
Learning Rules CS446-Fall 10 1

• If-Then Rules are a standard knowledge representation that has proven
useful in building expert systems

if (Outlook = overcast) then Play_Tennis = YES
if (Outlook = sunny)

(Humidity = high) then Play_Tennis = No

• Relatively easy for people to understand
• Useful in providing insight and understanding of the regularities in the data

Learning Rules

Learning Rules CS446-Fall 10 2

• If-Then Rules are a standard knowledge representation that has proven
useful in building expert systems

if (Outlook = overcast) then Play_Tennis = YES
if (Outlook = sunny)

(Humidity = high) then Play_Tennis = No

• Relatively easy for people to understand
• Useful in providing insight and understanding of the regularities in the data
• There are a number of methods for inducing sets of rules from data

• Rule learning methods can be extended to handle relational representations
(first-order-representations; inductive logic programming)

if Parent(x,y) then Ancestor(x,y)
if Parent(x,z)

Ancestor(z,y) then Ancestor(x,y)

Learning Rules

Grandfather(x,y) = father(x,z) & father (z,y)

Learning Rules CS446-Fall 10 3

Example: Relational Learning
Inductive Logic Programming

• Finding a path in a directed acyclic graph

• What is the definition of a path?

• Definition in terms of what?

• If you want to learn this definition, what will the input be?
• How will it be applied later?

2
4

1

5

3 6

• Today:
• Some Background
• The difficulties in Learning Rules

• Learning Sets of Rules
• Rule Learning Algorithm(s)
• Generalization to relational Learning

Learning Rules CS446-Fall 10 4

• Set of Rules:

Knowledge Representation

2k21

1m21

CY...YY

or..
CX...XX

• Disjunctive Rules:

DNF: Disjunction of all rules with YES as a consequent

• Ordered set of Rules:

Decision Lists: If (Condition-1) then C
Else if (Condition-2) then D

……
Else 0

Learning Rules CS446-Fall 10 5

Association Rules

• In the context of Data Mining the search is for rules that
represent regularities in the data

• Frequent pattern: pattern that occurs frequently in a
database

• Motivation: finding regularities in data
– What products are often purchased together? Beer & diapers?!

– What are the subsequent purchases after buying a PC?

• The goal is not to learn a classifier
– Consequently, very simple conceptually (but tricky to scale up)

Learning Rules CS446-Fall 10 6

Basic Concepts: Frequent Patterns and
Association Rules

• Itemset X={x1 , …, xk }
• Find all the rules XY with min

confidence and support
– support, s, fraction of examples that

contain both X and Y
– confidence, c, fraction of examples

that contain X that also contain Y.

Let min_support = 50%,
min_conf = 50%:

A C (s,c) = (50%, 66.7%)
C A (s,c) = (50%, 100%)

Customer
buys diaper

Customer
buys both

Customer
buys beer

Transaction-id Items bought
10 A, B, C
20 A, C
30 A, D
40 B, E, F

Learning Rules CS446-Fall 10 7

Learning Rules

• We will view Rule Learning in the context of Classification.
The goal is to represent a function (Boolean function; multi-
value function) as a collection of rules.

• As the example of Data Mining shows, rules can be useful for
other things. For example, it is possible to view them as
features, to be used by other learning algorithms.

What does it mean?

Learning Rules CS446-Fall 10 8

Learning Rules
• Translate decision trees into rules (C4.5)
• Sequential (set) covering algorithms

- General to Specific (top down) (CN2, FOIL)
- Specific to General (bottom up) (GOLEM)
- Hybrid search (AQ, Progol)

But other algorithms may be viewed as learning (generalized) rules
(E.g., linear separators)

All the discussion today is algorithmic – given a collection of points, find a set
of rules that is consistent with it. The hope is that this set of rules will also be
okay in the future…

Learning Rules CS446-Fall 10 9

1. Decision Trees to Rules
Color

Blue GreenRed

YesShape No

TriangleCircle
No Yes

Square
Yes

For each path in the decision tree create a rule

Learning Rules CS446-Fall 10 10

Decision Trees to Rules

NoCircleRed

Color

Blue GreenRed

YesShape No

TriangleCircle
No Yes

Square
Yes

YesSquareRed
YesTriangleRed

YesBlue
NoGreen

Learning Rules CS446-Fall 10 11

Decision Trees to Rules
Color

Blue GreenRed

YesShape No

TriangleCircle
No Yes

Square
Yes

YesSquareRed
YesTriangleRed

YesBlue

In case of a Boolean Function:

Learning Rules CS446-Fall 10 12

Decision Trees to Rules
Color

Blue GreenRed

B Shape C

TriangleCircle
A C

Square
B

In the general case:

ACircleRed
BSquareRed
CTriangleRed

BBlue
CGreen

Learning Rules CS446-Fall 10 13

Decision Trees to Rules
Color

Blue GreenRed

B Shape C

TriangleCircle
A C

Square
B

• Resulting rules may contain unnecessary antecedents that are not needed to
eliminate negative examples or that result in overfitting the data (same as in
Decision Trees)
• Post-prune the rules using MDL, cross-validations or related methods
• After Pruning, rules may conflict (fire together and assign different categories
to a single novel test instances). (unlike Decision Trees)

In the general case:

ACircleRed
BSquareRed
CTriangleRed

BBlue
CGreen

Learning Rules CS446-Fall 10 14

Decision Trees to Rules
Color

Blue GreenRed

B Shape C

TriangleCircle
A C

Square
B

• Resulting rules may contain unnecessary antecedents that are not needed to
eliminate negative examples or that result in overfitting the data.
• Post-prune the rules using and MDL, cross-validations or related methods
• After Pruning, rules may conflict (fire together and assign different categories
to a single novel test instances). (unlike Decision Trees)

In the general case:

ACircleRed
BSquareRed
CTriangleRed

BBlue
CGreen

ACircleRed BBigRed
Test Case: (big, red, circle)

Learning Rules CS446-Fall 10 15

Decision Trees to Rules
Color

Blue GreenRed

YesShape No

TriangleCircle
No Yes

Square
Yes

YesSquareRed
YesTriangleRed

YesBlue

Solution:
• Sort rules by observed accuracy on the training data; treat the rules as an

ordered set.

E.g: Decision list: If, Then, else

Learning Rules CS446-Fall 10 16

2. Why isn’t it trivial?
The Current Best Learning Algorithm

Day Outlook Temperature Humidity Wind PlayTennis

1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

Learning Rules CS446-Fall 10 17

The Current Best Learning Algorithm
Day Outlook Temperature Humidity Wind PlayTennis

4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes

H=rain,mild,high,weakyes

H=rain, * , * ,weakyes; (overcast,cool,normal,strong) Yes

H=rain, * , * ,weakyes

Learning Rules CS446-Fall 10 18

The Current Best Learning Algorithm

•H: Any hypothesis consistent with the first example in Examples

• For each remaining example e in Examples
• If e is false positive for H (it is negative, H says it’s positive)

• H : a specialization of H that is consistent with Examples
• Else if e is false negative for H (it is positive, H says it’s negative)

• H : a generalization of H that is consistent with Examples
• If no consistent specialization/generalization can be found

• Fail;
• return H

• The Algorithm needs to choose generalizations and specializations
(there may be several). If it gets into trouble it has to backtrack to an
earlier decision or otherwise it fails.

Learning Rules CS446-Fall 10 19

The Current Best Learning Algorithm
Learn the rule structure and the set of rules simultaneously, greedily.

• Generalization:
• Remove a conjunct (sunny and normal to sunny)
• Add a disjunct (sunny to sunny or cool)

• Specialization:
• Add a conjunct
• Remove a disjunct

When to add and when to remove?
Credit Assignment problem

True Concept

Specifically: Rule construction; Set selection

Difficulties

Learning Rules CS446-Fall 10 20

3. Learning Rules as Set Cover
• Assume you are given a set of rules, and only needs to find a list
that classifies correctly all the examples.

• Set Cover Problem: X - a set of elements
F: a family of subsets of X, such that

FS
SX

• X - set of positive examples
• F - Collection of rules that cover only positive examples

Learning Rules CS446-Fall 10 21

• Assume you are given a set of rules, and only needs to find a list
that classifies correctly all the examples.

