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Abstract

This paper presents a novel variant of structured light-
ing which exploits the inherent blur in the projector system
to overcome the discrepancy in resolution between typical
Digital SLR cameras and typical projector systems. More
specifically, the scheme estimates the coordinates of the
projection of each illuminated scene point in the projector
frame with subpixel precision and this additional level of
accuracy helps to improve the quality of the resulting 3D
reconstructions.

1. Introduction

Structured Light has long been a popular method for re-
covering the 3D structure of an object or scene. In its sim-
plest form, structured light schemes make use of a projec-
tor system that illuminates the scene with a time varying
pattern and a camera system which captures a series of im-
ages under this varying illumination. This image sequence
is then decoded in order to establish correspondences be-
tween points in the image and points in the projector frame.

Structured Light owes its popularity to a number of felic-
itous characteristics: it is relatively simple to implement re-
quiring only a projection system and a camera, one can im-
plement self-calibrating versions of the scheme which sim-
plifies deployment, and the method provides dense depth es-
timates even on untextured areas of the scene where stereo
methods typically have difficulties.

One basic issue with structured light reconstruction that
has become increasingly annoying over the past decade is
the growing disparity between the resolution of the image
sensors and the resolution of the projector systems.

The resolution of image sensors, driven by the market for
digital cameras and Hendy’s Law, a corollary to Moore’s
law, has been increasing exponentially. Typical consumer
grade Digital Single Lens Reflex (SLR) cameras now of-
fer tens of megapixels in a single image. Twenty megapixel

cameras are not uncommon and higher resolutions are avail-
able.

Projector technology, which is governed by a different
set of physical limitations and which is not being driven by
the same mass market forces, has failed to keep pace. Stan-
dard Digital Light Projector (DLP) based projector systems
range in resolution up to 1920x1080, the resolution required
to support High Definition Television. The highest resolu-
tion DLP based projector system available at this point in
time offers a resolution of approximately 4 Megapixels.

With standard structured light decoding schemes one is
limited by the resolution of the projector. That is, while one
can decode a corresponding projector pixel coordinate for
every pixel in the image frame, the quantization of the pro-
jector ultimately limits the accuracy of the reconstruction.

This paper proposes a novel approach to overcoming this
limitation. The insight is that we can exploit the blur in-
duced by the optics of the projector to achieve subpixel res-
olution of the recovered projector coordinates. This allows
us to more precisely localize scene points in the projector
frame and, hence, improve the accuracy of the resulting 3D
reconstruction.

1.1. Related Work

Projector blur has been exploited previously by Zhang
and Nayar [10] who describe a scheme for measuring pro-
jector blur using a confocal projector camera system. They
explain how one can, with a properly calibrated system, de-
duce the estimated projector defocus at every point in the
scene from a series of images.

The method proposed in this paper differs substantially
from this previous work since it does not involve estimating
depth from the observed variation in projector defocus. The
proposed scheme estimates depth via triangulation by con-
sidering the disparity between the location of points in the
camera image and the projector image. The defocus blur
here is being used to establish subpixel correspondences in
the projector frame.

A number of interesting approaches have been devel-



oped which seek to combine range information from struc-
tured light with per pixel estimates of surface normals de-
rived from photometric stereo. One of the earliest exem-
plars of this work is the paper by Nehab et al. [8] who de-
scribe an efficient technique for merging per-pixel normal
and range data to improve the quality of the reconstruction.
Subsequent work by Aliaga and Yu [!] described a system
that made use of multiple cameras and projectors in a self
calibrating network. Their system also provided a photo-
geometric reconstruction by fusing photometric stereo re-
sults with structured light. More recently Lu et al. [7] de-
scribed an impressive system for fusing photometric stereo
results obtained using an ultra-high resolution imaging sys-
tem with low resolution structured light depth measure-
ments to obtain range results that rival those obtained from
a high accuracy laser scanning system.

