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❖ Any Questions for me?
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Administrivia

❖ Final Project Details Posted

▪ SOME of it is auto graded. There is a lot of functionality that is not autograded that you 
will need to implement

❖ HW09 Manual checks posted

❖ Next check-in to be posted soon

❖ End of semester survey to be posted soon(?

❖ Exam logistics & Practice exam to be posted soon
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Lecture Outline

❖ Intro to Distributed Systems

▪ Sequential Consistency

▪ Logical Clocks & Ordering

▪ Fault Tolerance

▪ Performance
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What are distributed systems?

❖ A group of computers communicating over the network by sending messages, 
which interact to accomplish some common task

▪ There is no shared hardware (e.g. memory) other than the network

▪ Individual computers (nodes) can fail

▪ The network itself can fail (Drop messages, corrupt messages, delay messages, etc.)
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Why do we care?

❖ They are really interesting problem to work with

❖ Most applications we interact with are distributed systems of some sort:
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❖ They are really interesting problem to work with

❖ Distributed systems typically allow a system to scale well. Need more work to 
be done? Just add a new computer to the system

❖ Distributed systems can also allow for some amount of “fault tolerance”. If one 
computer crashes, the rest of the computers will probably keep running.

Why do we care?
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Distributed Systems Concerns

❖ How do we make it so that the computers work together:

▪ Correctly

▪ Consistent

▪ Efficiently

▪ At (huge) scale

▪ High availability

❖ Despite issues with the network

❖ Despite some computers crashing

❖ Despite some computers being compromised
8
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Distributed Systems: Pessimistic View

❖ Considered a very hard topic

▪ Involves many of the topics covered in this course and more

▪ CIS 5050 spends ~8 lectures covering things already introduced here. (out of 25 lectures)

❖ “The most thought per line of code out of any course”

▪ Hal Perkins Circa 2019

❖ “A distributed system is one where you can’t get your work done because 
some machine you’ve never heard of is broken.”

▪ Leslie Lamport, circa 1990
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Lecture Outline

❖ Intro to Distributed Systems

▪ Sequential Consistency (with threads first)

▪ Logical Clocks & Ordering

▪ Fault Tolerance

▪ Performance
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❖ Consider the following code.
Each function is called by different threads.
Is it possible for the code to crash?
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bool set = false;
int value = 0;

void* thrd1(void* arg) {
 value = 3034;
 set = true;
}

void* thrd2(void* arg) {
 if (set) {
  assert(value == 3034); // crashes if expression is false.
 }
}
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Aside: Instruction & Memory Ordering

❖ Do we know that t is set before g is set?
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bool g = false;

int t = 0

void some_func(int arg) {

  t = arg;

  g = true;

}
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Aside: Instruction & Memory Ordering

❖ The compiler may generate instructions with different ordering if it does not 
appear that it will affect the semantics of the function

▪ Since                                    is not affected by
then either one could execute first.

❖ The Processor may also execute these in a different order than what the 
compiler says

❖ Why? Optimizations on program performance

▪ If you want to know more, look into “Out-of-Order Execution” and “Memory Order”
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Aside: Memory Barriers

❖ How do we fix this?

❖ We can emit special instructions to the CPU and/or compiler to create a 
“memory barrier”

▪ “all memory accesses before the barrier are guaranteed to happen before the memory 
accesses that come after the barrier”

▪ A way to enforce an order in which memory accesses are ordered by the compiler and the 
CPU

▪ This is done for us when we mark a variable as atomic or use a lock.
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Sequential Consistency

❖ The property that

▪ “The result of an execution is the same AS IF the operations of all the processors were 
executed in some sequential order…”

▪ “…and the operations of each individual processor appear in this sequence in the order 
specified by the program.”

❖ Short version:

▪ The execution appears to occur in a sequential order

▪ And it is the same order specified by the program
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Lecture Outline

❖ Intro to Distributed Systems

▪ Sequential Consistency

▪ Logical Clocks & Ordering

▪ Fault Tolerance

▪ Performance
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Shared Nothing Architecture

❖ Consistency and sharing data is hard in a threaded program

❖ What about distributed systems?

▪ Distributed systems are typically “Shared nothing” meaning that it is a collection of 
computers communicating over the network

▪ There is no shared memory

▪ There is no shared disk/storage

❖ How can we get a cluster (group of machines) to agree on some state?

▪ How do the computers in the system reason about each other?
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Muddy Foreheads

❖ Assume the following situation

▪ There are n children, k get mud 
on their foreheads

▪ Children sit in circle.

▪ Teacher announces, "Someone 
has mud on their forehead

▪ Teacher repeatedly asks "Raise 
your hand if you know you have 
mud on your forehead." 

▪ What happens? 
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Muddy Foreheads

❖ Assume the following situation

▪ There are n children, k get mud 
on their foreheads

▪ Children sit in circle.

▪ Teacher announces, "Someone 
has mud on their forehead

▪ Teacher repeatedly asks "Raise 
your hand if you know you have 
mud on your forehead." 

