
CS 446 Machine Learning Fall 2016 Sep 13 - 22 2016

Online Learning
Professor: Dan Roth Scribe: Ben Zhou, C. Cervantes

Overview

• Quantifying Performance

• On-Line Learning

• Representation

• Perceptron

• Winnow

• Algorithms and Extensions

1 Quantifying Performance

We are interested in quantifying the number of examples one needs to see before
we can say that a learned hypothesis is good.

1.1 Learning Conjunction

Assume the following hidden monotone conjunction1

f = x2 ∧ x3 ∧ x4 ∧ x5 ∧ x100

We want to learn this function, and we want to know how many examples are
needed to do so.

There are multiple possible learning protocols, such as the following.

Protocol I The learner proposes instances as queries to the teacher, who knows
the hidden conjunction function.

Protocol II The teacher provides training examples. Since the teacher knows
the hidden function f , it provides good training sets, that allow the learner to
learn quickly.

1Monotone conjunctions, or conjunctions of non-negated variables, can be understood as
functions f(x) that do not decrease as x increases; in our case f(x) goes from 0 to 1 and then
stays 1

Online Learning-1

Protocol III Some random source (e.g. Nature) provides training examples; the
teacher (Nature) provides the labels (f(x))

1.2 Protocol I

Since we know that this is a monotone conjunction, if the label for one training
example is positive, then the variables in the conjunction function must be
positive in this example.

So if we only set one variable in the example to 0 and rest of the variables to
1, if the label is negative, it means that the variable set to 0 is necessary in the
conjunction.

For example, we want to know if x100 is in then conjunction, we test the example
[1, 1, 1....1, 0]. and f(x) = 0. Thus we know x100 is necessary, we must have it
in the conjunction.

Then we will ask if x99 is in the conjunction. After test f([1, 1, 1, 1...1, 0, 1]) = 1,
the conclusion is that we do not need it in the conjunction.

We can continue to drop variables, bit by bit. This straightforward algorithm
requires n queries, and will produce as a result exactly the hidden conjunction
f = x2 ∧ x3 ∧ x4 ∧ x5 ∧ x100.

1.3 Protocol II

When we consider a protocol between a teacher and a learner, we must assume
that the teacher is going to give good examples but the teacher is not going to
collude with the learner and simply provide the function.

If the teacher gives a positive example, we will know that none of the variables
that have value 0 are in the conjunction.

For example, if we have an instance of ([0, 1, 1, 1, 1, 0, ...0, 1], 1), we know those
0 valued variables are not in the conjunction. In this way, we leaned a super set
of the good variables (those have 1).

If the teaching examples are good enough that they contain all and only the
good variables, it only requires 6 examples to produce this hidden function (one
for each bit plus the super set). In this protocol, it takes minimal k+1 examples
to learn where k is the number of variables in the hidden conjunction.

1.4 Protocol III

This protocol is most often studied in machine learning, partially because it’s
more natural, partially because it’s easier to analyze.

Online Learning-2

An example set for this learning protocol could be:

Features Label
[1, 1, 1, 1, 1, 1, ..., 1, 1] 1
[1, 1, 1, 0, 0, 0, ..., 0, 0] 0
[1, 1, 1, 1, 1, 0, ..., 0, 1, 1] 1
[1, 0, 1, 1, 1, 0, ..., 0, 1, 1] 0
[1, 1, 1, 1, 1, 0, ..., 0, 0, 1] 1
[1, 0, 1, 0, 0, 0, ..., 0, 1, 1] 0
[1, 1, 1, 1, 1, 1, ..., 0, 1] 1
[0, 1, 0, 1, 0, 0, ..., 0, 1, 1] 0

One algorithm we can use in this protocol is elimination.

Start with the set of all literals as candidates, if we see a positive example,
and some of the literals are zeros in that example, we can conclude that those
0 literals are unimportant (given that our conjunction is monotone). These
variables with value 0 can thus be eliminated.

