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0 Poll Eve rywhere pollev.com/tqgm

+» Any Questions for me?
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Administrivia

+ Final Project Details Posted

= SOME of it is auto graded. There is a lot of functionality that is not autograded that you
will need to implement

» HWO09 Manual checks posted

+ Next check-in to be posted soon

+ End of semester survey to be posted soon(?

» Exam logistics & Practice exam to be posted soon
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What are distributed systems?

+~ A group of computers communicating over the network by sending messages,
which interact to accomplish some common task
" There is no shared hardware (e.g. memory) other than the network
" |ndividual computers (nodes) can fail
" The network itself can fail (Drop messages, corrupt messages, delay messages, etc.)
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Why do we care?

+» They are really interesting problem to work with

+» Most applications we interact with are distributed systems of some sort:

Google
FRLING: o é
a M zoom

OneDrive &
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Why do we care?

+» They are really interesting problem to work with

» Distributed systems typically allow a system to scale well. Need more work to
be done? Just add a new computer to the system

» Distributed systems can also allow for some amount of “fault tolerance”. If one
computer crashes, the rest of the computers will probably keep running.
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Distributed Systems Concerns

» How do we make it so that the computers work together:
= Correctly
" Consistent
= Efficiently
= At (huge) scale
= High availability

» Despite issues with the network
- Despite some computers crashing

» Despite some computers being compromised

CIT 5950, Spring 2025
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Distributed Systems: Pessimistic View

+» Considered a very hard topic
" |nvolves many of the topics covered in this course and more

= CIS 5050 spends ~8 lectures covering things already introduced here. (out of 25 lectures)

+ “The most thought per line of code out of any course”
= Hal Perkins Circa 2019

« “Adistributed system is one where you can’t get your work done because
some machine you’ve never heard of is broken.”

= Leslie Lamport, circa 1990
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Lecture Outline

Intro to Distributed Systems

Sequential Consistency (with threads first)
Logical Clocks & Ordering
Fault Tolerance

Performance

CIT 5950, Spring 2025
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0 Poll Everywhere pollev.com/tqgm

+~ Consider the following code.
Each function is called by different threads.
Is it possible for the code to crash?

bool set = false;
int value = 0;

void* thrdl(void* arg) {
value = 3034;
set = true;

}

void* thrd2(void* arg) {
if (set) {
assert(value == 3034);
}
}
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Aside: Instruction & Memory Ordering

+~ Do we know that t is set before g is set?

(bool g = false;
int £t =0

volid some func(int arg) {
L = &rg;
g = true;

12
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Aside: Instruction & Memory Ordering

%+ The compiler may generate instructions with different ordering if it does not
appear that it will affect the semantics of the function

" Since|g = ; is not affectedby | T = arg;
then either one could execute first.

+ The Processor may also execute these in a different order than what the
compiler says

« Why? Optimizations on program performance

" |f you want to know more, look into “Out-of-Order Execution” and “Memory Order”

14
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Aside: Memory Barriers

«» How do we fix this?

+» We can emit special instructions to the CPU and/or compiler to create a
“memory barrier”

= “all memory accesses before the barrier are guaranteed to happen before the memory
accesses that come after the barrier”

= A way to enforce an order in which memory accesses are ordered by the compiler and the
CPU

® This is done for us when we mark a variable as atomic or use a lock.

15
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Sequential Consistency

+» The property that

" “The result of an execution is the same AS IF the operations of all the processors were
executed in some sequential order...”

= “ .and the operations of each individual processor appear in this sequence in the order
specified by the program.”

+ Short version:
" The execution appears to occur in a sequential order
" And itis the same order specified by the program

16
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University of Pennsylvania L22: Distributed

Shared Nothing Architecture

+» Consistency and sharing data is hard in a threaded program

<+ What about distributed systems?

= Distributed systems are typically “Shared nothing” meaning that it is a collection of
computers communicating over the network

" There is no shared memory
" There is no shared disk/storage

<+ How can we get a cluster (group of machines) to agree on some state?

" How do the computers in the system reason about each other?

18
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Muddy Foreheads

+» Assume the following situation

" There are n children, k get mud
on their foreheads

® Children sit in circle.

® Teacher announces, "Someone
has mud on their forehead

" Teacher repeatedly asks "Raise
your hand if you know you have
mud on your forehead."

" What happens?

19
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Muddy Foreheads

+» Assume the following situation

" There are n children, k get mud
on their foreheads

® Children sit in circle.

® Teacher announces, "Someone
has mud on their forehead

" Teacher repeatedly asks "Raise
your hand if you know you have
mud on your forehead."

" What happens?

« The answer is not "'no one raises
their hand"

This Photo by Unknown Author is licensed under CC BY-NC-ND

20


https://mujeresconciencia.com/2014/12/09/grace-murray-hopper-informatica/
https://creativecommons.org/licenses/by-nc-nd/3.0/
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Common Knowledge

+~ There’s a difference between what you know and what you know others know
% And what others know you know
+ And what others know you know about what you know

+» And what you know others know you know about what they know

23
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Muddy Forehead Alteration

+ What if the teacher pulled each student aside individually and told them “at
least one student has mud on their forehead”?