▪ What happens? 

• The answer is not "no one raises 
their hand"
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Common Knowledge

❖ There’s a difference between what you know and what you know others know

❖ And what others know you know

❖ And what others know you know about what you know

❖ And what you know others know you know about what they know
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Muddy Forehead Alteration

❖ What if the teacher pulled each student aside individually and told them “at 
least one student has mud on their forehead”?

▪ Would our solution still work?
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Back to Consistency in Distributed Systems

❖ Let’s say we have a collection of computers that together share the state of a 
single string.
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Server Node 1 Server Node 2

Server Node 3

data = “hi” data = “hi”

data = “hi”
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Back to Consistency in Distributed Systems

❖ Let’s say we have a collection of computers that together share the state of a 
single string.

❖ Lets say server 1 gets a request to append “a” to the end of the string.
How do we maintain a consistent state?
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Back to Consistency in Distributed Systems

❖ Lets say server 1 gets a request to append “a” to the end of the string.
How do we maintain a consistent state?

❖ Simple solution: send the message to other nodes
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Server Node 1 Server Node 2

Server Node 3

data = “hia” data = “hi”

data = “hi”

append: “a”
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Back to Consistency in Distributed Systems

❖ Lets say server 1 gets a request to append “a” to the end of the string.
How do we maintain a consistent state?

❖ Simple solution: send the message to other nodes and they acknowledge it
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Server Node 1 Server Node 2

Server Node 3

data = “hia” data = “hia”

data = “hia”

Acknowledge: append: “a”
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Back to Consistency in Distributed Systems

❖ Lets say that node 1 wants to append a but at the same time node 2 wants to 
append b

❖ Which happens first? How do we maintain a consistent state?
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Server Node 3

data = “hia” data = “hib”

data = “hi”

append: “a”

append: “b”
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What happens first?

❖ Messages can get delayed when sent over the network

❖ Can we use a timestamp?

▪ What if the computers clock is slightly off?

❖ Does TCP fix it?
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Lecture Outline

❖ Intro to Distributed Systems

▪ Sequential Consistency

▪ Logical Clocks & Ordering

▪ Fault Tolerance

▪ Performance

34
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Generals Problem

❖ Two generals, on opposite sides 
of a city on a hill.

❖ If they attack simultaneously, 
they will be victorious. If one 
attacks without the other, they 
will both be defeated.

❖ Can communicate by 
messenger. Messengers can
get lost or be captured.

❖ How do they ensure they can 
take the city?
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Generals Problem

❖ To coordinate an attack, the 
problem requires common 
knowledge

❖ With the messengers, common 
knowledge is never reached.

❖ What happens when we add
more generals?

❖ What happens when some of 
the generals are malicious?
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Example: RPC

❖ Remote Procedure Call: When a program is able to invoke a function on 
another computers address space, and then get the results.

❖ Usually done as a form of “Message Passing”

▪ Client calls a function that sends a “message” over the network

▪ A server receives the message, executes the function, and sends the response back

❖ Even in this simple, example, issues can arise
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Example: RPC

❖ Consider: Client wants to read their current Bank Account Balance

▪ Client may call a function like get_balance()

39

Client 1
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Example: RPC

❖ Consider: Client wants to read their current Bank Account Balance

▪ Client may call a function like get_balance()

▪ get_balance() will reach out to the server across the network

40
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Example: RPC

❖ Consider: Client wants to read their current Bank Account Balance

▪ Client may call a function like get_balance()

▪ get_balance() will reach out to the server across the network

▪ Server processes the request, and sends it back
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Example: RPC

❖ Consider: Client wants to read their current Bank Account Balance

▪ Client may call a function like get_balance()

▪ get_balance() will reach out to the server across the network

▪ Server processes the request, and sends it back

▪ Client returns from the function “get_balance()”
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Client 1

Server Node

Data

balance = $100

Client was blocked while waiting for the server to respond.

Program that called get_balance() probably doesn’t need 

to know much about the network messaging
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Blank Slide
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Example: RPC Transaction

❖ Consider: Client wants to withdraw $75 from their bank account

▪ Client may call a function like withdraw(75)

▪ withdraw() will reach out to the server across the network
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Example: RPC Transaction

❖ Consider: Client wants to withdraw $75 from their bank account

▪ Client may call a function like withdraw(75)

▪ withdraw() will reach out to the server across the network

▪ Server processes the request, and sends it back
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Example: RPC Transaction

❖ Consider: Client wants to withdraw $75 from their bank account

▪ Client may call a function like withdraw(75)

▪ withdraw() will reach out to the server across the network

▪ Server processes the request, and sends it back

• … But what if the connection is dropped before client receives response!
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Example: RPC Transaction

❖ Server processes the withdraw request, and sends it back

▪ … But what if the connection is dropped before client receives response!

❖ Let’s say connection is re-established and client resends “withdraw(75)”…
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Question: Does TCP Solve This?