The key difference between this protocol and the previous two protocols is that
the input in this protocol in random (naturally generated). This means that
it is not guaranteed to learn the hidden conjunction exactly. Given that our
target function is a conjunction, however, we can still say something meaningful
about the behavior of the output.

We still want to quantify the time it takes before we learn a satisfying function,
but we cannot do so using the number of examples given that there are 2100

possible examples. Rather than focus on number of examples, we can continue
in two directions:

Probabilistic Intuition
We consider the probability of one variable in the hidden conjunction never ap-
pearing in the example set. This probability is very small, so we can argue that
the learned concepts perform well on future data that is distributed similarly to
our training data. This approach is a key idea of the Probably Approximately
Correct (PAC) framework.

Mistake Driven Learning
Rather than reasoning about the number of examples, we can say something
about the number of mistakes our algorithm makes. Intuitively, if we make a
mistake, we correct it, and the output performs better on future data. Now we
think about how many mistakes we are going to make until we learn a good
function, where we measure good in terms of how many mistakes you make
before you stop and be happy with the hypothesis.

While we consider on-line mistake driven algorithms, not all on-line algorithms
are mistake-driven. Some of them will update the hypothesis without a mis-
take.

Online Learning-3

2 On-Line Learning

2.1 Motivation

Consider a learning problem in a very high dimensional space. We want to de-
velop an algorithm that depends only weakly on the space dimensionality and
mostly on the number of relevant attributes. The key here is to extract the rele-
vant rules to predict future data instead of memorizing all the examples.

2.2 Overview

Model
Instance space: X (dimensionality: n)
Target: f : X → {0, 1}, f ∈ C

Where C is the concept class – a collection of all target functions – parameterized
by n

Protocol
Learner is given x ∈ X
Learner predicts h(x), and is then given f(x) (feedback)

Performance
Learner makes a mistake when h(x) 6= f(x)

We want to measure the number of mistakes algorithm A makes on sequence S
of examples, for the target function f

MA(C) = maxf∈C,SMA(f, S)

We say A is a mistake bound algorithm for the concept class C if MA(C) is a
polynomial in n, the complexity parameter of the target concept. We say that
A is good if it has this property.

2.3 Mistake Bound Learning

We want to know how many mistakes to get to ε − δ(PAC) behavior; that is,
how many mistakes before we can say there is a high possibility that the error
rate is less than a small number. We can also look for exact learning: how many
mistakes are made before the function stops making mistakes. This is easier to
analyze.

This view has the notable drawback of being too simple, as it’s not clear when
mistakes will be made, but the simplicity can also be advantageous.

Online Learning-4

2.4 Generic Mistake Bound Algorithms

Let’s first think about if it is clear that we can bound the number of mistakes.
Ideally if we make a mistake, we update the hypothesis so that it will not make
the same mistake again. However, most learning algorithms will not have this
property, unless you do something special.

In the general case, let C be a finite concept class and we want to learn f ∈ C.
Consider the following algorithm: consistency (CON).

In the ith stage of the algorithm, let Ci be all the concepts in C that are
consistent with all i− 1 previously seen examples. We choose randomly f ∈ Ci
and use it to predict the next example.

It is clear that Ci+1 ⊆ Ci, so that if a mistake is made on the ith example, then
|Ci+1| < |Ci|. In this way, each time we make a mistake we remove a hypothesis
and thus make progress toward learning the correct function.

As defined above, CON makes at most |C| − 1 mistakes.

2.5 The Halving Algorithm

Let C be a concept class. We want to learn f ∈ C

Halving:

In the ith stage of the algorithm, Let Ci be all concepts in C that is consistent
with all i−1 previously seen examples. Given an example ei, consider the value
fj(ei) for all fj ∈ Ci and predict by majority.

In this case if the hypothesis still makes a mistake, that means the majority is
wrong and we can get rid of most of the concepts.