All of the previous approaches rely on a photometric
stereo step that makes fairly strong assumptions about the
reflectance properties of the underlying surfaces. Typically,
one assumes that the surface is Lambertian so that one can
recover estimates for the surface normal at each pixel from
a relatively small number of intensity measurements. Some
of the photometric stereo methods require carefully cali-
brated lighting systems in order to produce accurate results.
These methods also involve solving a large, but sparse, lin-
ear system in order to fuse the range and normal measure-
ments into a final surface estimate.

Classical structured light techniques project a plane of
light into the scene and then search for the center of the re-
sulting scan line in the image [4]. These approaches often
model the Gaussian blur in the illuminant intensity and seek
to recover the peak of the beam in the image with subpixel
accuracy. This approach is quite different from the one ad-
vocated in this paper since it seeks subpixel coordinates in
the image plane rater than the projector frame. The number
of lines in the scan is still limited by the resolution of the
projector. Further the approaches to recovering the subpixel
coordinates in the image typically assume that the underly-
ing surfaces have constant albedo or smooth geometry so
that variation in image intensity can be related to the beam
position. These assumptions are frequently problematic in
practice.

The proposed approach is more similar to the spatiotem-
poral analysis approach described by Curless and Levoy [2]
who also note that scanning a plane of light over a surface
results in a Gaussian profile in the spatiotemporal volume
of images. In their work they consider a scanning system
where a camera and laser plane are fixed relative to each
other and translated relative to the scene. Their analysis of
this geometry lead them to consider slanted lines in the spa-
tiotemporal volume for better beam localization. The analy-
sis in the present paper differs since it uses a fixed projector
and camera system and the resulting analysis takes place
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entirely in the temporal domain which allows us to give an
accurate depth estimate for each pixel in the frame through
a relatively simple analysis of a 1D signal.

Another popular approach to recovering subpixel corre-
spondence values is the method of sinusoids which involves
projecting a series of shifted sinusoidal patterns on the scene
and analyzing the resulting intensity variation at each pixel
[9, 11]. Unfortunately, this method assumes that one can
produce an accurate sinusoidal pattern with the projector
which is surprisingly difficult. The pixelation of the pro-
jector also imposes fundamental limitations which are more
difficult to overcome. A more detailed comparison is pre-
sented in Section 3.2.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the technical details of the implementation
of the high resolution structured light system. Section 3
describes a quantitative and qualitative evaluation of the re-
sults obtained with the proposed scheme and the final sec-
tion presents some of the conclusions drawn from this work.

2. Technical Approach

The proposed scheme builds upon the tried and tested
projector based structured light paradigm depicted in Figure
| . This figure shows a scene being illuminated by a projec-
tor and observed by a digital camera. In our experiments we
utilized a BenQ PB2640 DLP based projector with a reso-
lution of 1024x768 pixels and a Canon 50D 15 megapixel
Digital SLR camera with a resolution of 4770x3177. The
camera was outfitted with a zoom lens which allowed for
focal lengths between 28 and 135 millimeters.

Figure 1. In a structured light system the scene is illuminated by a
projector and the images are captured with a camera.

The first phase of data collection uses a standard binary
stripe sequence to recover the integral row and column in-
dices of every pixel in the scene. A standard gray code stripe
pattern is employed to cut down on decoding errors. Since
we are interested in recovering both the row and column
coordinates of every point, two stripe sequences are used,



10 images of horizontal stripes and 10 images of vertical
stripes.

In the second phase of data collection a different set of
horizontal and vertical stripe patterns is employed. In this
set each stripe is one pixel wide and the stripes are spaced
8 pixels apart. An example of this stripe pattern is shown in
Figure 3. Shifted versions of the stripe pattern are projected
onto the scene so that the stripes appear to march across
the surface one pixel at a time as the patterns advance. In
all 8 sets of horizontal stripes and 8 sets of vertical stripes
are projected. The same stripe pattern was employed by
Guhring [4] in his work on 3D surface acquisition although
he used the resulting image measurements in a completely
different manner.
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Figure 2. The effective irradiance that a pixel in the projector con-
tributes to a point in the scene is related to the displacement be-
tween the projection of that scene point on the projector frame and
the center of the pixel. This falloff is modeled as a Gaussian.