• Set Cover Problem: X - a set of elements
F: a family of subsets of X, such that

FS
SX

• X - set of positive examples
• F - Collection of rules that cover only positive examples

Learning Rules as Set CoverSet of Rules

Learning Rules CS446-Fall 10 22

• Assume you are given a set of rules, and only needs to find a list
that classifies correctly all the examples.

• Set Cover Problem: X - a set of elements
F: a family of subsets of X, such that

FS
SX

• X - set of positive examples
• F - Collection of rules that cover only positive examples

• The problem of finding
a minimal set cover is
NP-Complete

Learning Rules as Set Cover

• Good greedy
approximation algorithm

• Can we find F?

Learning Rules CS446-Fall 10 23

Learning Rules with Sequential Covering
• A set of rules is learned one at a time
• Each time: use best rule:

Rule that covers a large number of positives examples without covering
any negatives; then, go on with the remaining positive examples.

• Let P be the set of positive examples.
• Until P is empty do:

- Choose a rule R that covers a large number of positives
w/o covering any negatives.

- Add R to the list of the learned rules
- Remove positives covered by R and from P

• What is the interpretation of this set of rules (I.e., how to use it) ?
• Minimum set cover is NP-Hard. The greedy algorithm is a good approximation.

• Remaining problem: How to learn a single rule ?

Learning Rules CS446-Fall 10 24

4. Learning A Single Rule Top-Down
YES.X...XX A,X k21i

(will not be covered)
(already rejected)

• A Top-Down (general to specific) approach starts with an empty rule
and greedily adds antecedents, one at a time, that eliminate negative
examples while maintaining coverage of positives as much as possible.

• Algorithms based on FOIL (Quinlan, 1990)

• Let A={}
• Let N be the set of all negative examples
• Let P be the current set of uncovered positive examples
• Until N is empty do

- For every feature-value pair (literal) L = (f=v) compute:
Gain(f=v, P, N)

- Pick a literal, L = (f=v) with highest Gain
- Add L to A
- Remove from P examples that do not satisfy L
- Remove from N examples that do not satisfy L

Return the conjunction of all literals in A

L
{}

Different from
homework?

Single Rule

Learning Rules CS446-Fall 10 25

The Gain Metric

• Want to achieve two goals:
- Decrease coverage of negative examples

Measure increase in percentage of positive examples covered
when making the proposed specialization to the current rule

- Maintain coverage of as many positives as possible
Count number of positive examples covered

Gain(L, P, N) :
• Let N* be a subset of N that satisfy the literal L
• Let P* be a subset of P that satisfy the literal L (still covered)
• return:

NP
Plog

 -
*N*P

*Plog
*P

Learning Rules CS446-Fall 10 26

Example: Top Down Rule Learning
(000 -) (001 -) (010 -) (011 -) (100 +) (101 +) (110 -) (111 -)

N* be a subset of N that satisfy the literal L
P* be a subset of P that satisfy the literal L (still covered)

NP
Plog

 -
*N*P

*Plog
*P

Learning Rules CS446-Fall 10 27

Example: Top Down Rule Learning
(000 -) (001 -) (010 -) (011 -) (100 +) (101 +) (110 -) (111 -)

P=2, N=6
L=x1: P* =2, N* = 2 Gain = 2 log2 /4 - log2 /8 = 3/8

N* be a subset of N that satisfy the literal L
P* be a subset of P that satisfy the literal L (still covered)

NP
Plog

 -
*N*P

*Plog
*P

Learning Rules CS446-Fall 10 28

Example: Top Down Rule Learning
(000 -) (001 -) (010 -) (011 -) (100 +) (101 +) (110 -) (111 -)

P=2, N=6
L=x1: P* =2, N* = 2 Gain = 2 log2 /4 - log2 /8 = 3/8
L=x2: P* =0, N* = 4 Gain = 0 - log2 /8 = -1/8
L=x3: P* =1, N* = 3 Gain = 1 log1 /4 - log2 /8 = -1/8

N* be a subset of N that satisfy the literal L
P* be a subset of P that satisfy the literal L (still covered)

