CS 446: Machine Learning

Dan Roth
University of Illinois, Urbana-Champaign

danr@illinois.edu

http://L2R.cs.uiuc.edu/~danr

3322 SC

CS446: Machine Learning

Participate, Ask Questions

What do you need to know:

Theory of Computation

Probability Theory

Linear Algebra

Programming (Java; your favorite language; some Matlab)

- Homework 0 on the web
 - No need to submit
- Who is the class for?

Future Machine Learning researchers/Advanced users

CS446: Policies

Cheating

No.

We take it very seriously.

Info page

Note also the Schedule Page and our Notes

- Homework:
 - Collaboration is encouraged
 - □ But, you have to write your own solution/program.
 - (Please don't use old solutions)
- Late Policy:

You have a credit of 4 days (4*24hours); That's it.

- Grading:
 - Possibly separate for grads/undergrads.
 - □ 5% Quizzes; 25% homework; 30%-midterm; 40%-final;
 - Projects: 25% (4 hours)
- Questions?

CS446 Team

- Dan Roth (3323 Siebel)
 - Monday, 1-2 PM (or: appointment)
- TAs

```
Chase Duncan Tues 12-1 (3333 SC)
```

- Hao Wu
 Fri 1-2
 (3333 SC)
- Discussion Sections: (starting 3rd week) [times/locations not final]

```
■ Tuesday: 11 -12 [3405 SC] Subhro Roy [A-I]
```

CS446 on the web

- Check our class website:
 - Schedule, slides, videos, policies
 - http://l2r.cs.uiuc.edu/~danr/Teaching/CS446-17/index.html
 - Sign up, participate in our Piazza forum:
 - Announcements and discussions
 - https://piazza.com/class#fall2017/cs446
 - Log on to Compass:
 - Submit assignments, get your grades
 - https://compass2g.illinois.edu
- Scribing the Class [Good writers; Latex; Paid Hourly]

What is Learning

- The Badges Game.....
 - This is an example of the key learning protocol: supervised learning
- First question: Are you sure you got it?
 - □ Why?
- Issues:
 - Prediction or Modeling?
 - Representation
 - Problem setting
 - Background Knowledge
 - When did learning take place?
 - Algorithm

Training data

- + Naoki Abe
- Myriam Abramson Eric Baum
- + David W. Aha
- + Kamal M. Ali
- Eric Allender
- + Dana Angluin
- Chidanand Apte
- + Minoru Asada
- + Lars Asker
- + Javed Aslam
- + Jose L. Balcazar
- Cristina Baroglio

- + Peter Bartlett
- + Welton Becket
- Shai Ben-David
- + George Berg
- + Neil Berkman
- + Malini Bhandaru
- + Bir Bhanu
- + Reinhard Blasig
- Avrim Blum
- Anselm Blumer
- + Justin Boyan

- + Carla E. Brodley
- + Nader Bshouty
- Wray Buntine
- Andrey Burago
- + Tom Bylander
- + Bill Byrne
- Claire Cardie
- + John Case
- + Jason Catlett
- Philip Chan
- Zhixiang Chen
- Chris Darken

The Badges game

+ Naoki Abe

- Eric Baum

Conference attendees to the 1994 Machine Learning conference were given name badges labeled with + or -.

What function was used to assign these labels?

Raw test data

Gerald F. DeJong Chris Drummond Yolanda Gil Attilio Giordana Jiarong Hong J. R. Quinlan Priscilla Rasmussen Dan Roth Yoram Singer Lyle H. Ungar

Labeled test data

- + Gerald F. DeJong
- Chris Drummond
- + Yolanda Gil
- Attilio Giordana
- + Jiarong Hong
- J. R. Quinlan

- Priscilla Rasmussen
- + Dan Roth
- + Yoram Singer
- Lyle H. Ungar

What is Learning

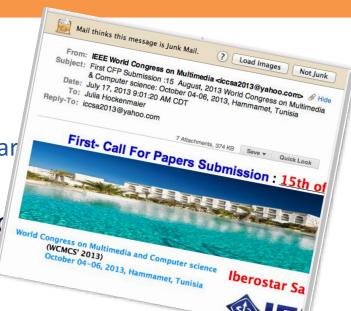
The Badges Game.....

This is an example of the key lear learning

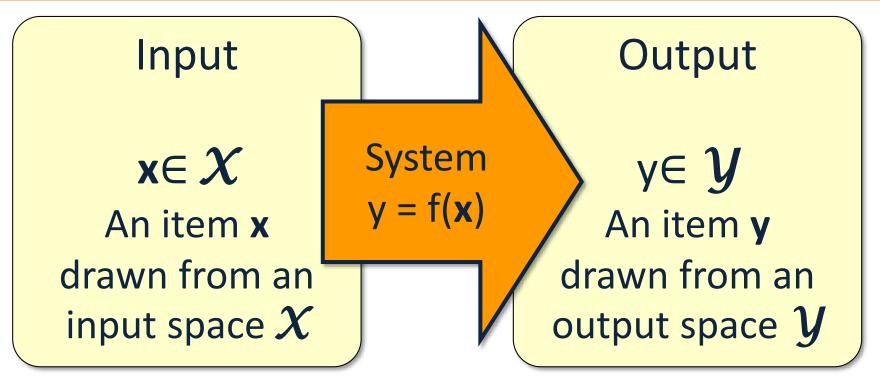
First question: Are you sure you

□ Why?

- Issues:
 - Prediction or Modeling?
 - Representation
 - Problem setting
 - Background Knowledge
 - When did learning take place?
 - Algorithm

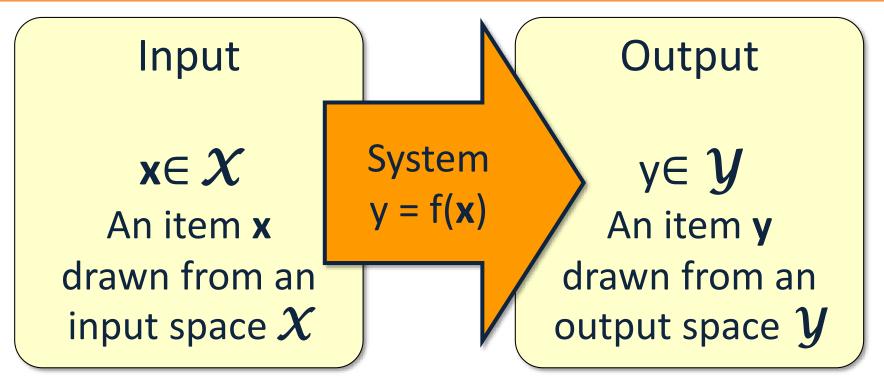


Supervised Learning



We consider systems that apply a function f() to input items x and return an output y = f(x).

