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1 Introduction

This report is a supplemental document of some of our papers [5, 3, 4]. It gives a simple but
complete step-by-step case study, which demonstrates how we apply integer linear programming to
solve a global inference problem in natural language processing. This framework first transforms
an optimization problem into an integer linear program. The program can then be solved using
existing numerical packages.

The goal here is to provide readers an easy-to-follow example to model their own problems in
this framework. There are two main parts in this report. Sec. 2 describe a problem of labeling
entities and relations simultaneously as our inference task. It then discusses the constraints among
the labels and shows how the objective function and constraints are transformed to an integer linear
program. Although transforming the constraints to their linear forms is not difficult in this entity
and relation example, sometimes it can be tricky, especially when more variables are involved.
Therefore, we discuss how to handle different types of constraints in Sec. 3.

2 Labeling Entities & Relations

Given a sentence, the task is to assign labels to the entities in this sentence, and identify the relation
of each pair of these entities. Each entity is a phrase and we assume the boundaries of these entities
are given.

Figure 1 gives an example of the sentence “Dole’s wife, Elizabeth, is a native of N.C.” In this
sentence, there are three entities, Dole, Elizabeth, and N.C. We use E1, E2, and E3 to represent
their entity labels. In this example, possible entity labels include other, person, and location.
In addition, we would like to know the relation between each pair of the entities. For a pair of
two entities Ei and Ej , the relation is represented by Rij . In this example, there will be 6 relation
variables – R12, R21, R13, R31, R23, R32. Since most entities have no special relation, the value of
most relation variables should be irrelevant. Besides this special label, the relations of interest in
this example are spouse of and born in.

Assume that magically some local classifiers have already provided some confidence scores on
possible labels, as shown in Table 1.

If we want to choose the labels that maximize the sum of those confidence scores, it’s the same
as choosing the label that has the highest score for each variable. The global labeling then becomes:
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Dole 's wife, Elizabeth , is a native of N.C.
E1 E2 E3

R13

R31

R12
R23

R21 R32

Figure 1: A sentence that has 3 entities

variable other person location
E1 0.05 0.85 0.10
E2 0.10 0.60 0.30
E3 0.05 0.50 0.45

variable irrelevant spouse of born in
R12 0.05 0.45 0.50
R21 0.75 0.10 0.15
R13 0.85 0.05 0.10
R31 0.80 0.05 0.15
R23 0.10 0.05 0.85
R32 0.65 0.20 0.15

Table 1: The confidence scores on the labels of each variable.

variable label score
E1 person 0.85
E2 person 0.60
E3 person 0.50
R12 born in 0.50
R21 irrelevant 0.75
R13 irrelevant 0.85
R31 irrelevant 0.80
R23 born in 0.85
R32 irrelevant 0.65

sum 6.35

At this point, the problem seems to have been solved by the magic local classifiers. However,
after a second look at this labeling, we can easily find the inconsistency between entity and relation
labels. For example, R12 cannot be born in if both entities E1 and E2 are persons. Indeed, there
exists some natural constraints between the labeling of entity and relation variables that the local
classifiers may not know or respect. In our example, we know the global labeling also stratifies the
following two constraints.
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• if Rij = spouse of, then Ei = person AND Ej = person

• if Rij = born in, then Ei = person AND Ej = location

In summary, the problem we want to solve here really is to find the best legitimate global
labeling, which is subject to the constraints and maximizes the sum of the confidence scores.

Note that although exhaustive search seems plausible in this toy problem, it soon becomes
intractable when the number of variables or the number of possible labels grows. In the rest of this
section, we are going to show that how we transfer this problem to an integer linear program, and
let the numerical packages help us to find the answer.

2.1 Indicator Variables

In order to apply (integer) linear programming, both the objective function and constraints have to
be linear. Since the confidence score could be any real number, the original function is not linear.
In addition, the logical constraints we have are not linear as well.

To overcome this difficulty, the first step of the transformation is to introduce several indicator
(binary) variables, which represent the assignment of the original variables. For each entity or
relation variable a and each legitimate label k, we introduce a binary variable xa,k. When the
original variable a is assigned label k, xa,k is set to 1. Otherwise, xa,k is 0. In our toy example, we
then have 27 such indicator variables:

xE1,other, xE1,person xE1,location,
xE2,other, xE2,person, xE2,location,
xE3,other, xE3,person, xE3,location,

xR12,irrelevant, xR12,spouse of , xR12,born in,
xR21,irrelevant, xR21,spouse of , xR21,born in,
xR13,irrelevant, xR13,spouse of , xR13,born in,
xR31,irrelevant, xR31,spouse of , xR31,born in,
xR23,irrelevant, xR23,spouse of , xR23,born in,
xR32,irrelevant, xR32,spouse of , xR32,born in.

