
CS 446 Machine Learning Fall 2016 SEP 27, 2016

Online Learning With Kernel
Professor: Dan Roth Scribe: Ben Zhou, C. Cervantes

Overview

• Stochastic Gradient Descent Algorithms

• Regularization

• Algorithm Issues

• Kernels

1 Stochastic Gradient Algorithms

Given examples {z = (x, y)}1,m from a distribution over X × Y , we are trying
to learn a linear function parameterized by a weight vector w such that we
minimize the expected risk function

J(w) = EzQ(z, w) ≈ 1

m

m∑
i=1

Q(zi, wi)

In Stochastic Gradient Descent (SGD) Algorithms we approximate this mini-
mization by incrementally updating the weight vector w as follows:

wt+1 = wt − rtgwQ(zt, wt) = wt − rtgt

Where gt = gwQ(zt, wt) is the gradient with respect to w at time t

With this in mind, all algorithms in which we perform SGD vary only in the
choice of loss function Q(z, w).

1.1 Loss functions

Least Mean Squares Loss
One loss function that we have discussed already is Least Mean Squares (LMS),
given by:

Q((x, y), w) =
1

2
(y − w · x)2

Online Learning With Kernel-1

Combining this with the update rule above, we produce the LMS update rule,
also called Widrow’s Adaline:

wt+1 = wt + r(yt − wt · xt)xt

Note that even though we make binary predictions based on sgn(w · x), we do
not take the actual sign of the dot product into account in the loss.

Hinge Loss
In the Hinge loss case, we want to assign no loss if we make the correct prediction,
as given by

Q((x, y), w) = max(0, 1− yw · x)

Hinge loss leads to the perceptron update rule

If yiwi · xi > 1
No update

Else
wt+1 = wt + rytxt

Adagrad
Thusfar we’ve focused on fixed learning rates, but these can change. Imagine
an algorithm that adapts its update based on historical information; frequently
occurring features get small learning rates and infrequent features get higher
ones. Intuitively, this algorithm would learn slowly from features that change a
lot, but really focus on those features that don’t make frequenct changes.

Adagrad is one such algorithm. It assigns a per-feature learning rate for feature
j at time t, defined as

rt,j =
r

G
1
2
t,j

Where Gt,j =
t∑

k=1

g2k,j , or the sum of squares of gradients at feature j until time

t. The update rule for Adagrad is then given by

wt+1,j = wt,j −
rgt,j

G
1
2
t,j

In practice this algorithm should update weights faster than Perceptron or
LMS.

1.2 Regularization

One problem in theoretic machine learning is the need for regularization. In
addition to the risk function, we add R, a regularization term, that is used to

Online Learning With Kernel-2

prevent our learned function from overfitting on the training data. Incorporating
R, we now seek to minimize

J(w) =

m∑
i=1

Q(zi, wi) + λRi(wi)

In decision trees, this idea is expressed through pruning.

We can apply this to any loss function

LMS : Q((x, y), w) = (y − w · x)2

Ridge Regression: R(w) = ||w||22
LASSO problem: R(w) = ||w||1

Hinge Loss: Q((x, y), w) = max(0, 1− yw · x

Support Vector Machines: R(w) = ||w||22
Logistic Loss: Q((x, y), w) = log(1 + exp{−yw · x})

Logistic Regression: R(w) = ||w||22
It is important to consider why we enforce regularization through the size of w.
In later lectures we will discuss why smaller weight vectors are preferable for
generalization.

Clarification on Notation
Note that the above equations for R reflect different norms, which can be un-
derstood as different ways for measuring the size of w.

The L1-norm given by ||w||1 is the sum of the absolute values, or
∑
i

|wi|.

The L2-norm given by ||w||2|| is the square root of the sum of the squares of

the values, or
√∑

i

w2
i .

Thus, the squared L2-norm given above – ||w||22 – refers to the sum of the
squares, or

∑
i

w2
i

Note also that in the general case, the L-p norm is given by ||w||p = (
n∑
i=1

|wi|p)
1
p .