Supervised Learning

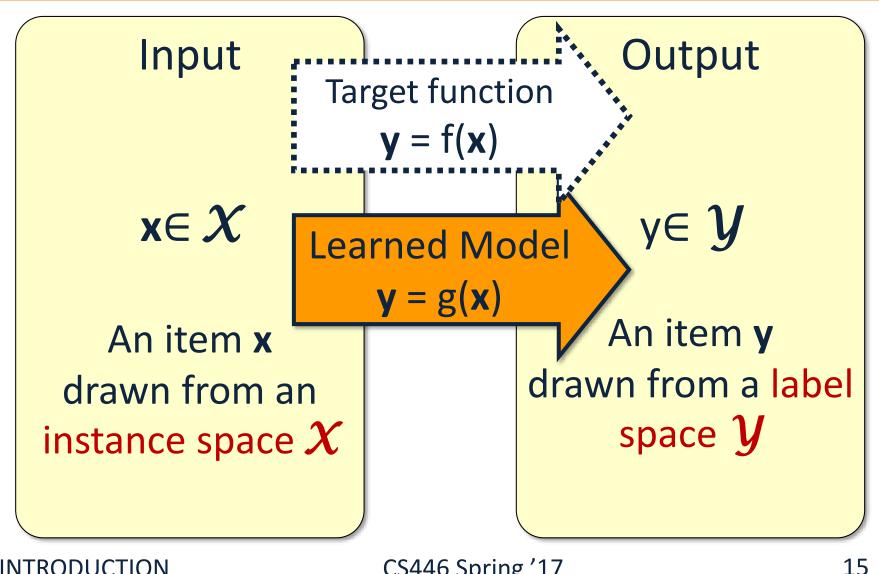


In (supervised) machine learning, we deal with systems whose f(x) is learned from examples.

Why use learning?

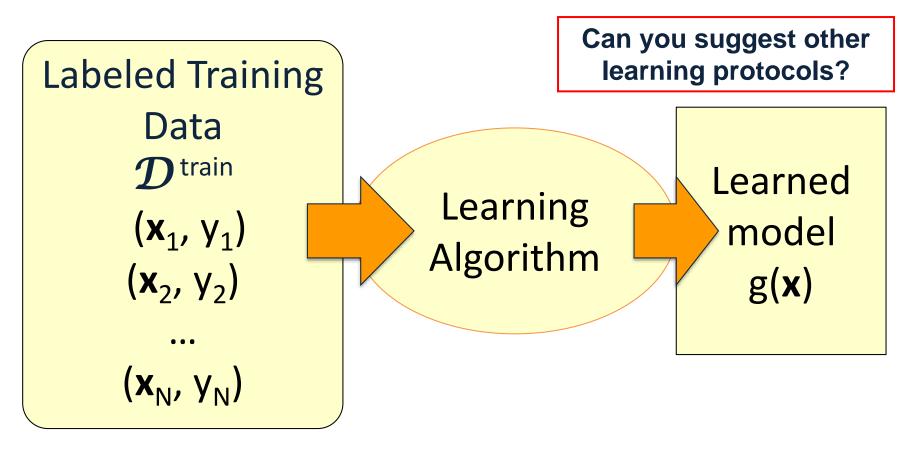
We typically use machine learning when the function f(x) we want the system to apply is unknown to us, and we cannot "think" about it. The function could actually be simple.

Supervised learning



INTRODUCTION CS446 Spring '17

Supervised learning: Training



- lacksquare Give the learner examples in $\mathcal{D}^{\mathsf{train}}$
- The learner returns a model g(x)

Supervised learning: Testing

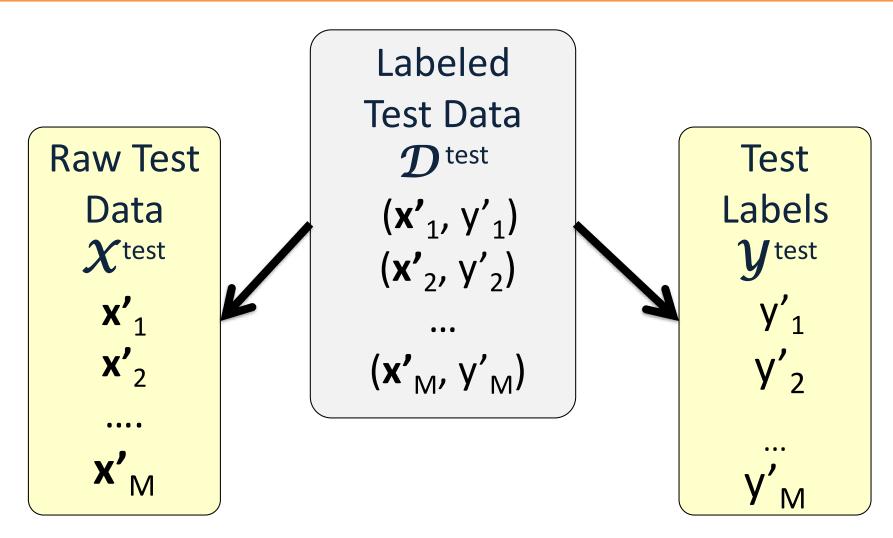
Labeled
Test Data
$$\mathcal{D}^{\text{test}}$$

$$(\mathbf{x'}_{1}, \mathbf{y'}_{1})$$

$$(\mathbf{x'}_{2}, \mathbf{y'}_{2})$$
...
$$(\mathbf{x'}_{M}, \mathbf{y'}_{M})$$

Reserve some labeled data for testing

Supervised learning: Testing

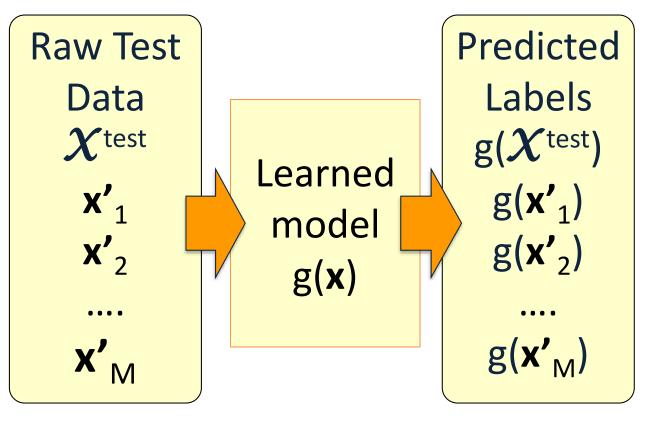


Supervised learning: Testing

Apply the model to the raw test data

Can you use the test data otherwise?

