
CS 446: Machine Learning
Lecture 4, Part 2: On-Line Learning

0.1 Linear Functions
So far, we have been looking at Linear Functions as a class of functions which can

separate some data and not others. f(x) =

{
1 if W1X1 +W2X2 + . . .+WnXn ≥ Θ
0 Otherwise

Linear functions can be used for:
Disjunction:

y = X1 ∨X3 ∨X5

y = (1 ·X1 + 1 ·X3 + 1 ·X5 ≥ 1)

At least m of n:

y = at least 2 of {X1 ∨X3 ∨X5}
y = (1 ·X1 + 1 ·X3 + 1 ·X5 ≥ 2)

However, linear functions are not useful for:
Exclusive-OR:

y = (X1 ∧ X̄2) ∧ (X̄1 ∧X2)

Non-trivial DNF:

y = (X1 ∧X2) ∨ (X̄3 ∧X4)

1

0.2 Perceptron Learning Rule
Perceptron is an on-line, mistake driven algorithm. Rosenblatt (1959) suggested
that when a target output value is provided for a single neuron with fixed in-
put, it can incrementally change weights and learn to produce output using the
Perceptron learning rule. The perceptron equals the Linear Threshold Unit.

2

Figure 1: Linear Function

3

Figure 2: Perceptron

4

0.3 Perceptron Learning Rule
We learn f : X → {−1,+1} represented as f = sgn{w · x), where X = {0, 1}n
or X = Rn, w ∈ Rn. Given labeled examples:{(x1, y2), (x2, y2), . . . , (xm, ym)},
we sketch the following outline for an algorithm:

1. Initialize w = 0 ∈ Rn

2. Cycle through all examples

(a) Predict the label of instance x to be y′ = sgn{w · x)

(b) If y′ 6= y, update the weight vector: w = w + ryx (r – a constant, the
learning rate)
Otherwise, if y′ 6= y, leave weights unchanged.

If x is Boolean, only weights of active features are updated. w · x > 0 is
equivalent to 1

1+exp(w·x)
> 1

2
.

Perceptron has no threshold in this algorithm. However, that does not mean
that we lose generality:

5

Figure 3: Perceptron Threshold

6

0.3.1 Perceptron Learnability

Obviously Perceptron cannot learn that which it cannot represent, which means
that it can only be used with linearly separable functions. Minsky and Papert
(1969) wrote an influential book demonstrating Perceptron’s representational lim-
itaions. Among these limitations are that parity functions cannot be learned (XOR)
and, in vision, if patterns are represented with local features, then they cannot rep-
resent symmetry or connectivity. Research on neural networks stopped for years.
Rosenblatt himself(1959) asked, “What pattern recognition problems can be trans-
formed so as to become linearly separable?”

Recall from previous sections, that patterns that are not linearly separable can
be represented in higher dimensions and thereby become linearly separable.

0.3.2 Perceptron Covergence

The Perceptron Convergence Theorem states that, If there exists a set of weights
that are amenable to treatment with Perceptron (i.e., the data is linearly separable),
then the Perceptron learning algorithm will converge.

An interesting question which will be discussed in the following section is
how long it takes for the learning algorithm to converge.
The Perceptron Cycling Theorem states that, if the training data is not linearly
seperable, then the Perceptron learning algorithm will eventually repeat the same
set of weights and therefore enter an infinite loop.

How can we provide robustness and more expressivity?

0.3.3 Perceptron: Mistake Bound Theorem

This maintains a weight vector w ∈ <N , w0 = (0, . . . , 0), and upon receiving
an example x ∈N , makes a prediction according to the linear threshold function
w · x ≥ 0.

Theorem [Novikoff, 1963] Let (x1; y1), . . . , : (xt; yt) be a sequence of labeled
examples with xi ∈ <N , ||xi|| ≤ R and yi ∈ {−1, 1} for all i. Let u ∈ <N , γ > 0
be such that, ||u|| = 1 and yiu · xi ≥ γ for all i. Then Perceptron makes at most
||u||2R2/γ2 mistakes on this example sequence. In this theorem, γ is the margin
complexity parameter.

7

Figure 4: Representing the Pattern in a Higher Dimensionality

8

Proof: Let vk be the hypothesis before the k− th mistake. Assume that the k− th
mistake occurs on the input example (~xi, ~yi).