2 Comparing Algorithms

Given algorithms that learn linear functions, we know that each will eventually
converge to the same solution. However, it is desirable to determine a measure

Online Learning With Kernel-3

of comparison; generalization (how many examples do we need to reach a cer-
tain performance), efficiency (how long does it take to learn the hypothesis),
robustness to noise, adaptation to new domains, etc.

Consider the context-sensitive spelling example

I don’t know {whether,weather} to laugh or cry

To learn which {whether,weather} to use, we must first define a feature space
(properties of the sentence) and then map the sentence to that space. Impor-
tantly, there are two steps in creating a feature representations, which can be
framed as the questions:

1. Which information sources are available? (sensors)

2. What kinds of features can be constructed from these sources? (functions)

In the context-sensitive spelling example, the sensors include the words them-
selves, their order, and their properties (part-of-speech, for example). These
sensors must be combined with functions because the sensors themselves may
not be expressive enough.

Figure 1: Words as Features v. Sets of Consecutive Words

In our example, words on their own may not tell us enough to determine which
{whether,weather} to use, but conjunctions of pairs or triples of words may be
expressive enough. Compare the left of Figure 1 – representing words on their
own – with the right of the figure, representing the feature space of functions
over those words.

3 Generalization

In most cases, the number of potential features is very large, but the instance
space – the combination of features we actually see – is sparse. Further, decisions

Online Learning With Kernel-4

usually depend on a small set of features, making the function space sparse as
well. In certain domains – like natural language processing – both the instance
space and the function space is sparse, and it is therefore necessary to consider
the impact of this sparsity.

3.1 Sparsity

Generalization bounds are driven by sparsity. For multiplicative algorithms,
like Winnow, the number of required examples1 largely depends on the number
of relevant features, or the size of the target hyperplane: ||w||). For additive
learning algorithms like Perceptron, the number of required examples largely
depends on the number of relevant input examples ||x||.

Multiplicative Algorithms
Bounds depend on the size of the separating hyperplane ||u||. Given n, the
number of features, and i the index of a given example, the number of examples
M that we need is given by

Mw = 2 ln(n)||u||21
max
i
||x(i)||2∞

min
i

(u · x(i))2

where ||x||∞ = max
i
|xi|. Multiplicative learning algorithms, then, do not care

much about the data (since ||x||∞ is just the size of the largest example point)
and rely instead on the L1-norm of the hyperplane, ||u||1.

Additive Algorithms
Additive algorithms, by contrast, care a lot about the data, as their bounds are
given by

Mp = ||u||22
max
i
||x(i)||22

mini(u · x(i))2

These additive algorithms rely on the L2-norm of X.

3.2 Examples

The distinction between multiplicative and additive algorithms is best seen
through the extreme examples where their relative strengths and weaknesses
are most prominent.

Extreme Scenario 1
Assume the u has exactly k active features, and the other n− k are zero. Only
k input features are relevant to the prediction. We thus have

1Though we discuss this in later lectures, ’required examples’ can be thought of as the
number of examples the algorithm needs to see in order to produce a good hypothesis

Online Learning With Kernel-5

||u||2 = k
1
2

||u||1 = k

max ||x||2 = n
1
2

max ||x||∞ = 1

We can now compute the bound for perceptron as Mp = kn, while that for
Winnow is given by Mw = 2k2 ln(2n). Therefore, in cases where the number
of active features is much smaller than the total number of features (k << n),
Winnow requires far fewer examples to find the right hypothesis (logarithmic in
n versus linear in n).

Extreme Scenario 2
Now assume that all the features are important (u = (1, 1, 1, ..., 1)), but the
instances are very sparse (only one feature on). In this case the size (L1-norm)
of u is n, but the size of the examples is 1.

||u||2 = n
1
2

||u||1 = n

max ||x||2 = 1

max ||x||∞ = 1

In this setting, perceptron has a much lower mistake bound than Winnow, given
by Mp = n;Mw = 2n2 ln 2n.

An intermediate case...
Assume an example is labeled positive when l out of m features are on (out
of n total features). These l of m of n functions are good representatives of
linear threshold functions in general. A comparison between the perceptron
and Winnow mistake bounds for such functions is shown in Figure 2. In l out

Figure 2: Comparison of Perceptron and Winnow

Online Learning With Kernel-6

of m out of n functions, the perceptron mistake bound grows linearly, while the
Winnow bound grows with log(n).