Evaluate by comparing predicted labels against the test labels



Test Labels \mathcal{V} test

What is Learning

- The Badges Game......
 - This is an example of the key learning protocol: supervised learning
- First question: Are you sure you got it?
 - Why?
- Issues:
 - Prediction or Modeling?
 - Representation
 - Problem setting
 - Background Knowledge
 - When did learning take place?
 - Algorithm

Course Overview

- Introduction: Basic problems and questions
- A detailed example: Linear threshold units
 - Online Learning
- Two Basic Paradigms:
 - PAC (Risk Minimization)
 - Bayesian theory
- Learning Protocols:
 - Supervised; Unsupervised; Semi-supervised
- Algorithms
 - Decision Trees (C4.5)
 - [Rules and ILP (Ripper, Foil)]
 - Linear Threshold Units (Winnow; Perceptron; Boosting; SVMs; Kernels)
 - [Neural Networks (Backpropagation)]
 - Probabilistic Representations (naïve Bayes; Bayesian trees; Densities)
 - Unsupervised /Semi supervised: EM
- Clustering; Dimensionality Reduction

Supervised Learning

- \blacksquare Given: Examples (x,f(x)) of some unknown function f
- Find: A good approximation of f
- x provides some representation of the input
 - □ The process of mapping a domain element into a representation is called Feature Extraction. (Hard; illunderstood; important)
 - \square $x \in \{0,1\}^n$ or $x \in \Re^n$
- The target function (label)
 - $f(x) \in \{-1,+1\}$

 $f(x) \in \{1,2,3,..,k-1\}$

 \Box f(x) $\in \Re$

Binary Classification

Multi-class classification

Regression

Supervised Learning: Examples

- Disease diagnosis
 - x: Properties of patient (symptoms, lab tests)
 - ☐ f: Disease (or maybe: recommended therapy)
- Part-of-Speech tagging
 - x: An English sentence (e.g., The <u>can</u> will rust)
 - ☐ f: The part of speech of a word in the sentence
- Face recognition
 - x: Bitmap picture of person's face
 - f: Name the person (or maybe: a property of)
- Automatic Steering
 - x: Bitmap picture of road surface in front of car
 - f: Degrees to turn the steering wheel

Many problems that do not seem like classification problems can be decomposed to classification problems. E.g, Semantic Role Labeling

Key Issues in Machine Learning

Modeling

- How to formulate application problems as machine learning problems? How to represent the data?
- Learning Protocols (where is the data & labels coming from?)

Representation

- What functions should we learn (hypothesis spaces) ?
- How to map raw input to an instance space?
- Any rigorous way to find these? Any general approach?

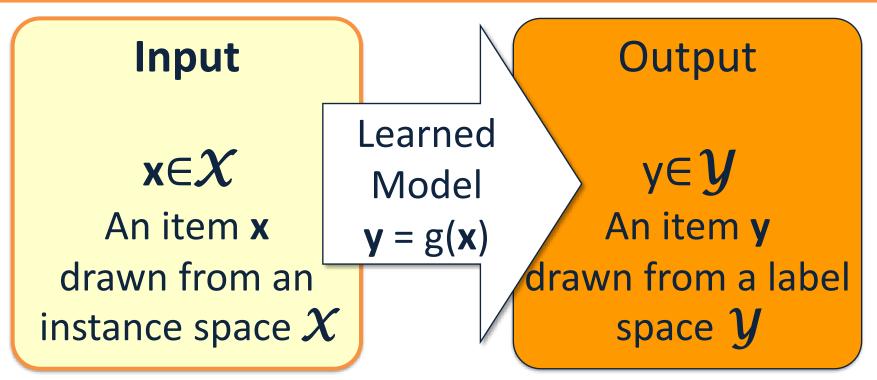
Algorithms

- What are good algorithms?
- How do we define success?
- Generalization Vs. over fitting
- The computational problem

Using supervised learning

- What is our instance space?
 - □ Gloss: What kind of features are we using?
- What is our label space?
 - □ Gloss: What kind of learning task are we dealing with?
- What is our hypothesis space?
 - Gloss: What kind of functions (models) are we learning?
- What learning algorithm do we use?
 - □ Gloss: How do we learn the model from the labeled data?
- What is our loss function/evaluation metric?
 - □ Gloss: How do we measure success? What drives learning?

1. The instance space $oldsymbol{\mathcal{X}}$



Designing an appropriate instance space $\boldsymbol{\mathcal{X}}$ is crucial for how well we can predict y.

1. The instance space $oldsymbol{\chi}$

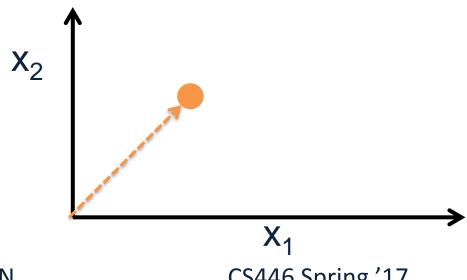
- When we apply machine learning to a task, we first need to *define* the instance space X.
- Instances $x \in X$ are defined by features:
 - Boolean features:
 - Does this email contain the word 'money'?
 - Numerical features:
 - How often does 'money' occur in this email?
 - What is the width/height of this bounding box?
 - What is the length of the first name?

What's $\boldsymbol{\chi}$ for the Badges game?

- Possible features:
- Gender/age/country of the person?
- Length of their first or last name?
- Does the name contain letter 'x'?
- How many vowels does their name contain?
- Is the n-th letter a vowel?

$\boldsymbol{\mathcal{X}}$ as a vector space

- $\boldsymbol{\chi}$ is an N-dimensional vector space (e.g. \Re^{N})
 - Each dimension = one feature.
- Each x is a feature vector (hence the boldface x).
- Think of $\mathbf{x} = [\mathbf{x}_1 \dots \mathbf{x}_N]$ as a point in \mathbf{X} :

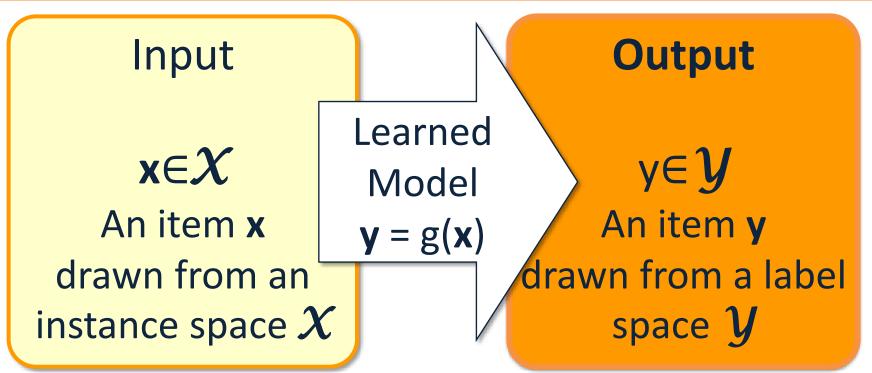


CS446 Spring '17

Good features are essential

- The choice of features is crucial for how well a task can be learned.
 - In many application areas (language, vision, etc.), a lot of work goes into designing suitable features.
 - This requires domain expertise.
- CS446 can't teach you what specific features to use for your task.
 - But we will touch on some general principles