If we consider the simplified 2D depiction shown in Fig-
ure 2 we can relate the observed scene radiance measured
at a pixel in the camera, I, to the irradiance supplied to the
corresponding scene point by the projector, F, as follows:

I=f(0,,0;)E cosb; (D

where f(0,, 0;) represents the BRDF at the scene point. The
net effect of the projector optics is modeled with a Gaussian
blur kernel so the irradiance supplied by the projector to the
scene point is given by the following expression:

B8 = By (Z2)

where k denotes the stripe index, o models the width of the
blur kernel at that point in the scene and ¢ is the projection
of the scene point in the projector frame which is the param-
eter that we ultimately recover with subpixel precision. In
this model the irradiance that a point in the scene receives
from a pixel in the projector is related to the disparity be-
tween the center of that projector pixel and the projection of
the scene point on the projector grid.

()
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Combining Equations 1 and 2 yields the following ex-
pression which models how the observed intensity of the
pixel, I(k), varies as the stripe is marched across the scene.

I(k) = I exp (_(ICUW) + 1o

In this equation Iy = f(6,, 6;) Ey cos §; while I models the
scene irradiance due to ambient illumination, this quantity
can be estimated by considering the lowest intensity value
recorded over the 8 frame sequence. Once this has been sub-
tracted off, one can easily recover the remaining parameters
by taking logs of the residual intensity values and fitting
a quadratic function to the resulting values in the vicinity
of the maximum observed intensity. Equation 4 shows the
relationship between the parameters of interest and the co-
efficients of the local quadratic fit.

log(I(k)—1Io) = (log I, — <‘22>> + (%‘5) k— (i) k>
4)

This procedure recovers a floating point offset between
-0.5 and 7.5 at each scene point which effectively corre-
sponds to the lower bits of the projection of the scene point
in the projector frame. This result is then spliced onto the
integer code recovered in the previous phase to obtain the
final x and y projector coordinates. Note that in this scheme
the effective BRDF of the scene point and the orientation
of the surface patch do not affect the sub pixel localization
scheme since they only enter equation 3 as scale factors.
Notice also that this method recovers the size of the blur ker-
nel, o, at each pixel independently, this is important since
the blur will in fact change based on the depth of field.

The model assumes that the intensity readings from the
camera vary linearly with scene irradiance so all of the im-
agery is captured in raw format and all of the processing
is done on the raw measurements prior to the indignities of
the debayering process. At the end of the decoding pro-
cess for every illuminated pixel in the camera image one
recovers two floating point values, (zs,ys), which repre-
sent estimates for the projection of the scene point onto the
projectors frame with subpixel precision.

At this point one can exploit the projector camera duality
to auto-calibrate the system and recover the intrinsic param-
eters of both the camera and the projector [5, 3]. This stage
proceeds exactly as one would proceed when provided with
a set of correspondences between two images, the only dif-
ference being that you literally have millions of correspon-
dences from which to choose. The fact that the system is
self calibrating significantly simplifies the deployment pro-
cess. The proposed scheme chooses a small subset of the
correspondences at random for computational convenience
and then recovers an estimate for the fundamental matrix
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relating the camera and the projector from these measure-
ments in the usual manner. This matrix is then decomposed
to yield estimates for the focal lengths of the camera and
the projector and the rotation and translation relating the
two frames. This initial estimate is then refined using the
publicly available Sparse Bundle Adjustment package [0].
This bundle adjustment procedure also models the radial
distortion of both the camera and the projector. In our ex-
periments, it was convenient to include both quadratic and
quartic radial distortion terms.