NP
Plog

 -
*N*P

*Plog
*P

Learning Rules CS446-Fall 10 29

Example: Top Down Rule Learning
(000 -) (001 -) (010 -) (011 -) (100 +) (101 +) (110 -) (111 -)

P=2, N=6
L=x1: P* =2, N* = 2 Gain = 2 log2 /4 - log2 /8 = 3/8
L=x2: P* =0, N* = 4 Gain = 0 - log2 /8 = -1/8
L=x3: P* =1, N* = 3 Gain = 1 log1 /4 - log2 /8 = -1/8

First literal chosen is x1

N* be a subset of N that satisfy the literal L (already rejected)
P* be a subset of P that satisfy the literal L (still covered)

NP
Plog

 -
*N*P

*Plog
*P

Learning Rules CS446-Fall 10 30

Example: Top Down Rule Learning
(000 -) (001 -) (010 -) (011 -) (100 +) (101 +) (110 -) (111 -)

P=2, N=6
L=x1: P* =2, N* = 2 Gain = 2 log2 /4 - log2 /8 = 3/8
L=x2: P* =0, N* = 4 Gain = 0 - log2 /8 = -1/8
L=x3: P* =1, N* = 3 Gain = 1 log1 /4 - log2 /8 = -1/8

First literal chosen is x1
(100 +) (101 +) (110 -) (111 -)
P=2, N=2

N* be a subset of N that satisfy the literal L (already rejected)
P* be a subset of P that satisfy the literal L (still covered)

NP
Plog

 -
*N*P

*Plog
*P

Learning Rules CS446-Fall 10 31

Example: Top Down Rule Learning
(000 -) (001 -) (010 -) (011 -) (100 +) (101 +) (110 -) (111 -)

P=2, N=6
L=x1: P* =2, N* = 2 Gain = 2 log2 /4 - log2 /8 = 3/8
L=x2: P* =0, N* = 4 Gain = 0 - log2 /8 = -1/8
L=x3: P* =1, N* = 3 Gain = 1 log1 /4 - log2 /8 = -1/8

First literal chosen is x1
(100 +) (101 +) (110 -) (111 -)
P=2, N=2
L=x2: P* =0, N* = 2 Gain = 0 - log2 /4 = -1/4
L=x3: P* =1, N* = 1 Gain = 1 log1 /2 - log2 /4 = -1/4
L=not(x2) P* =2, N* = 0 Gain = 2 log2 /2 - log2 / 4=1-1/4

N* be a subset of N that satisfy the literal L (already rejected)
P* be a subset of P that satisfy the literal L (still covered)

NP
Plog

 -
*N*P

*Plog
*P

Learning Rules CS446-Fall 10 32

Example: Top Down Rule Learning
(000 -) (001 -) (010 -) (011 -) (100 +) (101 +) (110 -) (111 -)

P=2, N=6
L=x1: P* =2, N* = 2 Gain = 2 log2 /4 - log2 /8 = 3/8
L=x2: P* =0, N* = 4 Gain = 0 - log2 /8 = -1/8
L=x3: P* =1, N* = 3 Gain = 1 log1 /4 - log2 /8 = -1/8

First literal chosen is x1
(100 +) (101 +) (110 -) (111 -)
P=2, N=2
L=x2: P* =0, N* = 2 Gain = 0 - log2 /4 = -1/4
L=x3: P* =1, N* = 1 Gain = 1 log1 /2 - log2 /4 = -1/4
L=not(x2) P* =2, N* = 0 Gain = 2 log2 /2 - log2 / 4=1-1/4
we have learned: x1 and not(x2)

N* be a subset of N that satisfy the literal L (already rejected)
P* be a subset of P that satisfy the literal L (still covered)

NP
Plog

 -
*N*P

*Plog
*P

Learning Rules CS446-Fall 10 33

Example: Top Down Rule Learning
(000 -) (001 -) (010 -) (011 -) (100 +) (101 +) (110 -) (111 -)

P=2, N=6
L=x1: P* =2, N* = 2 Gain = 2 log2 /4 - log2 /8 = 3/8
L=x2: P* =0, N* = 4 Gain = 0 - log2 /8 = -1/8
L=x3: P* =1, N* = 3 Gain = 1 log1 /4 - log2 /8 = -1/8