2. The label space ${m y}$



lacktriangle The label space $oldsymbol{\mathcal{Y}}$ determines what kind of supervised learning task we are dealing with

Supervised learning tasks I

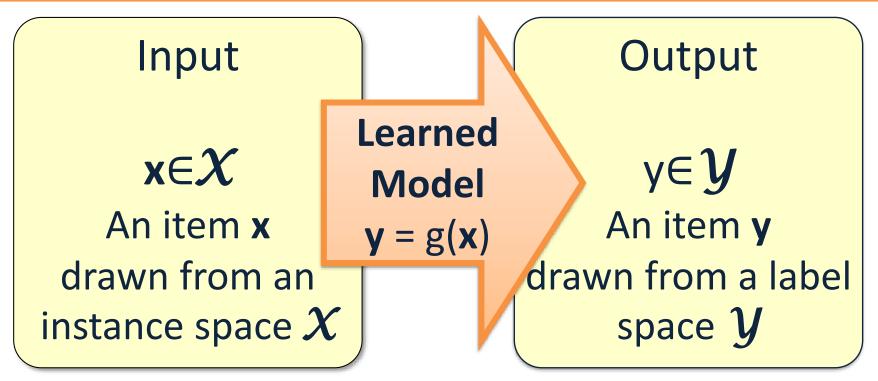
The focus of CS446.
But...

- Output labels y∈Y are categorical:
 - Binary classification: Two possible labels
 - Multiclass classification: k possible labels
 - Output labels y∈Y are structured objects (sequences of labels, parse trees, etc.)
 - Structure learning

Supervised learning tasks II

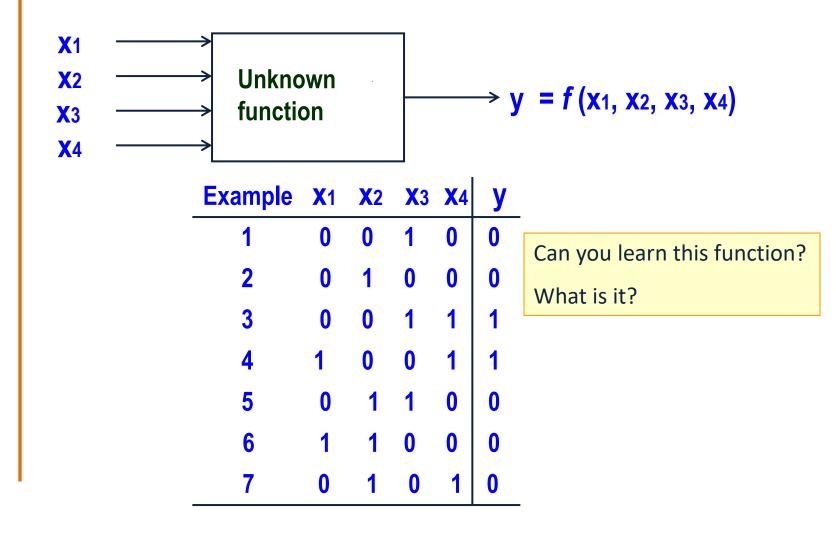
- Output labels y∈Y are numerical:
 - Regression (linear/polynomial):
 - Labels are continuous-valued
 - Learn a linear/polynomial function f(x)
 - Ranking:
 - Labels are ordinal
 - Learn an ordering f(x1) > f(x2) over input

3. The model g(x)



We need to choose what kind of model we want to learn

A Learning Problem



Hypothesis Space

Complete Ignorance:

There are $2^{16} = 65536$ possible functions over four input features.

We can't figure out which one is correct until we've seen every possible input-output pair.

After observing seven example have 29 possibilities for f

Is Learning Possible?

unctions 0 0 0 0 ?
0 0 0 1 ?
0 0 1 0 0
0 0 1 1 1
0 1 0 0
0 1 1 1 0
0 1 1 0 0

Example X1 X2 X3 X4

- □ There are |Y||X| possible functions f(x) from the instance space X to the label space Y.
- Learners typically consider only a subset of the functions from X to Y, called the hypothesis space H . H ⊆ |Y||X|

Hypothesis Space (2)

Simple Rules: There are only 16 simple **conjunctive rules** of the form $y=x_i \wedge x_j \wedge x_k$

Rule	Counterexample	Rule	Counterex ample
y =c		X2 A X 3	0011 1
X 1	1100 0	X 2 Λ X 4	0011 1
X 2	0100 0	X 3 Λ X 4	1001 1
X 3	0110 0	X 1 Λ X 2 Λ X 3	0011 1
X 4	0101 1	X 1 Λ X 2 Λ X 4	0011 1
X1 A X2	1100 0	X 1 Λ X 3 Λ X 4	0011 1
X 1 Λ X 3	0011 1	X 2 Λ X 3 Λ X 4	0011 1
X 1 Λ X 4	0011 1	X 1 Λ X 2 Λ X 3 Λ Σ	K4 0011 1

No simple rule explains the data. The same is true for **simple clauses**.

INTRODUCTION

Don't worry, this function is actually a neural network...

Hypothesis Space (3)

Notation: 2 variables from the set on the left. Value: Index of the counterexample. m-of-n rules: There are 32 possible rules of the form "y = 1 if and only if at least m of the following n variables are 1"

variables

variables

1-of 2-of 3-of 4-of

weights inputs $x_l \longrightarrow w_{lj}$ activation function $x_2 \longrightarrow w_{2j}$ $x_3 \longrightarrow w_{3j}$ $x_3 \longrightarrow w_{nj}$ $x_1 \longrightarrow w_{nj}$ $x_2 \longrightarrow w_{nj}$ $x_3 \longrightarrow w_{nj}$ $x_3 \longrightarrow w_{nj}$ $x_4 \longrightarrow w_{nj}$ $x_5 \longrightarrow w_{nj}$ $x_5 \longrightarrow w_{nj}$ $x_7 \longrightarrow w_{nj}$

Found a consistent hypothesis.