For example in this algorithm, we predict 1 if |{fj ∈ Ci; fj(ei) = 0}| < |{fj ∈
Ci; fj(ei) = 1}|

Thus, since Ci+1 ⊆ Ci, when a mistake is made we can eliminate at least half
of the concepts, |Ci+1| < 1

2 |Ci|

In this case, the halving algorithm makes at most log(|C|) mistakes.

Conjunction Example
Assume a hidden conjunction:

f = x2 ∧ x3 ∧ x4 ∧ x5 ∧ x100

The number of all conjunction is 3n (since each variable can be positive, neg-
ative, or absent in the conjunction). As defined above, the halving algorithm
makes at most log(|C|) = log(3n) = n mistakes when learning the target func-
tion.

Online Learning-5

Now let’s consider k-conjunctions. Assume that k << n where n is the num-
ber of attributes and that could be a large number. The total number of k-
conjunctions is 2kC(n, k) ≈ 2knk. In this case, log(|C|) = k log n.

3 Representation

Representation is a key issue in learning. Assume, for example, that we are
interested in learning conjunctions. Should our hypothesis space be the set of
conjunctions?

We want a hypothesis space that is large enough to contain the target function
while being small enough to efficiently find a valid hypothesis.

Consider the following theorem:

Given a sample on n attributes that is consistent with a conjunctive con-
cept2, it is NP-hard to find a pure conjunctive hypothesis that is both
consistent with the sample and has the minimum number of attributes.

In effect, if we want to learn conjunctions, we may not want to use the set of
conjunctions as our hypothesis space. We could therefore move to a larger hy-
pothesis space – like the set of linear functions – where finding a valid hypothesis
may be combinatorially easier.

3.1 Linear Functions

Consider a function w · x = 0, as the bottom line of Figure 1. In this space,

Figure 1: Linear function

we’re interested in learning the linear separator, which shifts the line on the
bottom to that on the top, representing w · x = θ.

2This theorem holds for disjunctions as well

Online Learning-6

4 Perceptron

Almost all the machine learning algorithm we learn today is a variation of per-
ceptron. The perceptron algorithm is online3 and mistake driven4, meaning
that – given an example – perceptron tries to predict the label using the cur-
rent hypothesis. If the prediction is correct, then the algorithm does nothing;
otherwise, it corrects the hypothesis.

4.1 Linear Threshold Units

In the literature, perceptrons and linear threshold units are often conflated.
A linear threshold unit, as shown in Figure 2, takes inputs X, assigns weights W ,
and applies a threshold to produce label, y. In this class we’ll treat perceptron

Figure 2: Perceptron as a Linear Threshold Unit

as one algorithm among many that learns this architecture.

4.2 Algorithm

We want to learn a mapping f : X → {−1,+1} represented as

f = sgn(w · x)

Where X = {0, 1}n (Rn) and w ∈ Rn

Initialize w = 0 ∈ Rn
Cycle through all examples:

Predict the label of instance x to be y′ = sgn(w · x)
If y′ 6= y, update the weight vector:

w = w + ryx (r is the learning rate)
Else: Leave weights unchanged

The intuition in the above updating rule is that if y is positive and we predicted
it negative, then we are adding value to the weight vector. Similarly if y is
negative, we are subtracting value from the weight vector.

3Online algorithms operate over examples one-at-a-time, rather than all-at-once
4Mistake driven algorithms update their hypothesis when they make a mistake

Online Learning-7

Figure 3: Updating rule intuition

Figure 3 gives some intuition about the updating rule. Here red points are
positive examples and blue are negative examples. In the leftmost subfigure,
the arrow represents w and any point on the side that the arrow points to will
be classified as positive (negative otherwise).

In the leftmost subfigure, the next example to be classified (denoted by the note
bubble) is red and will be misclassified by the linear separator. Thus, an update
– as shown in the middle subfigure – is performed, resulting in the boundary in
the rightmost subfigure. In effect, each update rotates w in our space until we
correctly classify the examples.

If we know that if x is Boolean, it is only the weights of active features that are
updated. This is important because it brings efficiency when dimensionality is
really high; you thus do not need to update an array representing weights for
all features, only active features.