In the limit, all algorithms behave in the same way. But the realistic scenario –
that is, the one with a limited number of examples – requires that we consider
which algorithms generalize better.

3.3 Efficiency

Efficiency depends on the size of the feature space. It is often the case that
we don’t use simple attributes, and instead treat functions over attributes (ie.
conjunctions) as our features, making efficiency more difficult. Consider the
case shown in Figure 3a, which is not linearly separable until the feature space
is blown up, shown in Figure 3b.

(a) Not separable in one dimension (b) Separable by blow up dimension

In additive algorithms we can behave as if we’ve generated complex features
while still computing in the original feature space. This is known as the kernel
trick.

Consider the function f(x) = 1 iff x21 + x22 ≤ 1, shown in Figure 4a.

(a) Not separable in original space (b) Separable in transformed space

This data cannot be separated in the original two dimensional space. But if
we transform the data to be x′1 = x21 and x′2 = x22, the data is now linearly
separable.

Online Learning With Kernel-7

Now we must consider how to learn efficiently, given our higher dimensional
space.

4 Dual Representation

Consider the perceptron: given examples x ∈ {0, 1}n, hypothesis w ∈ Rn and

function f(x) = Thθ(
n∑
i=1

wixi(x))

if Class = 1 but w · x ≤ θ, wi ← wi + 1 (if xi = 1) (Promotion)

if Class = 0 but w · x ≥ θ, wi ← wi − 1 (if xi = 1) (Demotion

Note, here, that rather than writing xi, we are writing xi(x), which can be read
as a function on x that returns the ith value of x. Note, also, that Thθ refers
to the θ threshold on the dot product of w and x. This notation will be useful
later.

Assume we run perceptron with an initial w and we see the following examples:
(x1,+), (x2,+), (x3,−), (x4,−). Further assume that mistakes are made on x1,
x2 and x4.

The resulting weight vector is given by w = w+x1 +x2−x4; we made mistakes
on positive examples x1 and x2 and negative examples on x4. This is the heart of
the dual representation. Because they share the same space, w can be expressed
as a sum of examples on which we made mistakes, given by

w =

m∑
i=1

rαiyixi

where αi is the number of mistakes made on xi.

Since we only care about f(x), rather than w, we can replace w with a function
over all examples on which we’ve made mistakes.

f(x) = w · x = (
∑
1,m

rαiyixi) · x =
∑
1,m

rαiyi(xi · x)

5 Kernel Based Methods

Kernel based methods allow us to run perceptron on a very large feature space,
without incurring the cost of keeping a very large weight vector.

f(x) = Thθ(
∑
z∈M

S(z)K(x, z))

Online Learning With Kernel-8

The idea is that we can compute the dot product in the original feature space
instead of the blown up feature space.

It is important to note that this method pertains only to efficiency. The resulting
classifier should be identical to the one you compute in the blown up feature
space. Generalization is still relative to that of the original dimensions.

Consider a setting in which we’re interested in using the set of all conjunctions
between features, The new space is the set of all monomials in this space, or 3n

(possibly xi,¬xi, 0 in each position). We can refer to these monomials as ti(x),
or the ith monomial for x.

Thus the new linear function is

f(x) = Thθ(
∑
i∈I

witi(x))

In this space, we can now represent any Boolean function. We can still run per-
ceptron or Winow, but the convergence bound will suffer exponential growth.

Consider that each mistake will make an additive contribution to w – either +1
or −1 – iff t(z) = 1. Therefore, the value of w is actually determined by the
number of mistakes on which t() was satisfied.

To show this more formally, we now denote P as the set of examples on which
we promoted, D to be the set of examples on which we demoted, and M as the
set of mistakes (P ∪D).

f(x) = Thθ(
∑
i∈I

[
∑

z∈P,ti(z)=1

1−
∑

z∈D,ti(z)=1

1]ti(x))

= Thθ(
∑
i∈I

[
∑
z∈M

S(z)ti(z)ti(x)])

= Thθ(
∑
z∈M

S(z)
∑
i∈I

ti(z)ti(x))

(1)

where S(z) = 1 if z ∈ P and S(z) = −1 if z ∈ D

In the end, we only care about the sum of ti(z)ti(x). The total contribution
of z to the sum is equal to the number of monomials that satisfy both x and
z.

