
CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Systems Programming & Safety
Computer Systems Programming, Spring 2025

Instructor: Travis McGaha

Teaching Assistants:

Andrew Lukashchuk Ashwin Alaparthi Lobi Zhao

Angie Cao Austin Lin Pearl Liu

Aniket Ghorpade Hassan Rizwan Perrie Quek

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

❖ Any Questions for me?

2

pollev.com/tqm

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Administrivia

❖ Final Project Details Posted

▪ SOME of it is auto graded. There is a lot of functionality that is not autograded that you
will need to implement

❖ HW09 Manual checks posted

❖ Next check-in to be posted soon

❖ End of semester survey to be posted soon(?

❖ Exam logistics & Practice exam to be posted soon

3

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Lecture Outline

❖ Intro to Distributed Systems

▪ Sequential Consistency

▪ Logical Clocks & Ordering

▪ Fault Tolerance

▪ Performance

4

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

What are distributed systems?

❖ A group of computers communicating over the network by sending messages,
which interact to accomplish some common task

▪ There is no shared hardware (e.g. memory) other than the network

▪ Individual computers (nodes) can fail

▪ The network itself can fail (Drop messages, corrupt messages, delay messages, etc.)

5

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Why do we care?

❖ They are really interesting problem to work with

❖ Most applications we interact with are distributed systems of some sort:

6

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

❖ They are really interesting problem to work with

❖ Distributed systems typically allow a system to scale well. Need more work to
be done? Just add a new computer to the system

❖ Distributed systems can also allow for some amount of “fault tolerance”. If one
computer crashes, the rest of the computers will probably keep running.

Why do we care?

7

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Distributed Systems Concerns

❖ How do we make it so that the computers work together:

▪ Correctly

▪ Consistent

▪ Efficiently

▪ At (huge) scale

▪ High availability

❖ Despite issues with the network

❖ Despite some computers crashing

❖ Despite some computers being compromised
8

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Distributed Systems: Pessimistic View

❖ Considered a very hard topic

▪ Involves many of the topics covered in this course and more

▪ CIS 5050 spends ~8 lectures covering things already introduced here. (out of 25 lectures)

❖ “The most thought per line of code out of any course”

▪ Hal Perkins Circa 2019

❖ “A distributed system is one where you can’t get your work done because
some machine you’ve never heard of is broken.”

▪ Leslie Lamport, circa 1990

9

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Lecture Outline

❖ Intro to Distributed Systems

▪ Sequential Consistency (with threads first)

▪ Logical Clocks & Ordering

▪ Fault Tolerance

▪ Performance

10

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

❖ Consider the following code.
Each function is called by different threads.
Is it possible for the code to crash?

11

pollev.com/tqm

bool set = false;
int value = 0;

void* thrd1(void* arg) {
 value = 3034;
 set = true;
}

void* thrd2(void* arg) {
 if (set) {
 assert(value == 3034); // crashes if expression is false.
 }
}

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Aside: Instruction & Memory Ordering

❖ Do we know that t is set before g is set?

12

bool g = false;

int t = 0

void some_func(int arg) {

 t = arg;

 g = true;

}

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Aside: Instruction & Memory Ordering

❖ The compiler may generate instructions with different ordering if it does not
appear that it will affect the semantics of the function

▪ Since is not affected by
then either one could execute first.

❖ The Processor may also execute these in a different order than what the
compiler says

❖ Why? Optimizations on program performance

▪ If you want to know more, look into “Out-of-Order Execution” and “Memory Order”

14

g = true; t = arg;

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Aside: Memory Barriers

❖ How do we fix this?

❖ We can emit special instructions to the CPU and/or compiler to create a
“memory barrier”

▪ “all memory accesses before the barrier are guaranteed to happen before the memory
accesses that come after the barrier”

▪ A way to enforce an order in which memory accesses are ordered by the compiler and the
CPU

▪ This is done for us when we mark a variable as atomic or use a lock.

15

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Sequential Consistency

❖ The property that

▪ “The result of an execution is the same AS IF the operations of all the processors were
executed in some sequential order…”

▪ “…and the operations of each individual processor appear in this sequence in the order
specified by the program.”

❖ Short version:

▪ The execution appears to occur in a sequential order

▪ And it is the same order specified by the program

16

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Lecture Outline

❖ Intro to Distributed Systems

▪ Sequential Consistency

▪ Logical Clocks & Ordering

▪ Fault Tolerance

▪ Performance

17

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Shared Nothing Architecture

❖ Consistency and sharing data is hard in a threaded program

❖ What about distributed systems?

▪ Distributed systems are typically “Shared nothing” meaning that it is a collection of
computers communicating over the network

▪ There is no shared memory

▪ There is no shared disk/storage

❖ How can we get a cluster (group of machines) to agree on some state?