To simplify the notation, let LE = {other,person, location} and LR = {irrelevant, spouse of,born in}
represent the sets of entity and relation labels, respectively. Assume n = 3 means the number of
entities we have in the sentence. The indicator variables we introduce are:

xEi,le , where 1 ≤ i ≤ n and le ∈ LE

xRij ,lr , where 1 ≤ i, j ≤ n, i 6= j, and lr ∈ LR

2.2 Objective Function

Suppose cEi,le represents the confidence score of Ei being le, where 1 ≤ i ≤ n and le ∈ LE , and
cRij ,lr represents the confidence score of Rij being lr, where 1 ≤ i, j ≤ n, i 6= j and lr ∈ LR. The
objective function f (i.e., the sum of confidence scores) can be represented by

f =
∑

1≤i≤n,le∈LE

cEi,lexEi,le +
∑

1≤i,j≤n,i6=j,lr∈LR

cRij ,lrxRij ,lr

If we plug in the numbers in Table 1, the function f is:

f = 0.05 ·xE1,other +0.85 ·xE1,person + · · ·+0.65 ·xR32,irrelevant +0.20 ·xR32,spouse of +0.15 ·xR32,born in
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Inevitably, this transformation also brings new constraints, which come from the fact that one
entity/relation variable can only have one label, and must have one label. For example, only exact
one of the labels other, person, location can be assigned to E1. As a result, only one of the indicator
variables xE1,other, xE1,person, xE1,location can and must be 1. This restriction can be easily written
as the following linear equations.

∑
le∈LE

xEi,le = 1 ∀1 ≤ i ≤ n∑
lr∈LR

xRij ,lr = 1 ∀1 ≤ i, j ≤ n, i 6= j

2.3 Logical Constraints

The other reason of introducing indicator variables is to handle the real constraints we have – the
logical constraints between entity and relation labels. Let me remind you what they are in our
example:

• if Rij = spouse of, then Ei = person AND Ej = person, where 1 ≤ i, j ≤ n and i 6= j

• if Rij = born in, then Ei = person AND Ej = location, where 1 ≤ i, j ≤ n and i 6= j

If we treat the indicator variables as boolean variables, where 1 means true and 0 means false,
the constraints can be rephrased as:

xRij ,spouse of → xEi,person ∧ xEj ,person 1 ≤ i, j ≤ n, and i 6= j

xRij ,born in → xEi,person ∧ xEj ,location 1 ≤ i, j ≤ n, and i 6= j

In fact, these two boolean constraints can be modeled by the following two linear inequalities.

2 · xRij ,spouse of ≤ xEi,person + xEj ,person 1 ≤ i, j ≤ n, and i 6= j

2 · xRij ,born in ≤ xEi,person + xEj ,location 1 ≤ i, j ≤ n, and i 6= j

Let’s do a simple check to see if they are correct. When xRij ,spouse of is 0 (false), xEi,person

and xEj ,person can be either 0 or 1, and the inequality still holds. However, when xRij ,spouse of is 1
(true), both xEi,person and xEj ,person have to be 1 (true).

Transforming the logical constraints into linear forms is the key of this framework. It is not
hard, but may be tricky sometimes (which makes it an interesting brain exercise). We will talk
more about transforming other types of logical constraints in Sec. 3 later.

2.4 Solving the Integer Linear Program Using Xpress-MP

Figure 2 shows the complete integer linear program. Now, all we need to do now is to apply
some numeric packages, such as Xpress-MP [7], CPlex [1], or the LP solver in R [6], to solve
it. Transferring the solution back to the global labeling we want is straightforward – just find
those indicator variables that have the value 1. In this section, I will demonstrate how to apply
Xpress-MP to do the job.

The syntax in Xpress-MP is fairly easy and straightforward. Here I simply list the source code
with some comments, which are the lines beginning with the “!” symbol.
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max
∑

1≤i≤n,le∈LE
cEi,lexEi,le +

∑
1≤i,j≤n,i6=j,lr∈LR

cRij ,lrxRij ,lr

subject to:
xEi,le ∈ {0, 1} ∀1 ≤ i ≤ n (1)
xRij ,lr ∈ {0, 1} ∀1 ≤ i, j ≤ n, i 6= j (2)∑
le∈LE

xEi,le = 1 ∀1 ≤ i ≤ n (3)∑
lr∈LR

xRij ,lr = 1 ∀1 ≤ i, j ≤ n, i 6= j (4)
2 · xRij ,spouse of ≤ xEi,person + xEj ,person 1 ≤ i, j ≤ n, and i 6= j (5)
2 · xRij ,born in ≤ xEi,person + xEj ,location 1 ≤ i, j ≤ n, and i 6= j (6)

