1. Let $\Sigma = \{a, b\}$. Consider the language L consisting of strings w such that w has at least one occurrence of the substring aba.

 (a) Give a DFA that accepts L. 4 pts

 (b) Prove that the DFA of part (a) accepts L. That is, show that for every string w, $\hat{\delta}(q_0, w)$ is an accepting state precisely when w has at least one occurrence of the substring aba. 6 pts

2. (Sipser 1.14)

 (a) Show that if M is a DFA recognizing language B, swapping the accept and nonaccept states in M yields a new DFA \bar{M} recognizing \bar{B}, the complement of B. Conclude that the class of regular languages is closed under complement. 5 pts

 (b) Show by example that if M is an NFA recognizing language B, \bar{M} does not necessarily recognize \bar{B}. 5 pts

3. (Sipser 1.31) For any string $w = w_1 w_2 \cdots w_n$, the reverse of w is $w^R = w_n \cdots w_2 w_1$. For any language L, let $L^R = \{w^R \mid w \in L\}$. Show that L is regular $\iff L^R$ is regular. 10 pts

4. (Sipser 1.36) Let $B_n = \{a^k \mid k$ is a multiple of $n\}$. Show that, for each natural number $n \geq 1$, the language B_n is regular. 5 pts

5. (Sipser 1.48) Given alphabet $\Sigma = \{a, b\}$, prove that 5 pts

 $$L = \{w \mid w$ contains an equal number of occurrences of the substrings ab and $ba\}$$

 is regular.

6. (Sipser 1.51) Let x and y be strings in Σ^*. As discussed in class, we say that x and y are distinguishable by a language L if some string $z \in \Sigma^*$ exists such that exactly one of strings xz and yz is a member of L. Otherwise, for every string z we have $xz \in L$ if and only if $yz \in L$ and we say that x and y are indistinguishable by L, written $x \equiv_L y$. Prove that \equiv_L is an equivalence relation. 10 pts

7. Since we proved that \equiv_L is an equivalence relation in Question 6, it is natural to consider the equivalence classes induced by \equiv_L. Recalling that given language L and string x, the equivalence class to which x belongs is the set of strings $\{y \mid x \equiv_L y\}$. \equiv_L therefore partitions L into some number of equivalence classes.

 Prove that if L has an infinite number of equivalence classes under \equiv_L then it cannot be recognized by a DFA. 10 pts
8. Given alphabet $\Sigma = \{a, b\}$, show that any DFA accepting the language

$$L = \{w \in \Sigma^* \mid \text{count}(w, a) \equiv 2 \text{ or } 4 \mod 5\}$$

must have at least two final states.

9. Given alphabet $\Sigma = \{a, b\}$ and language $L = \{w \mid \text{count}(w, a) \geq k\}$ for some natural number k, what is the minimum number of states of a DFA M accepting L? Prove your answer.

10. Log into Automata Tutor and complete the NFA construction problems.