▪ How do the computers in the system reason about each other?

18

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Muddy Foreheads

❖ Assume the following situation

▪ There are n children, k get mud
on their foreheads

▪ Children sit in circle.

▪ Teacher announces, "Someone
has mud on their forehead

▪ Teacher repeatedly asks "Raise
your hand if you know you have
mud on your forehead."

▪ What happens?

19

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Muddy Foreheads

❖ Assume the following situation

▪ There are n children, k get mud
on their foreheads

▪ Children sit in circle.

▪ Teacher announces, "Someone
has mud on their forehead

▪ Teacher repeatedly asks "Raise
your hand if you know you have
mud on your forehead."

▪ What happens?

• The answer is not "no one raises
their hand"

20

This Photo by Unknown Author is licensed under CC BY-NC-ND

https://mujeresconciencia.com/2014/12/09/grace-murray-hopper-informatica/
https://creativecommons.org/licenses/by-nc-nd/3.0/

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Common Knowledge

❖ There’s a difference between what you know and what you know others know

❖ And what others know you know

❖ And what others know you know about what you know

❖ And what you know others know you know about what they know

23

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Muddy Forehead Alteration

❖ What if the teacher pulled each student aside individually and told them “at
least one student has mud on their forehead”?

▪ Would our solution still work?

24

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Back to Consistency in Distributed Systems

❖ Let’s say we have a collection of computers that together share the state of a
single string.

25

Server Node 1 Server Node 2

Server Node 3

data = “hi” data = “hi”

data = “hi”

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Back to Consistency in Distributed Systems

❖ Let’s say we have a collection of computers that together share the state of a
single string.

❖ Lets say server 1 gets a request to append “a” to the end of the string.
How do we maintain a consistent state?

26

Server Node 1 Server Node 2

Server Node 3

data = “hi” data = “hi”

data = “hi”

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Back to Consistency in Distributed Systems

❖ Lets say server 1 gets a request to append “a” to the end of the string.
How do we maintain a consistent state?

❖ Simple solution: send the message to other nodes

27

Server Node 1 Server Node 2

Server Node 3

data = “hia” data = “hi”

data = “hi”

append: “a”

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Back to Consistency in Distributed Systems

❖ Lets say server 1 gets a request to append “a” to the end of the string.
How do we maintain a consistent state?

❖ Simple solution: send the message to other nodes and they acknowledge it

28

Server Node 1 Server Node 2

Server Node 3

data = “hia” data = “hia”

data = “hia”

Acknowledge: append: “a”

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Back to Consistency in Distributed Systems

❖ Lets say that node 1 wants to append a but at the same time node 2 wants to
append b

❖ Which happens first? How do we maintain a consistent state?

29

Server Node 1 Server Node 2

Server Node 3

data = “hia” data = “hib”

data = “hi”

append: “a”

append: “b”

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

What happens first?

❖ Messages can get delayed when sent over the network

❖ Can we use a timestamp?

▪ What if the computers clock is slightly off?

❖ Does TCP fix it?

30

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Lecture Outline

❖ Intro to Distributed Systems

▪ Sequential Consistency

▪ Logical Clocks & Ordering

▪ Fault Tolerance

▪ Performance

34

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Generals Problem

❖ Two generals, on opposite sides
of a city on a hill.

❖ If they attack simultaneously,
they will be victorious. If one
attacks without the other, they
will both be defeated.

❖ Can communicate by
messenger. Messengers can
get lost or be captured.

❖ How do they ensure they can
take the city?

35

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Generals Problem

❖ To coordinate an attack, the
problem requires common
knowledge

❖ With the messengers, common
knowledge is never reached.

❖ What happens when we add
more generals?

❖ What happens when some of
the generals are malicious?

37

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Example: RPC

❖ Remote Procedure Call: When a program is able to invoke a function on
another computers address space, and then get the results.

❖ Usually done as a form of “Message Passing”

▪ Client calls a function that sends a “message” over the network

▪ A server receives the message, executes the function, and sends the response back

❖ Even in this simple, example, issues can arise

38

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Example: RPC

❖ Consider: Client wants to read their current Bank Account Balance

▪ Client may call a function like get_balance()

39

Client 1

Server Node

Data

balance = $100

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Example: RPC

❖ Consider: Client wants to read their current Bank Account Balance

▪ Client may call a function like get_balance()

▪ get_balance() will reach out to the server across the network

40

Client 1

Server Node

Data

balance = $100

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Example: RPC

❖ Consider: Client wants to read their current Bank Account Balance

▪ Client may call a function like get_balance()

▪ get_balance() will reach out to the server across the network

▪ Server processes the request, and sends it back

41

Client 1

Server Node

Data

balance = $100

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Example: RPC

❖ Consider: Client wants to read their current Bank Account Balance

▪ Client may call a function like get_balance()

▪ get_balance() will reach out to the server across the network

▪ Server processes the request, and sends it back

▪ Client returns from the function “get_balance()”

42

Client 1

Server Node

Data

balance = $100

Client was blocked while waiting for the server to respond.