Figure 2: The complete integer linear program

model "Entity Relation Inference"
uses "mmxprs"

parameters
DATAFILE = "er.dat"
Num_Entities = 3;

end-parameters

declarations
ENTITIES = 1..Num_Entities
ENT_CLASSES = {"Other", "Person", "Location"}
REL_CLASSES = {"Irrelevant", "SpouseOf", "BornIn"}

scoreEnt: array(ENTITIES, ENT_CLASSES) of real
scoreRel: array(ENTITIES, ENTITIES, REL_CLASSES) of real

end-declarations

! DATAFILE stores the confidence scores from the local classifiers.
initializations from DATAFILE

scoreEnt scoreRel
end-initializations

! These are the indicator variables. declarations
ent : array(ENTITIES, ENT_CLASSES) of mpvar
rel : array(ENTITIES, ENTITIES, REL_CLASSES) of mpvar

end-declarations

! The objective function: sum of confidence scores
Obj := sum(u in ENTITIES, e in ENT_CLASSES) scoreEnt(u,e)*ent(u,e)

+ sum(u,v in ENTITIES, r in REL_CLASSES | u <> v) scoreRel(u,v,r)*rel(u,v,r)
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! Constraints (1) and (2): the indicator variables take only binary values
forall(u in ENTITIES, e in ENT_CLASSES)

ent(u,e) is_binary
forall(e1,e2 in ENTITIES, r in REL_CLASSES | e1 <> e2)

rel(e1,e2,r) is_binary

! Constraints (3) and (4): sum = 1
forall(u in ENTITIES) sum(e in ENT_CLASSES)

ent(u,e) = 1
forall(u,v in ENTITIES | u <> v) sum(r in REL_CLASSES)

rel(u,v,r) = 1

! Constraints (5) and (6): logical constraints on entity and relation labels
forall(e1,e2 in ENTITIES | e1 <> e2)

2*rel(e1,e2,"SpouseOf") <= ent(e1,"Person") + ent(e2,"Person")
forall(e1,e2 in ENTITIES | e1 <> e2)

2*rel(e1,e2,"BornIn") <= ent(e1,"Person") + ent(e2,"Location")

! Solve the problem
maximize(Obj)

! Output the indicator variables that are 1
forall(u in ENTITIES, e in ENT_CLASSES | getsol(ent(u,e)) >= 1)

writeln(u, " ", e)
forall(e1,e2 in ENTITIES, r in REL_CLASSES | e1 <> e2 and getsol(rel(e1,e2,r)) >= 1)

writeln(e1, " ", e2, " ", r)

end-model

3 Transforming Logical Constraints into Linear Forms

This section summarizes and revises some rules of transforming logical constraints to linear (in)equalities
described in [2]. To simplify the illustration, symbols a, b, c and x1, x2, · · · , xn are used to represent
indicator variables, which are treated as boolean variables and binary variables at the same. As
usual, the values 0, 1 represents the truth values false and true, respectively.

3.1 Choice Among Several Possibilities

In our entity and relation example, we have already processed the constraint “exactly k variables
among x1, x2, · · · , xn are true”, where k = 1. The general form of this linear equation is:

x1 + x2 + · · ·+ xn = k

Another constraint, “at most k variables among x1, x2, · · · , xn can be true”, can be represented
in a similar inequality.

x1 + x2 + · · ·+ xn ≤ k
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Uninterestingly, “k or more variables among x1, x2, · · · , xn must be true” will be

x1 + x2 + · · ·+ xn ≥ k

3.2 Implications

Implications are usually the logical constraints we encounter. While handling two or three variables
may be trivial, extending it to more variables may be tricky. Here we illustrate how to develop the
ideas from the simplest case to complicated constraints.

Two variables Suppose there are only two indicator variables a, b in the implication. The con-
straint, a → b, can be represented as a ≤ b. This can be easily verified by the following truth
table.

a ≤ b b = 0 b = 1
a = 0 true true
a = 1 false true

What if we need to deal with something like a → b̄? The value of the compliment of b is exactly
1− b. Therefore, the corresponding linear constraint is a ≤ 1− b, or a + b ≤ 1.

The relation “if and only if” is straightforward too. a ↔ b is identical to a → b and b → a. The
corresponding linear constraints are a ≤ b and b ≤ a, which is in fact a = b.

Three variables Now, let’s try to generalize the implication a little bit to cover three variables.
Since a → b∧ c can be separated as a → b and a → c, the straightforward transformation is to put
two linear inequalities a ≤ b and a ≤ c. Alternatively, the transformation in our entity and relation
example “2a ≤ b + c” also suffice, which is easy to check using a truth table.