Once the intrinsic and extrinsic parameters are recovered
we perform non-linear resectioning to compute the depth of
every point in the scene that has been decoded. This re-
sectioning procedure is simplified by choosing the camera
as the base frame of reference. For each of the pixels in
the image that have been decoded we perform a non-linear
optimization to recover the depth that is in best agreement
with the decoded projector coordinates. Given the Z depth
at a pixel and the intrinsic parameters of the camera one can
recover the associated X and Y coordinates in the scene.
Note that the procedure recovers the depth at each pixel in-
dependently. This means that the there are no significant
issues in the vicinity of depth discontinuities. Further the
independent depth estimates provide a firm foundation for
subsequent filtering operations.

3. Experimental Results

In order to characterize the blur kernel associated with
our projector system an experiment was carried out wherein
a flat matte surface was set up perpendicular to the optical
axis of the projector. Under these imaging conditions, the
intensity variation observed on the target should mirror the
intensity variation produced by the projector without fore-
shortening artifacts.

The planar target was approximately 50 centimeters on
side and was constructed by mounting a matte surface on a
half inch thick sheet of plexiglass to help ensure planarity.
This surface was then illuminated with the aforementioned
stripe pattern. Figure 3a shows one of the images where
the scene is being illuminated with one of the single pixel
thick stripe patterns. Figure 3b shows a closeup view of a
small section of the image showing the details of that stripe
pattern.

Figure 4a plots how the intensity varies across the
columns of one such region and finally Figure 4b shows
how the log of the intensity varies in and around one of the
local maxima. The purple curve shows the quadratic func-
tion that was fit to this data. This quadratic fit seems to be
in good agreement with the observed variation which helps
to justify the simple Gaussian blur model.
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Figure 3. a. Planar target illuminated with a single pixel stripe
pattern b. Closeup of image on a small region of the target.
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Figure 4. a. Profile of intensity variation along a row of the image
shown in Figure 3. b. Closeup of a local maxima of the profile
showing a quadratic fit to the log of the intensity values.

Distance | baseline | subpix. | mean | median | max

to target error error error
2664.7 1110.2 N 1.397 | 1.270 | 6.123
2664.7 1110.2 Y 0.488 | 0.409 | 3.140
1559.9 1027.9 N 0.606 | 0.584 | 1.963
1559.9 1027.9 Y 0.153 | 0.132 | 0.732

Table 1. Table summarizing the residual error associated with the
planar target. All values are in millimeters.

3.1. Comparison to Standard Structured Light

Experiments were also carried out to help quantify the
accuracy of the proposed scheme and to compare the results
to those that would be obtained without subpixel interpola-
tion. The entire reconstruction procedure was carried out to
recover the position of every illuminated point in the scene
with respect to the camera. A least squares procedure was
invoked to fit a planar surface to most of the pixels on the
planar target and the residual to this fit was recorded and
analyzed.

The reconstruction experiment was repeated using the
projector coordinates recovered using only the first decod-
ing stage which produces integral projector coordinates.
The planar target was then moved to a different position
with respect to the camera and the entire procedure was re-
peated.

The results of the experiment are summarized in Table 1
which shows how the mean, median and maximum residual
values over the area of regard differed between the subpixel



and non-subpixel variants and how the errors changed as
the depth to the target was varied. To further characterize
the variation in error, the plots in Figure 5 show histograms
of the residual error for all four test cases.

CEEr— I R
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Figure 5. These histograms compare the distribution of residual er-
rors to the planar fit before and after subpixel refinement. The first
row shows the error distribution when the target was placed 2.7
meters away and the second row shows the error when the target
was 1.5 meters away. The first column corresponds to the errors
recorded without subpixel refinement while the second shows the
errors observed with subpixel refinement. Note that the subpixel
residual errors are smaller.