∴ yi(~vk · ~xi) ≤ 0

Assumptions
v1 = 0
||u|| ≤ 1
yiu · xi ≤ γ

~vk+1 = ~vk + yi~xi

~vk+1 · ~u = ~vk · ~u+ yi(~u · ~xi)
≥ ~vk · ~u+ γ

∴ ~vk+1 · ~u ≥ kγ

‖~vk+1‖2 = ‖~vk‖2 + 2yi(~vk · ~xi) + ‖~xi‖2
≥ ‖~vk‖2 +R2

∴ ‖~vk+1‖2 ≤ kR2

Therefore,
√
kR ≥ ||~vk+1|| ≥ ~vk+1 · ~u ≥ kγ. =⇒ K < R2/γ2

The second inequality follows because ‖~u‖ ≤ 1.

0.3.4 Perceptron for Boolean Functions

It is important to consider how many mistakes the Perceptron algorithms make
when learning a k-disjunction, and try to figure out the bound. We can try to
find a sequence of examples that will cause Perceptron to make O(n) mistakes on
k-disjunction on n attributes.

1 Winnow Algorithm
The Winnow Algorithm is another type of on-line mistake-driven algorithm that
learns Linear Threshold Functions. Initialize: Θ = n;wi = 1;
Prediction is 1 iff w · x ≥ Θ
If no mistake: do nothing
If f(x) = 1 but w · x < Θ, wi ← 2wi (if xi = 1) (promotion)

9

danr
Comment on Text
Shoulds be >=

danr
Comment on Text
Should be >=

If f(x) = 0 but w · x ≥ θ, wi ← wi/2 (if xi = 1) (demotion)

For the class of disjunction, it is possible to use elimination instead of demo-
tion.

1.1 Winnow - Example
The Winnow Algorithm works as follows on the example below:
f = x1 ∨ x2 ∨ x1023 ∨ x1024

Initialize: Θ = 1024;w = (1, 1, . . . , 1)
〈(1, 1, . . . , 1),+〉 w · x ≥ Θ w = (1, 1, . . . , 1) ok
〈(0, 0, . . . , 0),−〉 w · x < Θ w = (1, 1, . . . , 1) ok
〈(0, 0, 111, . . . , 0),−〉 w · x < Θ w = (1, 1, . . . , 1) ok
〈(1, 0, 0, , 0),+〉 w · x < Θ w = (2, 1, . . . , 1) mistake
〈(1, 0, 1, 1, 0, , 0),+〉 w · x < Θ w = (4, 1, 2, 2, . . . , 1) mistake
〈(1, 0, 1, 0, 0, , 1),+〉 w · x < Θ w = (8, 1, 4, 2, . . . , 2) mistake
. log(n/2) (for each good variable)
w = (512, 1, 256, 256, . . . , 256)
〈(1, 0, 1, 0, . . . , 1),+〉 w · x ≥ Θ w = (512, 1, 256, 256, . . . , 256) ok

〈(0, 0, 1, 0, 111, . . . , 0),−〉 w · x ≥ Θ w = (512, 1, 0, . . . , 0, . . . , 256) mistake
(elimiation version)
.
w = (1024, 1024, 0, 0, 0, 1, 32, . . . , 1024, 1024) (final hypothesis)

Notice that the same algorithm will learn a conjunction over these variables
(w = (256, 256, 0, . . . , 32, . . . , 256, 256)).

1.2 Winnow - Mistake Bound
Claim: Winnow makes O(k log n) mistakes on k-disjunctions.
Initialize: Θ = n; wi = 1
Prediction is 1 iff w · x ≥ Θ
If no mistake: do nothing
If f(x) = 1 but w · x < Θ, wi ← 2wi (ifxi = 1) (promotion)
If f(x) = 0 but w · x ≥ Θ wi ← wi/2(if xi = 1) (demotion)

10

• u – number of mistakes on positive examples (promotions)

• v – number of mistakes on negative examples (demotions)

1. u < k log(2n)
A weight that corresponds to a good variable is only promoted. When these
weights get to n there will be no more mistakes on positives.