Views of Learning

- Learning is the removal of our <u>remaining</u> uncertainty:
 - □ Suppose we knew that the unknown function was an m-of-n Boolean function, then we could use the training data to infer which function it is.
- Learning requires guessing a good, small hypothesis class:
 - We can start with a very small class and enlarge it until it contains an hypothesis that fits the data.
- We could be wrong!
 - Our prior knowledge might be wrong:
 - $y=x4 \Lambda$ one-of (x1, x3) is also consistent
 - Our guess of the hypothesis space could be wrong
- If this is the unknown function, then we will make errors when we are given new examples, and are asked to predict the value of the function

General strategies for Machine Learning

- Develop flexible hypothesis spaces:
 - Decision trees, neural networks, nested collections.
- Develop representation languages for restricted classes of functions:
 - Serve to limit the expressivity of the target models
 - E.g., Functional representation (n-of-m); Grammars; linear functions; stochastic models;
 - Get flexibility by augmenting the feature space

In either case:

- Develop algorithms for finding a hypothesis in our hypothesis space, that fits the data
- And <u>hope</u> that they will generalize well

CS446 Team

- [updated 1/24/17]
- Dan Roth (3323 Siebel)
 - Monday 1-2 (or: appointment)
- **TAs**

Chase Duncan	Tues 12-1	(3333 SC))

- □ Subhro Roy Wed 4-5 (3333 SC)
- Qiang NingThur 3-4 (3333 SC)
- □ Hao Wu Fri 1-2 (3333 SC)
- Discussion Sections: (starting next week)
 - Monday: 4 -5 [3405 SC] Chase Duncan[A-I]
 - Wednesdays: 5-6 [3405 SC] Hao Wu [J-L]
 - Thursdays: 4 5 [3405 SC] Subhro Roy[M-S]
 - □ Fridays: 4 -5 [3405 SC] Qiang Ning [T-Z]

CS446 on the web

- Check our class website:
 - □ Schedule, slides, videos, policies
 - http://l2r.cs.uiuc.edu/~danr/Teaching/CS446-17/index.html
 - Sign up, participate in our Piazza forum:
 - Announcements and discussions
 - https://piazza.com/class#fall2017/cs446
 - Log on to Compass:
 - Submit assignments, get your grades
 - https://compass2g.illinois.edu
- Scribing the Class [Good writers; Latex; Paid Hourly]

Administration

Registration [Ask NOW]

Questions

- Hw0: Solution will be released today
- Hw1 will be out tomorrow
 - Please start working on it as soon as possible;
 - Discussion sessions will start next week; come ready with questions
- Projects
 - □ Small (2-3) groups; your choice of a topic.
 - 25% of the grade → needs to be a substantial project
 - Extra credit for undergrads
- Quiz 1: Avg. score: 4.51/5
 - Only 165 of you attempted it (???)

An Example

I don't know {whether, weather} to laugh or cry

This is the Modeling Step

How can we make this a learning problem?

What is the hypothesis space?

We will look for a function

F: Sentences → {whether, weather}

- We need to define the domain of this function better.
- An option: For each word w in English define a Boolean feature x_w : $[x_w = 1]$ iff w is in the sentence
- This maps a sentence to a point in $\{0,1\}^{50,000}$
- In this space: some points are <u>whether</u> points

some are <u>weather</u> points

Learning Protocol?

Supervised? Unsupervised?

Modeline

CS446 Spring '17

47

Representation Step: What's Good?

Learning problem:

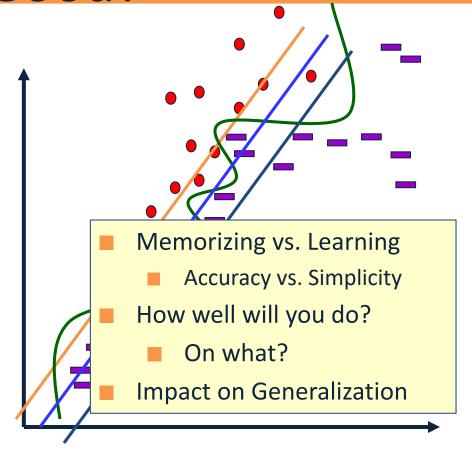
Find a function that best separates the data

- What function?
- What's best?
- (How to find it?)

Linear = linear in the feature space

x= data representation; w = the classifier

 $y = sgn \{w^Tx\}$



A possibility: Define the learning problem to be:

A (linear) function that best separates the data

CS446 Spring '17

,esentati

Expressivity

$$f(x) = \operatorname{sgn} \{x \cdot w - \theta\} = \operatorname{sgn} \{\sum_{i=1}^{n} w_i x_i - \theta \}$$

Many functions are Linear

Probabilistic Classifiers as well

Conjunctions:

•
$$y = sgn\{1 \cdot x_1 + 1 \cdot x_3 + 1 \cdot x_5 - 3\};$$
 $w = (1, 0, 1, 0, 1) \theta = 3$

At least m of n:

•
$$y = \text{at least 2 of } \{x_1, x_3, x_5\}$$

•
$$y = sgn\{1 \cdot x_1 + 1 \cdot x_3 + 1 \cdot x_5 - 2\}\};$$
 $w = (1, 0, 1, 0, 1) \theta = 2$

Many functions are not

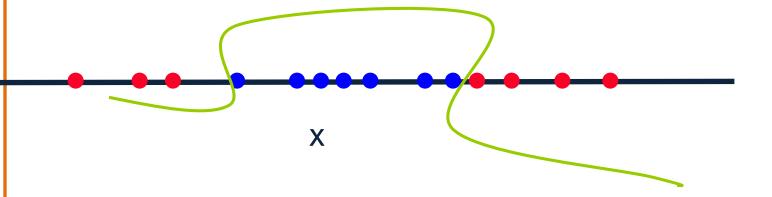
□ Non trivial DNF:
$$y = x_1 \land x_2 \lor x_3 \land x_4$$

But can be made linear

Representativ

Functions Can be Made Linear

- Data are not linearly separable in one dimension
- Not separable if you insist on using a specific class of functions