We define this new dot product as

K(x, z) =
∑
i∈I

ti(z)ti(x)

We call this the kernel function of x and z. Given this new dot product, we can
transform the function into a standard notation

f(x) = Thθ(
∑
zinM

S(z)K(x, z))

Online Learning With Kernel-9

Now we can think of the function K(x, z) to be some distance between x and
z in the t-space. However, it can be calculated in the original space, without
explicitly writing the t-representation of x and z.

Monomial Example
Consider the space of all 3n monominals (allowing both positive and negative
literals), then

K(x, z) =
∑
i∈I

ti(z)ti(x) = 2same(x,z)

where same(x, z) is the number of features that have the same value for both x
and z.

Using this we can compute the dot product of two size 3n vectors by looking at
two vectors of size n. This is where the computational gain comes in.

Assume, for example, that n = 3, where x = (001), z = (011). There are
33 = 27 features in this blown up feature space. Here we know same(x, z) = 2
and in fact, only ¬x1, x3, ¬x1 ∨ x3 and null are satisfying conjunctions that
ti(x)ti(z) = 1.

We can state a more formal proof. Let k = same(x, z). A monomial can only
survive in two ways: choosing to include one of the k literals with the right
polarity in the monomial (negate or not) or choosing to not include it at all.
That gives us 2k conjunctions.

5.1 Implementation

We now have an algorithm to run in the dual space. We run a standard per-
ceptron, keeping track of the set of the set of mistakes M , which allows us to
compute S(z) at any step.

f(x) = Thθ

(∑
z∈M

S(z)K(x, z)

)
where K(x, z) =

∑
iinI ti(z)ti(x)

Polynomial Kernel
Given two examples x = (x1, x2, ...xn) and y = (y1, y2, ...yn), we want to map
them to a high dimensional space. For example,

Φ(x1, x2, ...xn) = (1, x1, ...xn, x
2
1, ...x

2
n, x1x2...xn)

Φ(y1, y2, ...yn) = (1, y1, ...yn, y
2
1 , ...y

2
n, y1y2...yn)

Let A = Φ(x)TΦ(y)

Instead of computing quantity A, we want to compute quantity the quantity
B = k(x, y) = [1 + (x1, x2...xn)T (y1, y2...yn)]2. The claim is that A = B;
though coefficients differ, the learning algorithm will adjust the coefficients any-
way.

Online Learning With Kernel-10

5.2 General Conditions

A function K(x, z) is a valid kernel if it corresponds to an inner product in some
(perhaps infinite dimensional) feature space.

K(x, z) =
∑
i∈I

ti(x)ti(z)

Consider the following quadratic kernel

K(x, z) = (x1z1 + x2z2)2

= x21z
2
1 + 2x1z1x2z2 + x22z

2
2

= (x21,
√

2x1x2, x
2
2)(z21 ,

√
2z1z2, z

2
2)

= Φ(x)TΦ(z)

(2)

It is not always necessary to explicitly show feature function Φ. We can instead
construct a kernel matrix {k(xi, zj}, and if matrix is positive semi definite, it is
a valid kernel.

Kernel Matrix
The Gram matrix of a set of n vectors S = {x1, ...xn} is the n×n matrix G with
Gij = xixj . The kernel matrix is the Gram matrix of {Φ(x1), ...Φ(xn)}

The size of the kernel matrix depends on the number of examples, not the
dimensionality.

A direct way can be done if you have the value of all Φ(xi). You can just see if
the matrix is semi-definite or not.

An indirect way is if you have the kernel functions, write down the Kernel
matrix Kij and show that it is a legitimate kernel, without explicitly construct
Φ(xi).

Example Kernels

Linear Kernel
K(x, z) = xz

Polynomial Kernel of degree d

K(x, z) = (xz)d

Polynomial Kernel up to degree d

K(x, z) = (xz + c)d, (c > 0)

Online Learning With Kernel-11

5.3 Constructing New Kernels

It is possible to construct new kernels from existing ones.