First literal chosen is x1
(100 +) (101 +) (110 -) (111 -)
P=2, N=2
L=x2: P* =0, N* = 2 Gain = 0 - log2 /4 = -1/4
L=x3: P* =1, N* = 1 Gain = 1 log1 /2 - log2 /4 = -1/4
L=not(x2) P* =2, N* = 0 Gain = 2 log2 /2 - log2 / 4=1-1/4
we have learned: x1 and not(x2)

What if the examples were generated from a DNF?
N* be a subset of N that satisfy the literal L (already rejected)
P* be a subset of P that satisfy the literal L (still covered)

NP
Plog

 -
*N*P

*Plog
*P

Learning Rules CS446-Fall 10 34

Other General-to-Specific Methods

• As In ID3
- Follow only the most promising branch at every step.

- Choose best attribute to split on
for each value, choose one of the splits and go on.

- At some point, determine the consequent of the rule
- Go back to search for the best attribute, but on a different set of examples

Learning Rules CS446-Fall 10 35

Other General-to-Specific Methods

• As In ID3
- Follow only the most promising branch at every step.

- Choose best attribute to split on
for each value, choose one of the splits and go on.

- At some point, determine the consequent of the rule
- Go back to search for the best attribute, but on a different set of examples

Outlook

Overcast RainSunny
YesHumidity Wind

NormalHigh
No Yes

WeakStrong
No Yes

Learning Rules CS446-Fall 10 36

Other General-to-Specific Methods

• As In ID3
- Follow only the most promising branch at every step.

- Choose best attribute to split on
for each value, choose one of the splits and go on.

- At some point, determine the consequent of the rule
- Go back to search for the best attribute, but on a different set of examples

•This is a greedy depth-first-search, with no backtracking.
- no guarantee that it will make optimal decision

• Beam search: maintain a list of the k best candidates at each step.
- At each step, generate descendants for each of the k best candidates,

and reduce the resulting set again to the best k

Learning Rules CS446-Fall 10 37

Summary: Incremental Reduced Error Pruning

Learning Rules CS446-Fall 10 38

IREP

• Integrates Reduced Error Pruning with a Separate and Conquer
(Sequential Covering) rule learning algorithm.

• A rule is a conjunction of features; a rule set is a DNF formula.
• Builds up a rule set in a greedy fashion, one rule at a time.
• After each rule is found, all exemplas covered by it (both P and N) are

deleted.
• This process is repeated until there are no more positive examples, or

until the only rule found has unacceptably large error rate.

An Integrated Rule Learning Algorithm

Learning Rules CS446-Fall 10 39

Summary: Incremental Reduced Error Pruning
Two classes

Grow Set, Prune
Set: Rand(2/3, 1/3)

Repeatedly add the
feature that

maximizes FOIL’s
information gain

criterion

Rule is immediately pruned
after being grown. Every

final sequence of conditions
is considered; chooses a
deletion that maximizes

(p* + (N-N*))/(P+N)
Better (Ripper):

(P*-N*)/(P* + N*)

Better (Ripper):
MDL based stopping

criterion – stops when the
last rule adds too much to

the description length.

Optimization (Ripper):
Global REP:

1. revise (grow/prune) considering
reduced error on the whole
set.

2. If uncovered positives, add rules.

To Relational
Learning

Done with this Rule.
Add a new one.

Learning Rules CS446-Fall 10 40

Learning Rules Bottom-Up (2)

• Let P be the current set of uncovered positive examples
• Let R be a random sample of s pairs (a, b) from P

• LGGs = {LGG(a,b) | all pairs from R}
• Remove from LGGs ones that cover negative examples

• Let g be the LGG with the greatest positive cover
• Remove from P the examples covered by g (already covered)
• Do while g increases its positive coverage
• Let E be a random sample of s examples from P
• Let LGGs = { LGG(g, e) | e in E} (all candidates cover more positives than g)
• Remove from LGGs ones that cover negative examples
• Let g be the LGG with the greatest positive coverage
• Remove from P the examples covered by g

• Return rule If g then YES

Learning Rules CS446-Fall 10 41

Example: Bottom-UP Rule Learning
(0000 -) (0010 -) (0100 -) (0110 -) (1000 +) (1010 +) (1100 -) (1110 -)
(0001 -) (0011 -) (0101 -) (0111 -) (1001 +) (1011 +) (1101 -) (1111 -)