2. v < 2(u+ 1)
Total weight: TW = n
Mistake on positive: TW (t+ 1) < TW (t) + n
Mistake on negative: TW (t+ 1) < TW (t) = n/2
0 < TW < n+ un− vn/2 =⇒ v < 2(u+ 1)

Number of mistakes: u+ v < 3u+ 2 = O(k log n)

1.3 Winnow - Extensions
This algorithm learns montone functions.
For the general case:

• Duplicate variables: For the negation of variable x, introduce a new variable
y and learn monotone function over 2n variables.

• Balance version: Keep two weights for each variable. The effective weight
is the difference.

Update rule:
If f(x) = 1 but (w+ − w−) · x ≤ Θ, w+

i ← 2w+
i w−i ← 1

2
w−i

where xi = 1(promotion)
If f(x) = 0 but (w+ − w−) · x ≥ Θ, w+

i ← frac12w+
i w−i ← 2w−i

where xi = 1 (demotion)

SNoW is a version of Winnow that supports the general case. (Infinite attribute
domain)
Multi Class predictor – one vs. all vs. the rightway. . . (later)

11

1.4 Winnow - A Robust Variation
Winnow is robust in the presence of various kinds of noise such as classifica-
tion noise and attribute noise. The target function changes with time and can be
thought of as a ’Moving Target’. This is helpful when we learn under some dis-
tribution but test under a slightly different one. For example, in Natural Language
applications where the data might change significantly based on the time of its
collection.
For the sake of Modeling, it is possible to think of the Winnow Algorithm in terms
of an Adversary and Learner:

• Adversary’s turn: May change the target concept by adding or removing
some variable from the target disjunction. The cost of each addition move
is [1.

• Learner’s turn: Makes prediction on the examples given and is then told the
correct answer (according to the current target function).

There is a variation of Winnow, Winnow-R, which is the same as Winnow, only
it doesn’t let the weights go below 1/2. The claim is that Winnow-R makes
O(c log n) mistakes, (c - cost of adversary). This is a generalization of previ-
ous claim.

1.5 Winnow-R Mistake Bound
u - number of mistakes on positive examples (promotions).
v - number of mistakes on negative examples (demotions).

2. v < 2(u+ 1)
Total weight TW = n initially.
Mistake on positive: TW (t+1) < TW (t)+nMistake on negative: TW (t+1) <
TW (t)− n/4

2 Algorithmic Approaches
We will focus on two families of algorithms, one of them representing on-line
algorithms. The first are Additive update algorithms of which Perceptron is an
example. Also, SVM, which is not on-line, is a close relative of Perceptron and
an Additive update algorithm. The second family is the family of Multiplicative

12

update algorithms. An example is SNoW and close relatives include Boosting
and Max Entropy.

2.1 Which Algorithm to Choose?
There are various questions which arise in determining which algorithm to choose.
First we consider Generalization.

The l1 norm: ‖x‖1 = Σ1 |xi| The l2 norm: math‖x‖2 = (Σn
1 |xi|2)1/2

The lp norm: ‖x‖p = (Σn
1 |xi|p)1/p The l∞ norm: ‖x‖∞ = maxi |xi|

With Multiplicative algorithms, the bounds depend on ‖u‖, the separating hy-
perplane, and

M = 2 lnn ‖u‖21maxi

∥∥x(i)
∥∥2

∞ /mini(u · xi)2.
This type of algorithm has an advantage when there are few relevant feature in
concept.

With Additive algorithms, the bounds depend on ‖x‖ (Kivinen / Warmuth,
1995), and M = ‖u‖2maxi ‖xi‖2 /mini(u · xi)

2.
This type of algorithm has an advantage when there are few active features per
example.

2.1.1 Algorithm Descriptions

The following is a summary of how weights are updated in the two families of
algorithms:

Examples: x ∈ {0, 1}n; Hypothesis: w ∈ Rn

Prediction is 1 iff w · x ≥ Θ

Additive weight update algorithm (Perceptron, Rosenblatt, 1958. Variations exit)
If Class = 1 but w · x ≤ Θ, wi ← wi + 1 (if math xi = 1) (promotion)
If Class = 0 but w · x ≥ Θ, wi ← wi/2 (if xi = 1) (demotion)

Multiplicative weight update algorithm (Winnow, Littlestone, 1988. Variations
exit)
If Class = 1 but w · x ≤ Θ, wi ← 2wi (if xi = 1) (promotion)
If Class = 0 but w · x ≥ Θ, wi ← wi/2 (if xi = 1) (demotion)