Multiplying kernels by constants

k′(x, x′) = ck(x, x′)

Multiplying kernel k(x, x′) by a function f applied to x and x′

k′(x, x′) = f(x)k(x, x′)f(x′)

Applying a polynomial (with non-negative coefficients to k(x, x′)

k′(x, x′) = P (k(x, x′))

with
P (z) =

∑
i

aiz
i, (ai ≥ 0)

Exponentiating kernels
k′(x, x′) = exp(k(x, x′))

Adding two kernels
k′(x, x′) = k1(x, x′) + k2(x, x′)

Multiplying two kernels

k′(x, x′) = k1(x, x′)k2(x, x′)

Also, if Φ(x) ∈ Rm and km(z, z′) is a valid kernel in Rm, then

k(x, x′) = km(Φ(x),Φ(x′))

is a valid kernel.

If A is a symmetric positive semi-definite matrix, k(x, x′) = xAx′ is a valid
kernel.

5.4 Gaussian Kernel

Consider the Guassian Kernel, given by

k(x, z) = exp(−(x− z) 2
c

where (x − z)2 is the squared Euclidean distance between x and z and c = σ2

is a free parameter.

This can be thought of in terms of the distance between x and z; if x and z are
very close, the value of the kernel is 1, and if they are very fall apart, the value
is 0.

Online Learning With Kernel-12

Figure 5: Gaussian Kernel

We can also consider the property of c; a very small c means k ≈ I (every
item is different), and a very large c means k ≈ union matrix (all items are the
same).

The Guassian Kernel is valid, given the following

k(x, z) = exp(
−(x− z)2

2σ2
)

= exp(
−(xx+ zz − 2xz)

2σ2
)

= exp(
−xx
2σ2

)exp(
xz

σ2
)exp(

−zz
2σ2

)

= f(x)exp(
xz

σ2
)f(z)

(3)

exp(xzσ2) is a valid kernel because xz is the linear kernel and we can multiply it
by constant 1

σ2 and then exponetiaite it.

Here however, we cannot easily explicitly blow up the feature space and get an
identical representation since it is an infinite dimensional kernel.

6 Generalization / Efficiency Tradeoffs

There is a tradeoff between the computational efficiency with which these kernels
can be computed and the generalization ability of the classifier.

For perceptron, for example, consider using a polynomial kernel when you’re
unsure if the original space is expressive enough. If it turns out that the original
space was expressive enough, however, the generalization will suffer because
we’re now unnecessarily working in an exponential space.

We therefore need to be careful to choose whether to use the dual or primal
space. This decision depends on whether you have more examples or more
features.

Online Learning With Kernel-13

Dual space has t1m
2 computation time

Primal space has t2m computation time

where t1 is the size of dual representation feature space, t2 is that of the primal
space, and m is the number of examples.

Typically t1 << t2 because t2 is the blown up space, so we need to compare the
number of examples with the growth in dimensionality.

As a general rule of thumb, if we have a lot of examples, we should stay in the
primal space.

In fact, most applications today use explicit kernels; that is, they blow up the
feature space and work directly in that new space.

6.1 Generalization

Consider the case in which we want to move to the space of all combinations
of three features. In many cases, most of these combinations will be irrelevant;
you may only care about certain combinations. In this case, the most expressive
kernel – a polynomial kernel of size 3 – will lead to overfitting.

Assume a linearly separable set of points S = {x1...xn} ∈ Rn with separator
w ∈ Rn.

We want to embed S into a higher dimensional space n′ > n by adding zero-
mean random noise e to the additional dimensions.

Then w′ · x = (w, 0) · (x, e) = w · x

So w′ ∈ Rn′ still separates S.

Now we will look at γ
||x|| which we have shown to be inversely proportional to

generalization (mistake bound).

γ(S,w′)
||x′||

=
minsw′Tx′
||w′||||x′||

=
minsw

Tx

||w||||x′||

<
γ(S,w)

||x||

(4)

Since
||x′|| = ||(x, e)|| > ||x||

We can see we have a larger ratio, which means generalization suffers. In essence,
adding a lot of noisy/irrelevant features cannot help.

Online Learning With Kernel-14