Learning Rules CS446-Fall 10 42

Example: Bottom-UP Rule Learning
(0000 -) (0010 -) (0100 -) (0110 -) (1000 +) (1010 +) (1100 -) (1110 -)
(0001 -) (0011 -) (0101 -) (0111 -) (1001 +) (1011 +) (1101 -) (1111 -)

g = LGG(1010,1011)= x1 and not(x2) and x3

Learning Rules CS446-Fall 10 43

Example: Bottom-UP Rule Learning
(0000 -) (0010 -) (0100 -) (0110 -) (1000 +) (1010 +) (1100 -) (1110 -)
(0001 -) (0011 -) (0101 -) (0111 -) (1001 +) (1011 +) (1101 -) (1111 -)

g = LGG(1010,1011)= x1 and not(x2) and x3 Does not cover negatives
Cover some of the positives

Learning Rules CS446-Fall 10 44

Example: Bottom-UP Rule Learning
(0000 -) (0010 -) (0100 -) (0110 -) (1000 +) (1010 +) (1100 -) (1110 -)
(0001 -) (0011 -) (0101 -) (0111 -) (1001 +) (1011 +) (1101 -) (1111 -)

g = LGG(1010,1011)= x1 and not(x2) and x3 Does not cover negatives
Cover some of the positives

LGG(g, 1001) = x1 and not(x2)

Learning Rules CS446-Fall 10 45

Example: Bottom-UP Rule Learning
(0000 -) (0010 -) (0100 -) (0110 -) (1000 +) (1010 +) (1100 -) (1110 -)
(0001 -) (0011 -) (0101 -) (0111 -) (1001 +) (1011 +) (1101 -) (1111 -)

g = LGG(1010,1011)= x1 and not(x2) and x3 Does not cover negatives
Cover some of the positives

LGG(g, 1001) = x1 and not(x2)

What if the examples were generated from a DNF

Learning Rules CS446-Fall 10 46

Other Options for Guiding the search of Rules

• Sequential covering is one alternative; can be used when a set of rules is
given or interleaved with a rule search algorithm.

• Relative Frequency: n - the number of examples the rule matches
- the number of these it classifies correctly

• Entropy:
S - the set of examples that match the rule precondition
c - the number of values taken by the target function

- the proportion of examples from S for which the
function takes on the ith value

• Mistake Driven:
reduction in # of mistakes made by the current hypothesis

n
n c

cn

i2

c

1i
i plogpEntropy(S)

ip

Learning Rules CS446-Fall 10 47

Rule Learning vs. Knowledge Engineering
An influential experiment with AQ (Michalsky & Chilausky, 1980)
demonstrated that rule induction from examples can be more efficient
and effective than knowledge engineering (acquiring rules by
interviewing experts)

Data:
Examples of 15 diseases described using 35 feature; 630 total examples
290 most diverse examples were used for training

Performance:
A few minutes training vs 45 hours consultation with experts
(97.6% first rule correct, 100% one rule correct (vs. 72%, 96.9%)

What happens in Larger Domains ?
Many variables? Many rules? Longer rules?

A lot of successful works on “generalized rules” learning (Linear functions)

Does it Work ?

Ripper is currently
one of the best
Rule Learning

Algorithms, and in
some contexts,

competitive with
linear threshold

functions.

Learning Rules CS446-Fall 10 48

• Target concept: Daughter(x,y) (x is a daughter of y)

Relational Learning

• Propositional Rule Learning may result in very specific rules:
If (father(1) = Bob) and (Name(2)= Bob) and (m/f(1)=f)
then True

• Too specific to be useful

• examples: (names are unique identifiers)
(name, mother, father, m/f; name, mother, father, m/f ; label)

E.g,: (Sharon, Louise, Bob,f; Bob, Nora, Victor,m; True)

• We want something like:
If father(y,x) and female(x)
then daughter (x,y)

where x, y are variables that can be bound to any person

Learning Rules CS446-Fall 10 49

Grandfather(x,y) = father(x,z) & father (z,y)

Learning Rules CS446-Fall 10 50

• More generally:
If father(y,z) and mother(z,x) and female(x)
then granddaughter (x,y)

where x, y,z are variables; z appears in the precondition,
but not in the postcondition
(z is existentially quantified)

• We may even want to use the same predicates in the
precondition and in the postcondition

if Parent(x,y) then Ancestor(x,y)
if Parent(x,z) and Ancestor(z,y) then Ancestor(x,y)

yielding a recursive definition
More powerful representation language; how about learning?