These results demonstrate that the subpixel variant offers
a clear advantage over the standard structured light proce-
dure and reduces the residual error by approximately a fac-
tor of 3. In order to investigate how the proposed procedure
would impact the perceived quality of the 3D reconstruction
results experiments were carried out using the scene shown
in Figure 6.

Figure 6. Sample scene used in reconstruction experiments. The
highlighted areas are expanded in Figure 7.
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Figure 7 shows side by side comparisons of the depth
reconstruction results obtained using subpixel and non-
subpixel correspondences in the regions marked by boxes
in Figure 6. Note that these 3D reconstruction results have
not been smoothed or filtered in any way so one can observe
some outliers.

Figure 7h shows the 3D results returned by the standard
non-subpixel structured light method on a planar region in
the foreground of the scene. Here one can clearly observe
the classic sawtooth error pattern induced by the quantiza-
tion error on the pixel coordinates. This error is largely
eliminated in the subpixel version.

3.2. Comparison to Method of Sinusoids

Another technique that is commonly used to produce
high accuracy correspondences in structured light systems
is the method of sinusoids [9, 11]. The approach involves
projecting a sequence of shifted sinusoids onto the scene
and then analyzing the resulting intensity variation of the
individual image pixels. The theoretical model predicts that
the intensity of a pixel in the frame should vary according
to Equation 5:

I(k) = Iy sin (ak + ¢) + Iy 5)

Where « denotes the phase difference between succes-
sive intensity patterns. In our experiments we have chosen
to project a sequence of 8 patterns separated in phase by 7
radians.

Given a sequence of intensity values taken over time
from a single pixel one can readily recover the unknown pa-
rameters, I, Iy and ¢ from a least squares procedure. The
phase associated with each pixel, ¢, encodes its position in
the projector frame. In principle, this value can be recov-
ered with subpixel precision. In practice, this sinusoidal
model makes a number of assumptions which are difficult
to satisfy. Firstly it, assumes that one can precisely control
the illumination of each pixel in the projector so as to pro-
duce a reasonable approximation of a sinusoid. In fact, for
most projector systems this is a very questionable propo-
sition. Various non-linearities in the intensity response are
introduced by gamma corrections in the display card and by
other intended and unintended intensity distortions in the
projector.

This problem is illustrated in Figure 8 which plots the se-
ries of 8 intensity values collected by a single camera pixel
as the sinusoidal illumination patterns are applied. The con-
tinuous curve shows the best fit sinusoidal model in a least
squares sense for those samples. The divergence between
the samples and the curve is quite alarming.

These modeling problems are reflected in the subpixel
results returned by the method. Figure 9 shows a direct
comparison of the subpixel coordinates returned by the
method of sinusoids and those returned by the proposed
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Figure 7. This figure compares the reconstruction results obtained on the scene in Figure 6. The first row corresponds to the results obtained
with subpixel refinement and the second row shows the results without subpixel refinement.
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Figure 8. This figure shows how the intensity of a single pixel in
the image changes over time as it is illuminated by a sequence of
shifted sinusoids. The continuous curve is the best fit sinusoid for
the intensity samples.

projector blur method over the span of a horizontal line seg-
ment in the camera image. Since this was an image of our
flat target we would expect the subpixel coordinates to vary
linearly with pixel position. The bottom plot shows the re-
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sults from the method of sinusoids while the top plot shows
the results from the proposed method. The two plots have
been deliberately offset for ease of comparison. In this plot
one can clearly see that the proposed method produces re-
sults that are much more linear. Quantitatively, for this set
of 200 pixels the root mean square error associated with the
sinusoidal error was 0.6029 pixels while the RMS error of
the projector blur method was 0.0470 pixels.

In order to obtain accurate results with the method of
sinusoids on standard resolution imagery one is typically
obliged to perform a fairly complex photometric calibration
step to recover the curve relating programmed image inten-
sity to actual scene irradiance as described in [ 1]. As such
we believe that the proposed approach offers an advantage
since it involves fewer assumptions and is simpler to imple-
ment on typical projector systems.

