Cynthia Sung

Gabel Family Term Assistant Professor
Mechanical Engineering & Applied Mechanics
University of Pennsylvania
crsung (at)

Projects | Publications | Past Projects

Short Bio: Cynthia Sung is the Gabel Family Term Assistant Professor of Mechanical Engineering at the Department of Mechanical Engineering and Applied Mechanics (MEAM) at the University of Pennsylvania. She received a Ph.D. in Electrical Engineering and Computer Science from MIT in 2016 and a B.S. in Mechanical Engineering from Rice University in 2011. Her research interests focus on computational methods for design automation of robotic systems. Cynthia aims to provide designers with intuitive computer-aided design tools for creating customized robots and behaviors. Her work involves developing techniques for representing, modeling, simulating, and fabricating these designs. Cynthia's research lies at the intersection of computational geometry, data driven methods, and rapid fabrication techniques such as 3D printing and origami-inspired assembly.

Interested in these topics? I am actively looking for bright students and postdocs to help kickstart my lab! Interested postdocs and Penn students should email me directly with their resume/CV. New graduate students should apply through Penn Engineering's graduate admissions.

Active Projects

Interactive Robogami

Interactive Robogami is a design tool that aims to democratize the design and fabrication of robots, enabling people of all skill levels to specify and 3-D print robots without the need for expert domain knowledge. The tool leverages a database of example robots that can be fabricated using our 3D print and fold technique, in which robots are 3-D printed as flat sheets and then folded into 3D structures. Users compose parts from these examples to create new robot designs. The robot designs are tested for stable forward locomotion via simulation and the tool provides visual feedback so that the user can modify the design. Once the user is satisfied, the tool generates a 3-D mesh for printing. New robot designs are automatically added to the database, and experienced designers are also able to extend the database with new designs. We demonstrate the capabilities of the system by designing and fabricating several new robots.

Joint work with Adriana Schulz, Andrew Spielberg, Wei Zhao, Ankur Mehta, Eitan Grinspun, Wojciech Matusik, and Daniela Rus

Geometric Design of Print-and-Fold Robots

Print-and-fold manufacturing promises inexpensive and customizable robots for the everyman. However, progress is complicated by a lack of understanding of what motions can be achieved via folding. We investigate how foldable mechanisms of arbitrary complexity could be composed from a library of foldable subcomponents. We have created parameterized fold patterns for basic joints commonly found in robots. We have also developed algorithms that, given a 3-D mechanism composed of these joints and foldable rigid bodies, produce one-piece, non-self-intersecting patterns that fold into the 3-D mechanism. Using this composition approach, we have designed multiple foldable mechanisms and robots.

Joint work with Erik Demaine, Martin Demaine, and Daniela Rus

Last updated: Monday, January 8, 2017