Figure 4: An equivalent form

An equivalent from of w · x > 0 is 1
1+exp{−(w·x)} >

1
2 .

Remember also that at each iteration θ must also be updated, according to

θ = θ + ryθInit

In cases where θ is not folded into the weight vector update, this is important
to remember.

Online Learning-8

4.3 Learnability

Perceptron can only learn linearly separable functions. Minsky and Papert
(1969) wrote an influential book demonstrating perceptron’s representational
limitations (ie. parity functions like XOR can’t be learned; in vision – if patterns
are represented with local features – perceptron can’t represent symmetry and
connectivity).

In 1959, Rosenblatt himself asked

”What pattern recognition5 problems can be transformed so as to become
linearlly separable?”

Rosenblatt had the perspective that if we have a very complex function, and
the process for learning it is unknown, we can transform the feature space such
that the data becomes linearlly separable, as shown in Figure 5

Figure 5: Transformed feature space

There are two important considerations when thinking about perceptron learn-
ability, as given by the following theorems.

Perceptron Convergence Theorem

If there exist a set of weights that are consistent with the data (ie. the
data is linearly separable), the perceptron learning algorithm will converge

Perceptron Cycling Theorem

If the training data is not linearly separable, the perceptron learning al-
gorithm will eventually repeat the same set of weights and therefore enter
an infinite loop.

5Machine learning used to be called pattern recognition

Online Learning-9

4.4 Mistake Bound Theorem

When using perceptron, we can bound the number of mistakes in the infinite
case.

Assume that a weight vector w ∈ RN , w0 = (0, ...0).. Upon receiving an example
x ∈ RN , we predict according to a linear threshold function.

Let (x1; y1), ...(xt; yt) be a sequence of labeled examples with xi ∈ RN , ||xi|| ≤ R
and y ∈ {−1, 1} for all i.

Let u ∈ RN , γ > 0 be such that ||u|| = 1 and yiu · xi ≥ γ for all i. Perceptron

makes at most R2

γ2 mistakes on this example sequence6.

This theorem assumes that all examples are bounded by some R; for all xi, find
the largest one, and R is at least this size. The theorem further assumes that
there exists some u that separates the data (that is, the data is linearlly sepa-
rable). Requiring that ||u|| = 17 is simply a constant that could be arbitrarily
scaled.

Finally, the theorem assumes that there exists some γ such that the inequality
is satisfied. This is simply a compact way to say positive examples are greater
than γ and negative examples are less than −γ. If the data is linearlly separable,
the closest point to the hyperplane is γ, and thus this assumption always holds
for linearaly separable data

We refer to γ as the complexity parameter, which refers to how difficult the
learning problem is. If γ is small, positive and negative examples are very close
and it is difficult to define a hyperplane. If γ is very large,finding a hyperplane
is much easier. Thus, it makes sense to measure the difficulty (i.e. the number
of mistakes) using the complexity parameter.

Proof
Let vk be the be the hypothesis before the kth mistake. Assume that the kth

mistake occurs on the input example (xi, yi).

∴ yi(vk · xi) ≤ 0

vk+1 = vk + yixi

vk+1 · u = vk · u + yi(u · xi)
≥ vk · u + γ

∴ vk+1 · u ≥ kγ

(1)

||vk+1||2 = ||vk||2 + 2yi(vk · xi) + ||xi||2

≤ ||vk||2 +R2

∴ ||vk+1||2 ≤ kR2

(2)

6The perceptron mistake bound algorithm by Novikoff (1963)

7Remember that ||u|| is the L2 norm of the vector, given by
√

u2
0 + ... + u2

n

Online Learning-10

Therefore,

√
kR ≥ ||vk+1|| ≥ vk+1 · u ≥ kγ

∴ k <
R2

γ2

This holds because ||u|| ≤ 1

Note that the bound does not depend on the dimensionality nor on the number
of examples. It’s also important to note that weight vectors and examples are
in the same Rn space.