= \Would our solution still work?

24
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Back to Consistency in Distributed Systems

+ Let’s say we have a collection of computers that together share the state of a

single string.
Server Node 1 Server Node 2
data = “hi” data = “hi”

Server Node 3

data = “hi”

25
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Back to Consistency in Distributed Systems

» Let’s say we have a collection of computers that together share the state of a
single string.

» Lets say server 1 gets a request to append “a” to the end of the string.

How do we maintain a consistent state?
Server Node 1 Server Node 2

data = “hi” data = “hi”

Server Node 3

data = “hi”

26
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Back to Consistency in Distributed Systems

+ Lets say server 1 gets a request to append “a” to the end of the string.
How do we maintain a consistent state?

+» Simple solution: send the message to other nodes

Server Node 1 Server Node 2

data = ”hia” append: ”a” data - (lhi”

1

Server Node 3

data = “hi”

27
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Back to Consistency in Distributed Systems

+ Lets say server 1 gets a request to append “a” to the end of the string.
How do we maintain a consistent state?

% Simple solution: send the message to other nodes and they acknowledge it

Server Node 1 Server Node 2

data = “hia” Acknowledge: append: “a”| data = “hia”

Server Node 3

data = “hia”

28
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Back to Consistency in Distributed Systems

+ Lets say that node 1 wants to append a but at the same time node 2 wants to
append b

+» Which happens first? How do we maintain a consistent state?

Server Node 1 Server Node 2

append: “b”
data = “hia” append: “a” data = “hib”

Server Node 3

data = “hi”

29
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What happens first?

+» Messages can get delayed when sent over the network

% Can we use a timestamp?
" What if the computers clock is slightly off?

«» Does TCP fix it?

30
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Generals Problem

X/
o®

Two generals, on opposite sides
of a city on a hill.

*,

>

If they attack simultaneously,
they will be victorious. If one
attacks without the other, they
will both be defeated.

o
%

L)

» Can communicate by
messenger. Messengers can
get lost or be captured.

» How do they ensure they can
take the city?

L)

35
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Generals Problem

X/
X4

To coordinate an attack, the
problem requires common
knowledge

*,

>

With the messengers, common
knowledge is never reached.

o
A

+ What happens when we add
more generals?

« What happens when some of
the generals are malicious?

37
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Example: RPC

+» Remote Procedure Call: When a program is able to invoke a function on
another computers address space, and then get the results.

L)

% Usually done as a form of “Message Passing”
® Client calls a function that sends a “message” over the network

= A server receives the message, executes the function, and sends the response back

+» Evenin this simple, example, issues can arise

38
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Example: RPC

«» Consider: Client wants to read their current Bank Account Balance

" Client may call a function like get_balance()

Server Node
Data

Client 1

balance = $100

39
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Example: RPC

+» Consider: Client wants to read their current Bank Account Balance
" Client may call a function like get_balance()
= get_balance() will reach out to the server across the network

Server Node
Data

Client 1

balance = $100

40
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Example: RPC

+» Consider: Client wants to read their current Bank Account Balance
" Client may call a function like get_balance()
= get_balance() will reach out to the server across the network
= Server processes the request, and sends it back

Server Node
Data

Client 1 /

balance = $100

41
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Example: RPC

+» Consider: Client wants to read their current Bank Account Balance
" Client may call a function like get_balance()
= get_balance() will reach out to the server across the network
= Server processes the request, and sends it back
® Client returns from the function “get_balance()”

Server Node
Data

Client 1 /

balance = $100

Client was blocked while waiting for the server o respond.

Program that called get_balance () probably doesu+ veed

to know much abont the network messaging
42
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Blank Slide

43
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Example: RPC Transaction

+ Consider: Client wants to withdraw $75 from their bank account
" Client may call a function like withdraw(75)
= withdraw() will reach out to the server across the network

Server Node
Data

Client 1 /

balance = $100

44
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Example: RPC Transaction

+» Consider: Client wants to withdraw $75 from their bank account
" Client may call a function like withdraw(75)
= withdraw() will reach out to the server across the network
= Server processes the request, and sends it back

Server Node
Data

Client 1 /

balance = $25

45
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Example: RPC Transaction

+ Consider: Client wants to withdraw $75 from their bank account
" Client may call a function like withdraw(75)
= withdraw() will reach out to the server across the network

= Server processes the request, and sends it back
- ... But what if the connection is dropped before client receives response!

Server Node
Data

e mmmmmmmmmmmmmm e balance = 525

46
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Example: RPC Transaction

+ Server processes the withdraw request, and sends it back

= .. But what if the connection is dropped before client receives response!

+» Let’s say connection is re-established and client resends “withdraw(75)”...

Server Node
Data

Client 1 /

balance = $25

47
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Question: Does TCP Solve This?

+ |f we were using TCP, is this situation even possible?
= TCP: provides an abstraction of a reliable stream of bytes.
= TCP: each packet is acknowledged between user and receiver and automatically resent.

48
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Question: Does TCP Solve This?