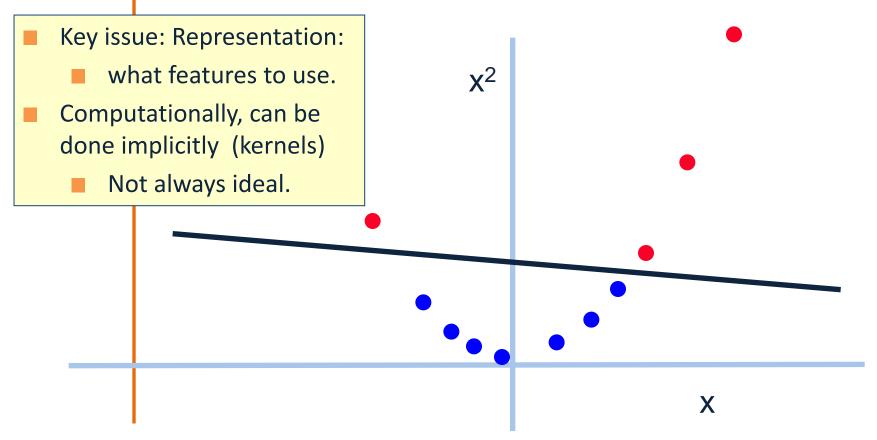
INTRODUCTION

CS446 Spring '17

50

Blown Up Feature Space

■ Data are separable in <x, x²> space

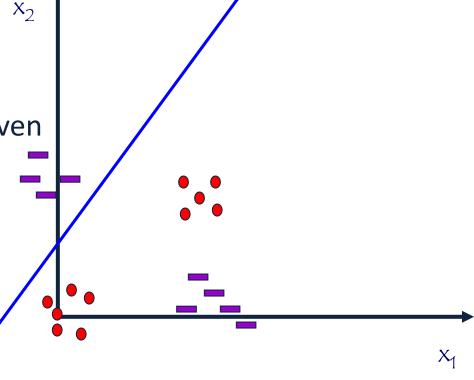


resentation

- $(x_1 \wedge x_2) \vee (\neg \{x_1\} \wedge \neg \{x_2\})$
- In general: a parity function.
- $\mathbf{x}_{i} \in \{0,1\}$
- f(x₁, x₂,..., x_n) = 1

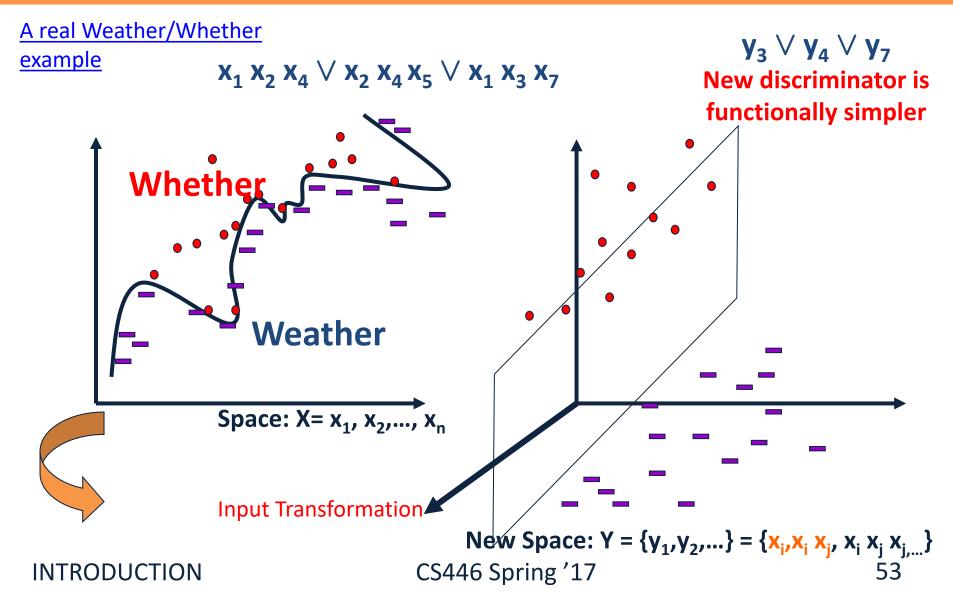
iff $\sum x_i$ is even

This function is not linearly separable.



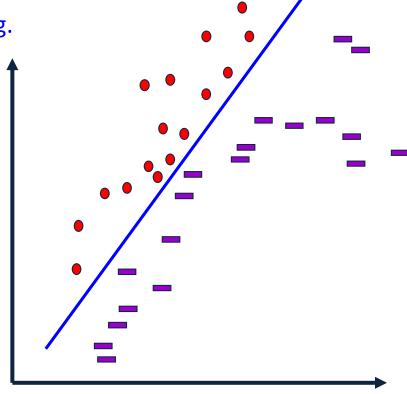
Functions Can be Made Linear

Discrete Case



. Poithn

- A possibility: Local search
 - Start with a linear threshold function.
- See how well you are doing.
 - Correct
 - Repeat until you converge.
- There are other ways that do not search directly in the hypotheses space
 - Directly compute the hypothesis



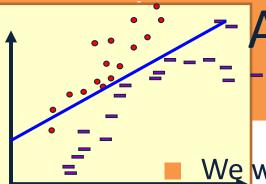
A General Framework for Learning

- Goal: predict an unobserved output value y ∈ Y based on an observed input vector x ∈ X
- Estimate a functional relationship $y^{r}(x)$ from a set $\{(x,y)_i\}_{i=1,n}$
- Most relevant Classification: $y \in \{0,1\}$ (or $y \in \{1,2,...k\}$)
 - ullet (But, within the same framework can also talk about Regression, $\mathsf{y} \in \Re$)

Simple loss function: # of mistakes [...] is a indicator function

- What do we want f(x) to satisfy?
 - □ We want to minimize the Risk: $L(f()) = E_{X,Y}([f(x) \neq y])$
 - Where: $E_{X,Y}$ denotes the expectation with respect to the true distribution.

Algorithm



A General Framework for Learning (II)

We want to minimize the Loss: $L(f()) = E_{X,Y}([f(X) \neq Y])$

Where: E _{X,Y} denotes the expectation with respect to the true distribution.

Side note: If the distribution over $X \times Y$ is known, predict: $y = argmax_y P(y|x)$

We cannot minimize this This is the best possible (the optimal Bayes' error).

- Instead, we try to minimize the empirical classification error.
- For a set of training examples $\{(x_i, y_i)\}_{i=1,n}$
- Try to minimize: $L'(f()) = 1/n \sum_{i} [f(x_i) \neq y_i]$
 - ☐ (Issue I: why/when is this good enough? Not now)
- This minimization problem is typically NP hard.
- To alleviate this computational problem, minimize a new function a convex upper bound of the classification error function

$$I(f(x),y) = [f(x) \neq y] = \{1 \text{ when } f(x) \neq y; 0 \text{ otherwise}\}$$

Algorithmic View of Learning: an Optimization Problem

- A Loss Function L(f(x),y) measures the penalty incurred by a classifier f on example (x,y).
- There are many different loss functions one could define:
 - Misclassification Error:

$$L(f(x),y) = 0 \text{ if } f(x) = y;$$

Squared Loss:

$$L(f(x),y) = (f(x) - y)^2$$

Input dependent loss:

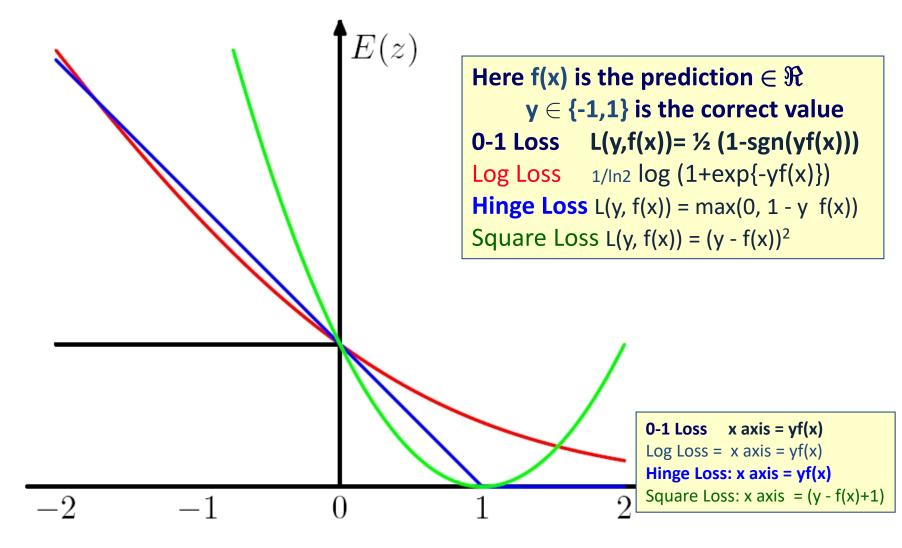
$$L(f(x),y) = 0 \text{ if } f(x) = y;$$

1 otherwise

A continuous convex loss function allows a simpler optimization algorithm.

$$c(x)$$
 otherwise. $f(x) - y$

Loss



CS446 Spring '17

INTRODUCTION

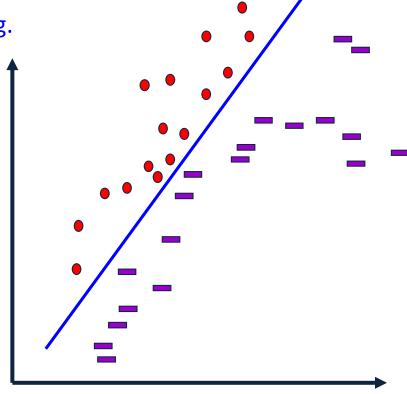
Example

Putting it all together:

A Learning Algorithm

. Brithm

- A possibility: Local search
 - Start with a linear threshold function.
- See how well you are doing.
 - Correct
 - Repeat until you converge.
- There are other ways that do not search directly in the hypotheses space
 - Directly compute the hypothesis

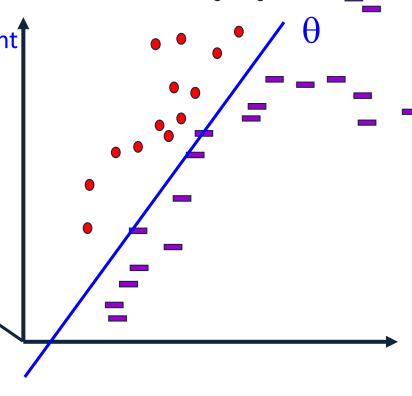


le oith no

$$f(x) = \operatorname{sgn} \{x^{\mathsf{T}} \cdot w - \theta\} = \operatorname{sgn} \{\sum_{i=1}^{n} w_i x_i - \theta \}$$

W

- $\mathbf{x}^{T} = (\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{n}) \in \{0,1\}^{n}$ is the feature based encoding of the data point
- $\mathbf{w}^{\mathsf{T}} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n) \in \Re^n$ is the target function.
- θ determines the shift
 with respect to the origin



Canonical Representation

$$f(x) = sgn \{w^T \cdot x - \theta\} = sgn\{\sum_{i=1}^n w_i x_i - \theta\}$$

sgn $\{w^T \cdot x - \theta\} \equiv \text{sgn } \{(w')^T \cdot x'\}$

Where:

x' = (x, -1) and $w' = (w, \theta)$

Moved from an n dimensional representation to an (n+1) dimensional representation, but now can look for hyperplanes that go through the origin.

Algorithm

General Learning Principle

The Risk: a function of w

Our goal is to find a w that minimizes the expected risk

The loss: a function of x^T , w and y

$$J(w) = E_{X,Y} Q(x, y, w)$$

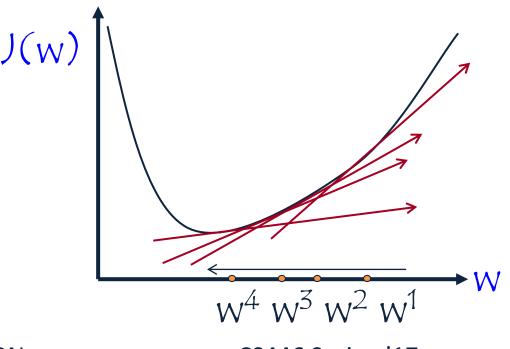
- We cannot do it.
- Instead, we approximate J(w) using a finite training set of independent samples (x_i, y_i) $J(w) \sim 1/m \sum_{1,m} Q(x_i, y_i, w)$
- To find the minimum, we use a batch gradient descent algorithm
- estimates wt of the optimal parameter vector w:

Wt+1 = Wt -
$$\nabla$$
 J(w) = Wt - 1/m $\sum_{i,m} \nabla$ Q(x_i,y_i, w)

CS446 Spring '17

Gradient Descent

- We use gradient descent to determine the weight vector that minimizes J(w) = Err (w);
- Fixing the set D of examples, J=Err is a function of w^j
- At each step, the weight vector is modified in the direction that produces the steepest descent along the error surface.



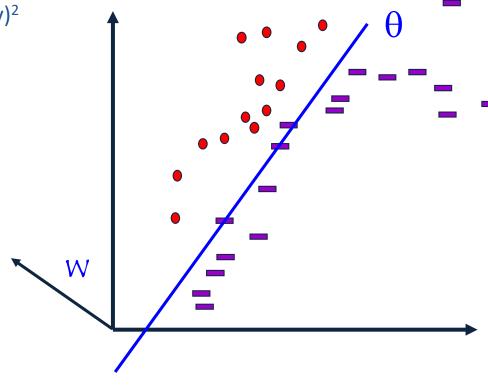
. Boithm

INTRODUCTION

CS446 Spring '17

. Boithn

- Our Hypothesis Space is the collection of Linear Threshold Units
- Loss function:
 - Squared loss: LMS (Least Mean Square, L₂)
 - $Q(x, y, w) = \frac{1}{2} (w^T x y)^2$



LMS: An Optimization Algorithm

(i (subscript) – vector component; j (superscript) - time; d – example #)

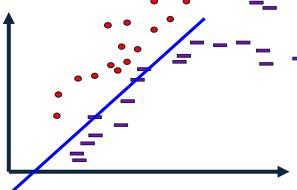
Assumption: $x \in R^n$; $u \in R^n$ is the target weight vector; the target (label) is $t_d = u \cdot x$ Noise has been added; so, possibly, no weight vector is consistent with the data.