4.5 Robustness to Noise

One important relaxation to the perceptron algorithm allows us to be more
robust to noise.

Consider the case of non-linearly separable data, as in Figure 6. Here, we do not

Figure 6: Non-linearly separable case

have a margin γ. In order to replace γ, we can use a slack variable, defined
as

ξi = max(0, γ − yiw · xi)

Intuitively, when ξi = 0, the example xi is on the right side of the hyperplane
with at least γ distance to the plane, otherwise, it grows linearly with −yiw ·
xi

Let’s now denote
D2 = [

∑
{ξ2i }]

1
2

Now we can refine the Novikoff theorem from before such that perceptron is
guaranteed to make no more than (R+D2

γ)2 mistakes on any sequence of exam-

ples satisfying ||xi||2 < R

Here D2 can represent how far the data set is from linearly separable, so it is
reasonable to use it to measure how many mistakes we are going to make.

Online Learning-11

5 Winnow

Winnow is another linear, mistake-driven learning algorithm which is similar to
perceptron. Note that in the following definitions we consider Winnow with a
multiplicative term of 2, but in practice any α > 1 can be used (typically close
to 1).

5.1 Algorithm

Initialize: θ = n;wi = 1

Prediction is 1 iff w · x ≥ θ

If no mistake: do nothing

If f(x) = 1 but w · x < θ, wi = 2wi (if xi = 1) (promotion)

If f(x) = 0 but w · x ≥ θ, wi = wi

2 (if xi = 1) (demotion)

In principle this is similar to perceptron – increase the weights on positive
mistakes, decrease on negative mistakes – but winnow does this multiplica-
tively.

Additionally, when learning disjunctions winnow can use elimination rather than
demotion; instead of dividing wi by 2, it can just be set to 0.

5.2 Mistake Bound

Claim: Winnow makes O(k log n) mistakes on k-disjunctions.

Proof

Let u be the number of mistakes on positive examples (promotions) and v be
the number of mistakes on negative examples (demotions).

The mistakes on positive examples is bounded as in

u < k log(2n)

When learning k-disjunctions, u is bounded because a weight that corresponds
to a good variable is only promoted. When these weights get to n there will be
no more mistakes on positives.

The mistakes on negative examples, however, is slightly more subtle, given
by

v < 2(u+ 1)

Consider the total weight, TW , which is equal to n initially. If the learner makes
a mistake on a positive example, TW doubles. However, w ·x < θ = n, meaning

Online Learning-12

that the current TW cannot be larger then n. So in the worst case TW will
grow by n, giving us

TW (t+ 1) < TW (t) + n

During demotion, w · x ≥ θ = n, so when the learner makes a mistake on a
negative example we know that the total weight must be greater than n, so
dividing TW by 2 means that the new total weight will be at least n

2 smaller,
or

TW (t+ 1) < TW (t)− n

2

These two bounds are sufficient to prove the bound on the total number of
mistakes.

Given u and v as defined above, we know that the total weight is always posi-
tive, starts at size n, increases with n and the number of mistakes on positive
examples, and decreases with n

2 and the number of negative examples.

0 < TW < n+ un− vn

2
⇒ v < 2(u+ 1)

Combining all of these equations, we get that

u+ v < 3u+ 2 = O(k log n)

6 Algorithms and Extensions

As we’ve mentioned before, perceptron and winnow are very similar.

Examples x ∈ {0, 1}n or x ∈ Rn (indexed by k);

Hypothesis w ∈ Rn

Prediction y ∈ {−1,+1}: Predict: y = 1 iff w · x > θ

Update Mistake Driven; the learner learns by correcting mistakes

Under mistake driven algorithms, we have seen two kinds of update algorithm,
which is the main distinction between perceptron and winnow.