+ |f we were using TCP, is this situation even possible?
= TCP: provides an abstraction of a reliable stream of bytes.

= TCP: each packet is acknowledged between user and receiver and automatically resent.

% Yes: this can still happen.

= TCP Ensures that packets are sent in a specific order and are acknowledged before it is

“successfully written”.
Does not ensure that the network (or server itself) goes down

Does not ensure that the function we want to execute on the server worked or whether it
actually happened.

49
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Example: RPC Transaction

+ Server processes the withdraw request, and sends it back

= .. But what if the connection is dropped before client receives response!

+» Let’s say connection is re-established and client resends “withdraw(75)”...

CIT 5950, Spring 2025

" How does the server know if this is the same request as last time, or another request to

withdraw S75

" How does the server know what the client is “intending”

Server Node

Client 1 /

Data

balance = S25

50
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Terminology

+~ Exactly Once:

Hardest to guarantee
That something happens and it only happens exactly one time.
Requires that the clients have an ID and each request has an ID number.

Servers must also keep a history of previously processed requests and their ID number so
that the server can respond to duplicate/old requests.

51
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Terminology

+ At Most Once:

" That a request is executed at most once (e.g. 0 times or 1 time)
= Usually means the client sends the request once and only once.
= Usable in some cases, but sometimes we need to guarantee that something happened.

+ At Least Once:

" That the thing is executed at least one time.

® This is fine for things like “Reading a value” or “setting” a value
Other operations may get different results if done multiple times
(Like our transaction)

52
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Fix?

+» How do we ensure that each transaction is done exactly once?
" Thoughts?

53



University of Pennsylvania L22: Distributed CIT 5950, Spring 2025

Blank Slide

55
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Example: Consistent State

Client 1
Server Node 1 Server Node 2 (“Backup”)
Data Data
x=0 x=0
y=1 y=1

56
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Example: Consistent State

Client 1
Can contact any node to
Read the data stored
What happens when writing
is involved?
Server Node 1 Server Node 2 (“Backup”)
Data Data
x=0 x=0

y=1 y=1

57
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Example: Consistent State

Client 1
Write x =17
Server Node 1 Server Node 2 (“Backup”)
Data Data
x=0 x=0
y=17 y=1

58
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Example: Consistent State

Client 1

Server loses connection to client

AN
AN /
\\ /
\S@rver Node/l/ Server Node 2 (“Backup”)
\L{ata / Data
X =/‘6\ x=0
v=17"\ y=1
S
// A
N
/ N
/ AN

59
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Example: Consistent State

Client 1

Client can
communicate with
other nodes instead
AN
N /
\\ /
/
\S@rver Node/1 Server Node 2 (“Backup”)
\L{ata / Data
X =/‘6\ x=0
V= 17 N Y= 1
S
// N
\
/ N
/ AN

60
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Example: Consistent State

Client 1 What happens if
Node 1 comes alive
again?
Server Node 1 Server Node 2 (“Backup”)
Data Data
x=0 x=0
y=17 y=1

61



L22: Distributed CIT 5950, Spring 2025

University of Pennsylvania

Example: Consistent State

Client 1 Which node has the
correct data?

How do we reach
consistency again?

Server Node 1 Server Node 2 (“Backup”)

Data Data
x=0 x=0
y=17 y=1

62
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PAXOS

+ No deterministic fault-tolerant consensus protocol can guarantee progress in
an asynchronous network.

+» PAXOS is a protocol for solving consensus while being resistant to unreliable
or failable processors in the system

= Unreliable and failable could mean just that

- the system crashes

- packet (messages) are being sent and received inconsistently
- Becomes malicious and behaves incorrectly “on purpose”

- And in paxos, could possibly recover from any of these

+ Paxos guarantees consistency, and the conditions that could prevent it from
making progress are difficult to provoke.
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Performance

+» Taking a step back from fault tolerance

+» Another concern with doing actions across a distributed system is trying to
make efficient utilization of the nodes in the system

+ |f we have a large task, how do we split up the work roughly evenly across
nodes in the network so that it is completed faster?

= Avoid having one “coordinator” node if possible

- Then nodes may have to wait for the coordinator to tell them what to do and there is less
coordinators)

= Try to treat the nodes equally like rational actors so that they can all do work at the same
time.

65
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Microsoft Interview Question:

» 100 Nodes in a cluster of computers
» Each Node is numbered O through 99

» Each node has 1,000,000 integers
® Each node can only hold a little more than a 1,000,000 integers

+» We want to sort all the numbers so that node 0 contains the first 1% of the
integers in sorted order (the lowest million integers). Node 1 contains the next
million lowest integers, etc.

How do we do this efficiently?

66
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University of Pennsylvania L22: Distributed

This was just an “intro” to the field ©

+ Lots of details left out, but these concepts apply to distributed systems.

» If a bank or database runs on a collection of nodes. How do we agree on

whether a transaction occurred?
" How do we ensure that the transaction went through and won’t get “lost” due to faults?

+» What if data was split across different nodes and multiple clients needed data
from multiple nodes at the same time?

67
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