In the context of high resolution imagery, a more funda-
mental limitation is imposed by the pixelation of the pro-
jector. With a projector system the illumination pattern that
is produced is not a true sinusoid but a discrete approxi-
mation thereof. If the projector is properly focused on the
scene, this discretization will be apparent in the high reso-
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Figure 9. This figure compares the subpixel values returned by
the method of sinusoids (the bottom plot) to the subpixel results
returned by the proposed projector blur method (the top plot) over

a span of pixels in the image. Both plots should be straight lines.

lution imagery and the method of sinusoids would offer no
subpixel advantage since all of the points in the scene that
are illuminated by a given pixel in the projector would vary
in exactly the same way and would, therefore, decode to the
same phase value.

With low resolution imagery the discretization of the
projector is matched by the discretization of the camera so
the camera pixels effectively low pass filter the intensity
variation and help to justify the sinusoidal model. With a
high resolution camera the discrete nature of the projector
is much harder to hide since each pixel in the projector now
covers several pixels in the camera image.

3.3. Scene Reconstruction

One compelling application of the proposed reconstruc-
tion technique is model acquisition for graphics. The fact
that the procedure can be used to capture high resolution,
high accuracy range scans that are naturally registered with
the color information from the camera allows us to effec-
tively render the scene from novel vantage points as shown
in Figure 10. These renderings were produced using a
point splatting procedure. This approach is particularly well
suited to the data sets produced by the proposed reconstruc-
tion procedure which consist of individual scene points with
both position and color information. Prior to rendering, the
depth images were smoothed with a simple 3x3 median fil-
ter to identify and remove obvious outliers.

We observe that the resolution of the Digital SLR is typ-
ically an order of magnitude higher than the resolution of
the novel views one wants to generate for fly-throughs or
other purposes which means that several pixels in the scene
typically contribute to every pixel in the rerendered view.
The resolution and accuracy of the scans allows the user to
effectively zoom in on areas of interest in the scene.
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4. Conclusions

In this work we choose to make a virtue out of a neces-
sity. Instead of lamenting the inevitability of projector blur
and the uncertainties that it can raise in the decoding pro-
cess, we instead exploit the blur to improve the accuracy of
our procedure.

The method has been evaluated both quantitatively and
qualitatively and has been shown to provide a substantial
improvement over traditional binary structured light meth-
ods and over the commonly used method of sinusoids.

The goal of this effort has been to build upon the
strengths of structured light methods namely, simplicity,
flexibility and accuracy. The resulting method is, in prac-
tice, identical to standard structured light the only differ-
ence being that it employs an additional round of stripe pat-
terns which are analyzed to produce the subpixel estimates.
The scheme is entirely self calibrating which means that the
camera and projector can be repositioned and refocused as
needed without issue.

The calculations involved in implementing the scheme
are relatively straightforward. The subpixel coordinates at
each pixel are recovered independently as are the depth es-
timates which eliminates the need for large scale relaxation
computations that fuse information from neighboring pixels
and simplifies the handling of scene discontinuities.

Modeling the net effect of the optics as a Gaussian blur is
a simple but effective choice which appears to work reason-
ably well in this context. It may be interesting to explore the
advantages of more complex blur models in future work.

Finally, while the scheme has been described as a two
frame method involving a single camera and projector it is
a relatively straightforward matter to extend the method to
deal with multiple cameras and projectors. For example one
may choose to use a single camera with multiple placements
of the projector so as to ensure that every pixel in the camera
image is illuminated by one or more of the projector scans.
The self calibration framework can easily be extended to
handle such a situation [5, 3]. Similarly one could use the
proposed method to scan a scene from multiple different
vantage points and fuse the results into a single representa-
tion for rendering or modeling purposes.
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