Perceptron is an additive weight update algorithm, where w ← w+rykxk

Winnow is a multiplicative weight update algorithm, where wi ← wiexp{ykxi}

6.1 Practical Issues and Extensions

There are many extensions that can be made to these basic algorithms. Some
are necessary for them to perform well (eg. regularization), and some are for
ease of use and tuning.

Online Learning-13

For example, we can convert the output of a Perceptron/Winnow to a condi-
tional probability P (y = +1|x) = [1 + exp(−Awx)]−1

There are some other issues that we will talk about later, like multiclass classi-
fication and infinite attribute domain.

6.2 Regularization Via Averaged Perceptron

In mistake driven algorithms, we generate a new hypothesis every time we make
a mistake. It is reasonable to choose the last hypothesis as the learned output.
However, consider the case where a mistake was made on the penultimate ex-
ample. That hypothesis survived all prior examples before making a mistake,
and is thus more reliable than the final hypothesis, which has only seen one
example.

This intuition doesn’t come naturally in mistake-bound algorithms, but it is
what drives the PAC model that we’ll discuss later. In the PAC model, the
output depends on the number examples rather than the number of mistakes,
which can yield global guarantees on performance.

Consider a mistake bound algroithm...
that makes no more than 500 mistakes. Assume we want to see – given an
infinite stream of examples – a set of 1000 examples on which the algorithm
makes no mistakes.

In the optimal case, we start running the algorithm and we make no mistakes
on the first thousand examples. Our goal is satisfied in 1000 examples.

In the worst case, we start running the algorithm and make no mistakes on
999 examples, only to make our first mistake on the thousandth. This behavior
(999 correct, 1 mistake) can repeat, but only 500 times, given the bound of the
algorithm, thus satisfying our goal in ∼500,000 examples.

In general, then, we show that simple-to-analyze mistake-bound algorithms give
us meaningful information about the number of examples we need before we stop
making mistakes on long stretches of examples.

Averaged Perceptron...
builds on this intuition by taking all learned hypothesis – each of which has
learned something about the target function – and weigh them according to
the number of examples on which they made no mistakes (the length of the
stretch). If a hypothesis survives a long stretch, it gets a larger weight than one
that survived a short stretch.

Letm be the number of examples, k the number of mistakes ci be the consistency
count for hypothesis vi; on how many examples did vi make no mistakes.

Given a labeled traning set {(x1, y1), ...(xm, ym)}, we want to produce a list of
weighted peceptrons {(v1, c1), ...(vk, ck)}

Online Learning-14

Initialize k = 0; v1 = 0, c1 = 0
Repeat T times

For i = 1...m
y′ = sign(vk · xi)
If y′ = y
ck = ck + 1

else
vk+1 = vk + yix
ck+1 = 1
k = k + 1

Having produced this collection of weighted perceptrons – {(v1, c1), ...(vk, ck)}
– we can now predict the label of new example x by

y(x) = sgn[

k∑
i=1

cisgn(vi · x)]

6.3 Perceptron with Margin

Perceptron with Margin is also known as Thick Separator, and the method
described below also applied to Winnow.

Figure 7: Perceptron with Margin

Figure 7 shows the case where there is some margin between positive and neg-
ative examples. Though we could choose any hyperplane within the range of
θ, we want to choose the one that is as much in the middle as possible. Do-
ing so results in higher tolerance to noise on new data and thus better test set
performance.

To guarantee that we choose a hyperplane in the middle, we enforce some margin
γ such that we

promote if wx− θ < γ

Online Learning-15

demote if wx− θ > γ

Note that γ here is a functional margin. Its effect could disappear as w grows.
Nevertheless, this has been shown to be a very effective algorithmic addi-
tion.

6.4 Aggressive Perceptron

Assume we’ve run perceptron and we’ve made a mistake on an example, as in
the left side of Figure 8. Consider that, at some point in the future, we see this
example again. We are not guaranteed to classify this example correctly because
our step size may be too small to have changed the weight vector enough.