Program that called get_balance() probably doesn’t need

to know much about the network messaging

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Blank Slide

43

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Example: RPC Transaction

❖ Consider: Client wants to withdraw $75 from their bank account

▪ Client may call a function like withdraw(75)

▪ withdraw() will reach out to the server across the network

44

Client 1

Server Node

Data

balance = $100

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Example: RPC Transaction

❖ Consider: Client wants to withdraw $75 from their bank account

▪ Client may call a function like withdraw(75)

▪ withdraw() will reach out to the server across the network

▪ Server processes the request, and sends it back

45

Client 1

Server Node

Data

balance = $25

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Example: RPC Transaction

❖ Consider: Client wants to withdraw $75 from their bank account

▪ Client may call a function like withdraw(75)

▪ withdraw() will reach out to the server across the network

▪ Server processes the request, and sends it back

• … But what if the connection is dropped before client receives response!

46

Client 1

Server Node

Data

balance = $25

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Example: RPC Transaction

❖ Server processes the withdraw request, and sends it back

▪ … But what if the connection is dropped before client receives response!

❖ Let’s say connection is re-established and client resends “withdraw(75)”…

47

Client 1

Server Node

Data

balance = $25

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Question: Does TCP Solve This?

❖ If we were using TCP, is this situation even possible?

▪ TCP: provides an abstraction of a reliable stream of bytes.

▪ TCP: each packet is acknowledged between user and receiver and automatically resent.

48

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Question: Does TCP Solve This?

❖ If we were using TCP, is this situation even possible?

▪ TCP: provides an abstraction of a reliable stream of bytes.

▪ TCP: each packet is acknowledged between user and receiver and automatically resent.

❖ Yes: this can still happen.

▪ TCP Ensures that packets are sent in a specific order and are acknowledged before it is
“successfully written”.

▪ Does not ensure that the network (or server itself) goes down

▪ Does not ensure that the function we want to execute on the server worked or whether it
actually happened.

49

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Example: RPC Transaction

❖ Server processes the withdraw request, and sends it back

▪ … But what if the connection is dropped before client receives response!

❖ Let’s say connection is re-established and client resends “withdraw(75)”…

▪ How does the server know if this is the same request as last time, or another request to
withdraw $75

▪ How does the server know what the client is “intending”

50

Client 1

Server Node

Data

balance = $25

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Terminology

❖ Exactly Once:

▪ Hardest to guarantee

▪ That something happens and it only happens exactly one time.

▪ Requires that the clients have an ID and each request has an ID number.

▪ Servers must also keep a history of previously processed requests and their ID number so
that the server can respond to duplicate/old requests.

51

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Terminology

❖ At Most Once:

▪ That a request is executed at most once (e.g. 0 times or 1 time)

▪ Usually means the client sends the request once and only once.

▪ Usable in some cases, but sometimes we need to guarantee that something happened.

❖ At Least Once:

▪ That the thing is executed at least one time.

▪ This is fine for things like “Reading a value” or “setting” a value
Other operations may get different results if done multiple times
(Like our transaction)

52

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Fix?

❖ How do we ensure that each transaction is done exactly once?

▪ Thoughts?

53

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Blank Slide

55

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Example: Consistent State

56

Server Node 1 Server Node 2 (“Backup”)

Client 1

Data
x = 0
y = 1

Data
x = 0
y = 1

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Example: Consistent State

57

Server Node 1 Server Node 2 (“Backup”)

Client 1

Data
x = 0
y = 1

Data
x = 0
y = 1

Can contact any node to
Read the data stored

What happens when writing
is involved?

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Example: Consistent State

58

Server Node 1 Server Node 2 (“Backup”)

Client 1

Data
x = 0
y = 17

Data
x = 0
y = 1

Write x = 17

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Example: Consistent State

59

Server Node 1 Server Node 2 (“Backup”)

Client 1

Data
x = 0
y = 17

Data
x = 0
y = 1

Server loses connection to client

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Example: Consistent State

60

Server Node 1 Server Node 2 (“Backup”)

Client 1

Data
x = 0
y = 17

Data
x = 0
y = 1

Client can
communicate with
other nodes instead

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Example: Consistent State

61

Server Node 1 Server Node 2 (“Backup”)

Client 1

Data
x = 0
y = 17

Data
x = 0
y = 1

What happens if
Node 1 comes alive
again?