❖ If we were using TCP, is this situation even possible?

▪ TCP: provides an abstraction of a  reliable stream of bytes.

▪ TCP: each packet is acknowledged between user and receiver and automatically resent.

48
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Question: Does TCP Solve This?

❖ If we were using TCP, is this situation even possible?

▪ TCP: provides an abstraction of a  reliable stream of bytes.

▪ TCP: each packet is acknowledged between user and receiver and automatically resent.

❖ Yes: this can still happen.

▪ TCP Ensures that packets are sent in a specific order and are acknowledged before it is 
“successfully written”.

▪ Does not ensure that the network (or server itself) goes down

▪ Does not ensure that the function we want to execute on the server worked or whether it 
actually happened.
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Example: RPC Transaction

❖ Server processes the withdraw request, and sends it back

▪ … But what if the connection is dropped before client receives response!

❖ Let’s say connection is re-established and client resends “withdraw(75)”…

▪ How does the server know if this is the same request as last time, or another request to 
withdraw $75

▪ How does the server know what the client is “intending”
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Terminology

❖ Exactly Once:

▪ Hardest to guarantee

▪ That something happens and it only happens exactly one time.

▪ Requires that the clients have an ID and each request has an ID number.

▪ Servers must also keep a history of previously processed requests and their ID number so 
that the server can respond to duplicate/old requests.
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Terminology

❖ At Most Once:

▪ That a request is executed at most once (e.g. 0 times or 1 time)

▪ Usually means the client sends the request once and only once.

▪ Usable in some cases, but sometimes we need to guarantee that something happened. 

❖ At Least Once:

▪ That the thing is executed at least one time.

▪ This is fine for things like “Reading a value” or “setting” a value
Other operations may get different results if done multiple times
(Like our transaction)

52



CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Fix?

❖ How do we ensure that each transaction is done exactly once?

▪ Thoughts?
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Blank Slide
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Example: Consistent State

56
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Example: Consistent State
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Server Node 1 Server Node 2 (“Backup”)

Client 1

Data
x = 0
y = 1

Data
x = 0
y = 1

Can contact any node to
Read the data stored

What happens when writing
is involved?
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Example: Consistent State
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Client 1
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Data
x = 0
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Write x = 17
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Example: Consistent State
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Server loses connection to client
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Example: Consistent State
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Server Node 1 Server Node 2 (“Backup”)

Client 1

Data
x = 0
y = 17

Data
x = 0
y = 1

Client can 
communicate with 
other nodes instead
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Example: Consistent State
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Server Node 1 Server Node 2 (“Backup”)

Client 1

Data
x = 0
y = 17

Data
x = 0
y = 1

What happens if 
Node 1 comes alive 
again? 
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Example: Consistent State
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Server Node 1 Server Node 2 (“Backup”)

Client 1

Data
x = 0
y = 17

Data
x = 0
y = 1

Which node has the 
correct data?

How do we reach 
consistency again?
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PAXOS

❖ No deterministic fault-tolerant consensus protocol can guarantee progress in 
an asynchronous network.

❖ PAXOS is a protocol for solving consensus while being resistant to unreliable 
or failable processors in the system

▪ Unreliable and failable could mean just that

• the system crashes

• packet (messages) are being sent and received inconsistently

• Becomes malicious and behaves incorrectly “on purpose”

• And in paxos, could possibly recover from any of these 

❖ Paxos guarantees consistency, and the conditions that could prevent it from 
making progress are difficult to provoke. 
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Lecture Outline

❖ Intro to Distributed Systems

▪ Sequential Consistency

▪ Logical Clocks & Ordering

▪ Fault Tolerance

▪ Performance
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Performance

❖ Taking a step back from fault tolerance

❖ Another concern with doing actions across a distributed system is trying to 
make efficient utilization of the nodes in the system

❖ If we have a large task, how do we split up the work roughly evenly across 
nodes in the network so that it is completed faster?

▪ Avoid having one “coordinator” node if possible

• Then nodes may have to wait for the coordinator to tell them what to do and there is less 
coordinators)

▪ Try to treat the nodes equally like rational actors so that they can all do work at the same 
time.
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Microsoft Interview Question:

❖ 100 Nodes in a cluster of computers

❖ Each Node is numbered 0 through 99

❖ Each node has 1,000,000 integers

▪ Each node can only hold a little more than a 1,000,000 integers

❖ We want to sort all the numbers so that node 0 contains the first 1% of the 
integers in sorted order (the lowest million integers). Node 1 contains the next 
million lowest integers, etc.

❖  How do we do this efficiently?
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This was just an “intro” to the field ☺

❖ Lots of details left out, but these concepts apply to distributed systems.

❖ If a bank or database runs on a collection of nodes. How do we agree on 
whether a transaction occurred?

▪ How do we ensure that the transaction went through and won’t get “lost” due to faults?

❖ What if data was split across different nodes and multiple clients needed data 
from multiple nodes at the same time?
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