Another implication, a → b ∨ c, can be modeled by a ≤ b + c. This is because when a = 1, at
least one of b and c has to be 1 to make the inequality correct.

What about the inverse of the above two implications? They can be derived using the compli-
ment and DeMorgan’s Theorem. b ∧ c → a is equivalent to ā → b ∧ c, which is ā → b̄ ∨ c̄. Use the
above rule and the the compliment, it can be modeled by (1−a) ≤ (1−b)+(1−c), or a ≥ b+c−1.
b ∨ c → a is equivalent to b → a and c → a, so it can be modeled by two inequalities b ≤ a and
c ≤ a. Alternatively, this can be transformed to ā → b ∨ c, which is ā → b̄∧ c̄. Therefore, it can be
modeled by 2(1− a) ≤ (1− b) + (1− c), or b+c

2 ≤ a.

More variables A logical constraint that has more variables can be complicated. Therefore, we
only discuss some common cases here. Suppose we want to model “if a, then k or more variables
among x1, x2, · · · , xn are true.” We can extend the transformation of a → b∨c, and use the following
linear inequality.

a ≤ x1 + x2 + · · ·+ xn

k
This transforation is certainly valid for k = 1. It is also easy to verify for other cases. If a = 0,
then the right-hand-side is always larger or equal to 0, and the inequality is satisfied. However,
when a = 1, it forces at least k x’s are true, which is exactly what we want.

The next case we would like to try is the inverse, which is “if k or more variables among
x1, x2, · · · , xn are true, then a is true.” This might be somewhat tricker than others. Our first guess
might be:

(x1 + x2 + · · ·+ xn)− (k − 1) ≤ a
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Original constraint Linear form
Exactly k of x1, x2, · · · , xn x1 + x2 + · · ·+ xn = k
At most k of x1, x2, · · · , xn x1 + x2 + · · ·+ xn ≤ k
At least k of x1, x2, · · · , xn x1 + x2 + · · ·+ xn ≥ k

a → b a ≤ b
a = b̄ a = 1− b
a → b̄ a + b ≤ 1
ā → b a + b ≥ 1
a ↔ b a = b

a → b ∧ c a ≤ b and a ≤ c

or, a ≤ b+c
2

a → b ∨ c a ≤ b + c
b ∧ c → a a ≥ b + c− 1
b ∨ c → a a ≥ b+c

2

if a then at least k of x1, x2, · · · , xn a ≤ x1+x2+···+xn
k

if at least k of x1, x2, · · · , xn then a a ≥ x1+x2+···+wn−(k−1)
n−(k−1)

a = x1 · x2 · · ·xn a ≤ x1+x2+···+xn
n and a ≥ x1 + x2 + · · ·+ xn − (n− 1)

Table 2: Rules of mapping constraints to linear (in)equalities

Although this may seem correct at the first glance, we observe that the left-hand-side (LHS) will
be larger than 1 when more than k of the x variables are 1. Because a can be either 0 or 1, this
constraint will be infeasible. In fact, what we really need is to squash the LHS to less than 1.
Currently, the largest possible value of the left-hand-side is n − (k − 1). Therefore, dividing the
LHS by n− (k − 1) should suffice.

(x1 + x2 + · · ·+ xn)− (k − 1)
n− (k − 1)

≤ a

Let’s examine two special cases of this transformation to see if they are correct. Remember b∨c → a
is indeed one of these cases, given that n = 2 and k = 1. The linear inequality b+c

2 ≤ a is exactly
the same as what we derived previously. The other special case is “x1∧x2∧ · · ·∧xn → a”, which is
equivalent to say k = n here. Obviously, a ≥ x1 +x2 + · · ·+wn− (n−1) is correct. One interesting
observation is that the conjunction of a set of boolean variables is the same as the product of the
corresponding binary variables. Therefore, the nonlinear constraint a = x1 · x2 · · ·xn is the same
as a = x1 ∧ x2 ∧ · · · ∧ xn. Its linear transformation is therefore a ≥ x1 + x2 + · · ·+ xn− (n− 1) and
a ≤ x1+x2+···+xn

n .

Table 2 summarizes all the transformations we have discussed in this section.

4 Conclusions

Thanks to the theoretical developments of integer linear programming in the last two decades, and
the tremendous improvement on hardware and software technology, numerical packages these days
are able to solve many integer linear programming problems within very short time, even though
ILP is in general NP-hard.
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In this report, we have provided an entity and relation problem as example, and discussed several
cases for transforming boolean constraints. We hope these illustrations are helpful to remodeling
your inference problem, and allow you to take advantage of the numerical LP solvers as well.
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