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Example: Consistent State

62

Server Node 1 Server Node 2 (“Backup”)

Client 1

Data
x = 0
y = 17

Data
x = 0
y = 1

Which node has the
correct data?

How do we reach
consistency again?

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

PAXOS

❖ No deterministic fault-tolerant consensus protocol can guarantee progress in
an asynchronous network.

❖ PAXOS is a protocol for solving consensus while being resistant to unreliable
or failable processors in the system

▪ Unreliable and failable could mean just that

• the system crashes

• packet (messages) are being sent and received inconsistently

• Becomes malicious and behaves incorrectly “on purpose”

• And in paxos, could possibly recover from any of these

❖ Paxos guarantees consistency, and the conditions that could prevent it from
making progress are difficult to provoke.

63

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Lecture Outline

❖ Intro to Distributed Systems

▪ Sequential Consistency

▪ Logical Clocks & Ordering

▪ Fault Tolerance

▪ Performance

64

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Performance

❖ Taking a step back from fault tolerance

❖ Another concern with doing actions across a distributed system is trying to
make efficient utilization of the nodes in the system

❖ If we have a large task, how do we split up the work roughly evenly across
nodes in the network so that it is completed faster?

▪ Avoid having one “coordinator” node if possible

• Then nodes may have to wait for the coordinator to tell them what to do and there is less
coordinators)

▪ Try to treat the nodes equally like rational actors so that they can all do work at the same
time.

65

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

Microsoft Interview Question:

❖ 100 Nodes in a cluster of computers

❖ Each Node is numbered 0 through 99

❖ Each node has 1,000,000 integers

▪ Each node can only hold a little more than a 1,000,000 integers

❖ We want to sort all the numbers so that node 0 contains the first 1% of the
integers in sorted order (the lowest million integers). Node 1 contains the next
million lowest integers, etc.

❖ How do we do this efficiently?

66

CIT 5950, Spring 2025L22: DistributedUniversity of Pennsylvania

This was just an “intro” to the field ☺

❖ Lots of details left out, but these concepts apply to distributed systems.

❖ If a bank or database runs on a collection of nodes. How do we agree on
whether a transaction occurred?

▪ How do we ensure that the transaction went through and won’t get “lost” due to faults?

❖ What if data was split across different nodes and multiple clients needed data
from multiple nodes at the same time?

67

	Default Section
	Slide 1: Systems Programming & Safety Computer Systems Programming, Spring 2025
	Slide 2
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: What are distributed systems?
	Slide 6: Why do we care?
	Slide 7: Why do we care?
	Slide 8: Distributed Systems Concerns
	Slide 9: Distributed Systems: Pessimistic View
	Slide 10: Lecture Outline
	Slide 11
	Slide 12: Aside: Instruction & Memory Ordering
	Slide 14: Aside: Instruction & Memory Ordering
	Slide 15: Aside: Memory Barriers
	Slide 16: Sequential Consistency
	Slide 17: Lecture Outline
	Slide 18: Shared Nothing Architecture
	Slide 19: Muddy Foreheads
	Slide 20: Muddy Foreheads
	Slide 23: Common Knowledge
	Slide 24: Muddy Forehead Alteration
	Slide 25: Back to Consistency in Distributed Systems
	Slide 26: Back to Consistency in Distributed Systems
	Slide 27: Back to Consistency in Distributed Systems
	Slide 28: Back to Consistency in Distributed Systems
	Slide 29: Back to Consistency in Distributed Systems
	Slide 30: What happens first?
	Slide 34: Lecture Outline
	Slide 35: Generals Problem
	Slide 37: Generals Problem
	Slide 38: Example: RPC
	Slide 39: Example: RPC
	Slide 40: Example: RPC
	Slide 41: Example: RPC
	Slide 42: Example: RPC
	Slide 43: Blank Slide
	Slide 44: Example: RPC Transaction
	Slide 45: Example: RPC Transaction
	Slide 46: Example: RPC Transaction
	Slide 47: Example: RPC Transaction
	Slide 48: Question: Does TCP Solve This?
	Slide 49: Question: Does TCP Solve This?
	Slide 50: Example: RPC Transaction
	Slide 51: Terminology
	Slide 52: Terminology
	Slide 53: Fix?
	Slide 55: Blank Slide
	Slide 56: Example: Consistent State
	Slide 57: Example: Consistent State
	Slide 58: Example: Consistent State
	Slide 59: Example: Consistent State
	Slide 60: Example: Consistent State
	Slide 61: Example: Consistent State
	Slide 62: Example: Consistent State
	Slide 63: PAXOS
	Slide 64: Lecture Outline
	Slide 65: Performance
	Slide 66: Microsoft Interview Question:
	Slide 67: This was just an “intro” to the field