13

2.2 How to compare Algorithms?
There are several areas in which algorithms can be compared. The first is General-
ization. Since the representation is the same, we can compare how many examples
are needed to get a given level of accuracy. The second is Efficiency. Determin-
ing the efficiency of an algorithm means asking how long it takes, per example,
to learn a hypothesis and evaluate it. The third is Robustness. Robustness refers
to the ability of the algorithm to adapt to new domains. The next sections will
compare the Additive and Multiplicative Algorithms in a particular domain: that
of context sensitive spelling correction.

2.2.1 Sentence Representation

Given a set of sentences, containing examples such as S below: S = “I don’t know
whether to laugh or cry.”
Define a set of features. Features are relations that hold in the sentence. If we
map a sentence to its feature-based representation, this representation will pro-
vide some of the information in the sentence and can be used as an example to
your algorithm.
Conceptually, there are two steps in coming up with a feature-based representa-
tion.

What are the information sources available? Sensors: words, order of words,
properties(?) of words

What features should we construct based on these sources? Why needed?

2.2.2 Domain Characteristics

In this domain, the number of potential features is very large. The instance space
is sparse since we are only looking at particular pairs of words. This means that
decisions will depend on a small set of features (sparse). In other words, we want
to learn from a number of examples that is small relative to the dimensionality.

2.2.3 Generalization

The factors in generalization are dominated by the sparseness of the function
space. Most features are irrelevant. The number of examples required by mul-
tiplicative algorithms depends mostly on the number of relevant features (gener-
alization bounds depend on ‖w‖).

14

A lesser issue in determining the generalization is the sparseness of features space.
Here there is an advantage for additive approaches. Generalization depends on
‖x‖ (Kivinen/Warmuth, 1995).

15

Figure 5: Mistake Bounds

16

2.2.4 Efficiency

Determining efficiency is dominated by the size of the feature space. Most fea-
tures are functions (e.g. conjunctions) of raw attributes. For example:
X(x1, x2, x3, , . . . xk)→ X(χ1(x), χ2(x), χ3(x) . . . χn(x))
Where n >> k. Additive algorithms allow the use of kernals, with no need
to explicitly generate the complex features. The basic formula for a kernel is:
f(x) =

∑
i ciK(x, xi). This could be more efficient since work is done in the

original feature space rather than in more dimensions. Kernels will be discussed
in more detail in the next section.

2.3 Practical Issues and Extensions
There are many extension that can be made to these basic algorithms. Some of
the extensions are necessary for them to achieve good performance and some are
for ease of use and tuning. In the latter category, some extensions include con-
verting the output of a Perceptron/Winnow algorithm to a conditional probability,
adding Multiclass classification, and adding Real valued features. The key issues
in efficiency involve cases in which there is an infinite attribute domain. The key
generalization issues involve regularization. This will be motivated in the section
in later notes on COLT.

One extension of Perceptron or Winnow to improve the generalization is in-
troducing a Thick Separator. This involves adding some margin γ to the threshold
and the weight update rules are re-defined as:

Promote if w · x > θ + γ.

Demote if w · x < θ − γ.

17

Figure 6: Thick Separator

18

Another extension of the Perceptron algorithm that helps with generalization
is Threshold Relative Updating. In this case, the weights are changed relative to r
as below:

w ← w + rxr =
θ − w · x
x · x

2.4 Regularization Via Averaged Perceptron
An Averaged Perceptron Algorithm is motivated by a number of considerations.
Every Mistake-Bound Algorithm can be converted efficiently to a PAC algorithm
in order to yield global guarantees on performance. In the mistake bound model,
we do not know when we will make the mistakes. In the PAC model we want
the dependence to be on the number of examples seen and not on the number of
mistakes. In order to convert from one mistake-bound model to PAC model, it is
necessary to do the following:

Wait for a long stretch without mistakes (there must be one).

Use the hypothesis at the end of this stretch; its PAC behavior is relative to the
length of the stretch. Average Perceptron returns a weighted average of a number
of earlier hypothesis; the weights are a function of the length of the mistake-free
stretch.

19

Figure 7: Threshold Relative Updating

20