Figure 8: Threshold relative updating

In order to avoid making a mistake on the same example, then, we could either
feed an example enough times such that the weight vector is increased enough,
or we can change the step size on an example on which we made a mistake,
according to

r =
θ − w · x
x · x

This behaves equivalently, and prevents perceptron from making the same mis-
take twice.

6.5 SnoW

Several of these extensions (and a couple more) are implemented in the SNoW
learning architecture found in LBJava that supports several linear update rules
(Winnow, Perceptron, Nave Bayes).

Download from http://cogcomp.cs.illinois.edu/page/software

Online Learning-16

http://cogcomp.cs.illinois.edu/page/software

6.6 Winnow Extensions

In Winnow, all the weights are positive, meaning that only monotone functions
are learned.

Duplication
To make Winnow more general, we can duplicate variables and treat these dupli-
cates as negations; the first n variables could be xi, the next n variables could be
¬xi. Winnow then simply learns a monotone function over 2n variables.

Using the duplication approach is theoretically correct, but there are practical
concerns. First, there are memory concerns – we double the variables – but
there is a larger concern.

Assume only k features are on in any given example. In the original case,
Winnow is only concerned with k weights: those for positive features. In this
duplicated setting, though, Winnow must retain k weights for positive features
and n − k weights for negative features, such that for each example (now of
size 2n), Winnow must carry n weights, making it significantly less efficient in
practice.

Balanced Winnow
Assume we keep two weights for each variable, where the effective weight is the
difference between these weights.

In this setting, we have two weight vectors (w+ and w−), and if we made a
mistake on a positive example we promote w+

i and demote w−i , and the reverse
if we make a mistake on a negative example, given by.

Where xi = 1
If f(x) = 1 but (w+ −w−) · x ≤ 0

w+
i ← 2w+

i

w−i ← 1
2w
−
i

If f(x) = 0 but (w+ −w−) · x ≥ 0

w+
i ← 1

2w
+
i

w−i ← 2w−i

Note that these weight vectors are not independent. When we update one we
update the other. Later we will discuss why this is the right way to do multiclass
classification.

6.7 Winnow Robustness

Both winnow and perceptron are robust in the presence of various kinds of
noise. To demonstrate this, imagine a noisy setting in which the target function
changes over time. This is similar to many real life settings in which we learn
under some distribution but test under a slightly different one.

Online Learning-17

Modeling
Consider a game in which we have an adversary and a learner taking turns,
where

The adversary may change the target disjunction by adding or removing
some variable; the cost of each addition is 1

The learner makes a prediction on the given examples, and is told the
correct answer according to the current target function

Consider a new Winnow – Winnow-R – that never lets the weights go be-
low 1

2 ; doing so enables the learner to recover if a previously unimportant
variable becomes important (since, unlike in standard Winnow, the weight is
nonzero).

Winnow-R makes O(c log n) mistakes, where c is the cost of adversary.

As in Section 5.2, we define u to be the mistakes on positive examples, v to be
the mistakes on negative examples, and the total weight of positive mistakes is
given by TW (t+ 1) < TW (t) + n.

In the case of negative mistakes, however, we bound the weight at 1
2 , meaning

that the mistakes on negative examples is given by TW (t + 1) < TW (t) −
n
4

Then similarly, we have 0 < TW < n+ un− vn
4 ⇒ v < 4(u+ 1)

Online Learning-18

	Quantifying Performance
	Learning Conjunction
	Protocol I
	Protocol II
	Protocol III

	On-Line Learning
	Motivation
	Overview
	Mistake Bound Learning
	Generic Mistake Bound Algorithms
	The Halving Algorithm

	Representation
	Linear Functions

	Perceptron
	Linear Threshold Units
	Algorithm
	Learnability
	Mistake Bound Theorem
	Robustness to Noise

	Winnow
	Algorithm
	Mistake Bound

	Algorithms and Extensions
	Practical Issues and Extensions
	Regularization Via Averaged Perceptron
	Perceptron with Margin
	Aggressive Perceptron
	SnoW
	Winnow Extensions
	Winnow Robustness