Our prediction on the d-th example **x** is:

$$\boldsymbol{o}_{d} = \sum\nolimits_{i} \! \boldsymbol{w}_{i}^{j} \bullet \boldsymbol{x}_{i} = \vec{\boldsymbol{w}}^{(j)} \bullet \vec{\boldsymbol{x}}$$

The error the current hypothesis makes on the data set is:

$$J(w) = Err(\vec{w}^{(j)}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$



Gradient Descent

To find the best direction in the <u>weight space</u> $\overline{\mathbf{w}}$ we compute the gradient of E with respect to each of the components of

$$\nabla \mathbf{E}(\vec{\mathbf{w}}) \equiv \left[\frac{\partial \mathbf{E}}{\partial \mathbf{w_1}}, \frac{\partial \mathbf{E}}{\partial \mathbf{w_2}}, ..., \frac{\partial \mathbf{E}}{\partial \mathbf{w_n}}\right]$$

- This vector specifies the direction that produces the steepest increase in E;
- We want to modify $\vec{\mathbf{W}}$ in the direction of $-\nabla \mathbf{E}(\vec{\mathbf{W}})$ $\vec{\mathbf{W}} = \vec{\mathbf{W}} + \Delta \vec{\mathbf{W}}$
- Where (with a fixed step size R):

$$\Delta \vec{\mathbf{w}} = -\mathbf{R} \nabla \mathbf{E}(\vec{\mathbf{w}})$$

algrithm

Gradient Descent: LMS

• We have: $Err(\vec{w}^{(j)}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$

Therefore:
$$\frac{\partial \mathbf{E}}{\partial \mathbf{w_i}} = \frac{\partial}{\partial \mathbf{w_i}} \frac{1}{2} \sum_{d \in D} (\mathbf{t_d} - \mathbf{o_d})^2 =$$

$$=\frac{1}{2}\sum_{d\in D}\frac{\partial}{\partial w_i}(t_d-o_d)^2=$$

$$= \frac{1}{2} \sum_{d \in D} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w}_d \cdot \vec{x}_d) =$$

$$= \sum_{d \in D} (t_d - o_d)(-x_{id})$$

CS446 Spring '17

ooithn

INTRODUCTION

. Polithm

Weight update rule:

$$\Delta \boldsymbol{w}_{i} = \boldsymbol{R} \sum_{\boldsymbol{d} \in \boldsymbol{D}} (\boldsymbol{t}_{\boldsymbol{d}} - \boldsymbol{o}_{\boldsymbol{d}}) \boldsymbol{x}_{i\boldsymbol{d}}$$

- Gradient descent algorithm for training linear units:
 - Start with an initial random weight vector
 - For every example d with target value t_d do:
 - Evaluate the linear unit $\mathbf{O_d} = \sum_i \mathbf{W_i} \bullet \mathbf{X_{id}} = \mathbf{W} \bullet \mathbf{X_d}$
 - \square Update $\vec{\mathbf{w}}$ by adding $\Delta \mathbf{w}$, to each component
 - Continue until E below some threshold

This algorithm always converges to a local minimum of J(w), for small enough steps. Here (LMS for linear regression), the surface contains only a single global minimum, so the algorithm converges to a weight vector with minimum error, regardless of whether the examples are linearly separable.

The surface may have local minimum if the loss function is different.

Algrithm

Incremental (Stochastic) Gradient Descent: LMS

Weight update rule:

$$\Delta \mathbf{w}_{i} = \mathbf{R}(\mathbf{t}_{d} - \mathbf{o}_{d})\mathbf{x}_{id}$$

Dropped the averaging operation.

Instead of averaging the gradient of the loss over the complete training set, choose at random a sample (x,y) (or a subset of examples) and update w^t

- Gradient descent algorithm for training linear units:
 - Start with an initial random weight vector
 - □ For every example d with target value t_d do:
 - Evaluate the linear unit $\mathbf{O_d} = \sum_i \mathbf{W_i} \bullet \mathbf{X_{id}} = \vec{\mathbf{W}} \bullet \vec{\mathbf{X}_d}$
 - update $\vec{\mathbf{w}}$ by incrementally by adding $\Delta \mathbf{w}_i$ to each component (update without summing over all data)
 - Continue until E below some threshold

algorithm

Incremental (Stochastic) Gradient Descent: LMS

Weight update rule:

$$\Delta \boldsymbol{w}_{i} = \boldsymbol{R} (\boldsymbol{t}_{d} - \boldsymbol{o}_{d}) \boldsymbol{x}_{id}$$

Dropped the averaging operation.

Sometimes called "on-line" since we don't need a reference to a training set:

observe – predict – get feedback.

- Gradient descent algorithm for training linear units:
 - Start with an initial random weight vector
 - For every example d with target value: t_d
 - Evaluate the linear unit $\mathbf{O_d} = \sum_i \mathbf{W_i} \bullet \mathbf{X_{id}} = \vec{\mathbf{W}} \bullet \vec{\mathbf{X}_d}$
 - update $\overline{\mathbf{w}}$ by <u>incrementally</u> adding $\Delta \mathbf{w}$ to each component (update without summing over all data)
 - □ Continue until E below some threshold
- In general does not converge to global minimum
- Decreasing R with time guarantees convergence
- But, on-line algorithms are sometimes advantageous...

Learning Rates and Convergence

Algrithm

- In the general (non-separable) case the learning rate R must decrease to zero to guarantee convergence.
- The learning rate is called the step size. There are more sophisticated algorithms that choose the step size automatically and converge faster.
- Choosing a better starting point also has impact.
- The gradient descent and its stochastic version are very simple algorithms, but almost all the algorithms we will learn in the class can be traced back to gradient decent algorithms for different loss functions and different hypotheses spaces.

Algrithm

- Assume the data is linearly separable.
- Sample complexity:
 - Suppose we want to ensure that our LTU has an error rate (on new examples) of less than ε with high probability (at least $(1-\delta)$)
 - □ How large does m (the number of examples) must be in order to achieve this? It can be shown that for n dimensional problems

$$m = O(1/ε [ln(1/δ) + (n+1) ln(1/ε)].$$

- Computational complexity: What can be said?
 - □ It can be shown that there exists a polynomial time algorithm for finding consistent LTU (by reduction from linear programming).
 - [Contrast with the NP hardness for 0-1 loss optimization]
 - (On-line algorithms have inverse quadratic dependence on the margin)

Other Methods for LTUs

oithme

- Fisher Linear Discriminant:
 - A direct computation method
- Probabilistic methods (naïve Bayes):
 - Produces a stochastic classifier that can be viewed as a linear threshold unit.
- Winnow/Perceptron
 - □ A multiplicative/additive update algorithm with some sparsity properties in the function space (a large number of irrelevant attributes) or features space (sparse examples)
- Logistic Regression, SVM...many other algorithms