length of socket addr in bytes

 struct sockaddr* ai_addr; // pointer to socket addr

 char* ai_canonname; // canonical name

 struct addrinfo* ai_next; // can form a linked list

};

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Socket API: Client TCP Connection

❖ There are five steps:

1) Figure out the IP address and port to connect to

2) Create a socket

3) Connect the socket to the remote server

4) .read() and write() data using the socket

5) Close the socket

43

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Step 2: Creating a Socket

❖ Use the socket() system call

▪ Creating a socket doesn’t bind it to a local address or port yet

▪ Returns file descriptor or -1 on error

44

int socket(int domain, int type, int protocol);

#include <arpa/inet.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <iostream>

int main(int argc, char** argv) {

 int socket_fd = socket(AF_INET, SOCK_STREAM, 0);

 if (socket_fd == -1) {

 std::cerr << strerror(errno) << std::endl;

 return EXIT_FAILURE;

 }

 close(socket_fd);

 return EXIT_SUCCESS;

}

socket.cpp

// check for error

// clean up

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Step 3: Connect to the Server

❖ The connect() system call establishes a connection to
a remote host

▪

• sockfd: Socket file description from Step 2

• addr and addrlen: Usually from one of the address structures
returned by getaddrinfo in Step 1 (DNS lookup)

• Returns 0 on success and -1 on error

❖ connect() may take some time to return

▪ It is a blocking call by default

▪ The network stack within the OS will communicate with the
remote host to establish a TCP connection to it

• This involves ~2 round trips across the network

45

int connect(int sockfd, const struct sockaddr* addr,

 socklen_t addrlen);

result from socket()

result from getaddrinfo()

Waits on an event before returning

Performs a “Handshake”

With the server

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Connect Example

❖ See connect.cpp

46

// Get an appropriate sockaddr structure.

struct sockaddr_storage addr;

size_t addrlen;

LookupName(argv[1], port, &addr, &addrlen);

// Create the socket.

int socket_fd = socket(addr.ss_family, SOCK_STREAM, 0);

if (socket_fd == -1) {

 cerr << "socket() failed: " << strerror(errno) << endl;

 return EXIT_FAILURE;

}

// Connect the socket to the remote host.

int res = connect(socket_fd,

 reinterpret_cast<sockaddr*>(&addr),

 addrlen);

if (res == -1) {

 cerr << "connect() failed: " << strerror(errno) << endl;

}

// Helper function that calls

// getaddrinfo()

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Sockets are sort of like files

❖ From this point it just turns into

▪ Read/write

▪ Close

❖ Looks like a file right?

❖ But this isn’t a file, it’s a network connection. It just looks like one

▪ File

▪ Terminal Input/Output

▪ Pipe

▪ Network Connection (More similar to reading/writing terminal or pipe than a file)

47

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Sockets are sort of like files

❖ When dealing with stream sockets (TCP) Sockets, the TCP part is done for us.
We can deal with the stream ABSTRACTION

▪ Stream: That the bytes show up in order reliably

❖ How do you think a network connection may behave differently from a file?

▪ If it helps you can compare a file to reading/writing into a book
and reading/writing a socket to texting/messaging a friend.

48

pollev.com/tqm

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Step 4: read()

❖ If there is data that has already been received by the network stack, then read
will return immediately with it
▪ read() might return with less data than you asked for

❖ If there is no data waiting for you, by default read() will block until
something arrives

▪ How might this cause deadlock?

▪ Can read() return 0? (EOF)

49

pollev.com/tqm

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Step 4: write()

❖ write() queues your data in a send buffer in the OS and then returns

▪ The OS transmits the data over the network in the background

▪ When write() returns, the receiver probably has not yet received the data!

❖ If there is no more space left in the send buffer, by default write() will block

51

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

❖ When we call write(), what data do we need to pass to it when writing over
the network?

A. Any data our application needs to send

B. All of the above + TCP info
 (sequence number, port, …)

C. All of the above + IP info
 (source & dest IP addresses…)

D. All of the above + Ethernet info
 (source & dest MAC addresses)

E. We’re lost…
52

pollev.com/tqm

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Read/Write Example

❖ See sendreceive.cpp

54

while (1) {

 int wres = write(socket_fd, readbuf, res);

 if (wres == 0) {

 cerr << "socket closed prematurely" << endl;

 close(socket_fd);

 return EXIT_FAILURE;

 }

 if (wres == -1) {

 if (errno == EINTR)

 continue;

 cerr << "socket write failure: " << strerror(errno) << endl;

 close(socket_fd);

 return EXIT_FAILURE;

 }

 break;

}

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Step 5: close()

❖

▪ Nothing special here – it’s the same function as with file I/O

▪ Shuts down the socket and frees resources and file descriptors associated with it on both
ends of the connection

55

int close(int fd);

CIT 5950, Spring 2025L18: Client Side SocketsUniversity of Pennsylvania

Next Lecture

❖ Server Side Socket Programming!

56

	Default Section
	Slide 1: Socket Programming Computer Systems Programming, Spring 2025
	Slide 2: Administrivia
	Slide 3: Poll: how are you?
	Slide 4: Poll: how are you?
	Slide 5: Lecture Outline
	Slide 6: Poll: how are you?
	Slide 7: The Sockets API
	Slide 8: IPv4 Network Addresses
	Slide 9: IPv6 Network Addresses
	Slide 10: Linux Socket Addresses
	Slide 11: IPv4 Address Structures
	Slide 12: “Practice Question”
	Slide 13: IPv6 Address Structures
	Slide 14: Generic Address Structures
	Slide 15: Explaining the weird struct relationship
	Slide 16: Explaining the weird struct relationship
	Slide 17: Explaining the weird struct relationship
	Slide 18: Poll: how are you?
	Slide 19: IPV6 & Storage Structs
	Slide 20: IPV6 & Storage Structs
	Slide 21: IPV6 & Storage Structs
	Slide 22: IPV6 & Storage Structs
	Slide 23: Address Conversion
	Slide 24: Address Conversion
	Slide 25: Lecture Outline
	Slide 26: Poll: how are you?
	Slide 27: Socket
	Slide 28: Files and File Descriptors
	Slide 29: Networks and Sockets
	Slide 30: File Descriptor Table
	Slide 31: Types of Sockets
	Slide 32: Stream Sockets
	Slide 33: Datagram Sockets
	Slide 34: Lecture Outline
	Slide 35: The Sockets API
	Slide 36: Socket API: Client TCP Connection
	Slide 37: Step 1: Figure Out IP Address and Port
	Slide 38: Domain Name System
	Slide 39: DNS Hierarchy
	Slide 40: Resolving DNS Names
	Slide 41: getaddrinfo
	Slide 42: DNS Lookup Procedure
	Slide 43: Socket API: Client TCP Connection
	Slide 44: Step 2: Creating a Socket
	Slide 45: Step 3: Connect to the Server
	Slide 46: Connect Example
	Slide 47: Sockets are sort of like files
	Slide 48: Sockets are sort of like files
	Slide 49: Step 4: read()
	Slide 51: Step 4: write()
	Slide 52
	Slide 54: Read/Write Example
	Slide 55: Step 5: close()
	Slide 56: Next Lecture