Relational Learning - cont.

Learning Rules CS446-Fall 10 51

• Traditionally, this work was done in a sub-field of Machine Learning
called Inductive Logic Programming (ILP) and focused on trying to
learn Logical Definitions (Prolog Programs)

• More recently, work in this area is called Statistical Relational
Learning, although this term is loaded and is used for more than just
dealing with “relational domains”.
• Key idea: often you want to, or have to abstract over feature values.

• In some problems this is necessary; in some impossible

• We will:
• Show a few examples to illustrate the need [Some NLP examples at the end]
• Exemplify one ILP algorithm
• Comment on when/why these learning techniques are needed.

• Possible area for a class project (next time)

Work on Relational Learning

Learning Rules CS446-Fall 10 52

• More generally:
If father(y,z) and mother(z,x) and female(x)
then granddaughter (x,y)

where x, y,z are variables; z appears in the precondition,
but not in the postcondition
(z is existentially quantified)

• We may even want to use the same predicates in the
precondition and in the postcondition

if Parent(x,y) then Ancestor(x,y)
if Parent(x,z) and Ancestor(z,y) then Ancestor(x,y)

yielding a recursive definition

Relational Learning - cont.

Learning Rules CS446-Fall 10 53

• Examples may be represented using relations
• Concepts may be relational

• Basic building blocks: literals - predicates applied to terms
father(Bob,Sharon), not-married(x), greater_than(age(Sharon),20)

• Inductive Logic Programming:
Induce a disjunction of (Horn) clauses (If-then rules) definitions
for some target predicate P

• Given background predicates

Relational Learning and ILP

k21 L...LLP

Learning Rules CS446-Fall 10 54

• Inductive Logic Programming:
Induce a Horn-clause definition for some target predicate P
given definition of background predicates

Goal: Find syntactically simple definition D for P such that
given background definitions B
For every positive example p : D together with B imply p
For every negative example n : D together with B do not imply n

Background Definitions can be provided
- Extensionally: List of ground literals
- Intensionally: Horn definition of the predicate

Relational Learning and ILP

• Usually there is no distinction between examples and background
knowledge, and everything is given extensionally. (List of facts)

Learning Rules CS446-Fall 10 55

• Top down sequential covering algorithm,
adapted for Prolog clauses without functions

• Learn-one-Rule: General to specific search, extended to accommodate
first order rules

• Rules are extensions of Horn; allow negative literals in the antecedent

• Background (examples) provided extensionally
This is how we learn what predicates are available
father(Bob,Sharon), mother(Louisa, Sharon), female(Sharon)

Positive examples are those literals in which the target predicate is True
Negative examples are provided using the closed world assumption

FOIL

Learning Rules CS446-Fall 10 56

Let P be the set of positive examples.
• Until P is empty do:

- Learn a new rule R that covers a large number of positives
w/o covering any negatives.
- Let A={} be a set of preconditions (predicts Target with no precondition)
- Let N be the set of all negative examples
- Until N is empty do

(Add a new literal to specialize R)
* Generate candidate literals for R

L= Best Literal = argmax Gain(Lit, P, N)
* Add L to A
* Remove from P examples that do not satisfy L (will not be covered)
* Remove from N examples that do not satisfy L (already rejected)

- Add R to the list of the learned rules
- Update the set P : Remove positives covered by R and from P

• Return the list of learned rules

FOIL - Algorithm

Learning Rules CS446-Fall 10 57

• Background provided extensionally
This is how we learn what predicates are available
father(Bob,Sharon), mother(Louisa, Sharon), female(Sharon),

• Initialization:
Most general target predicate

granddaughter (x,y) <------
• Possible specializations of a clause:

consider literals that fit one of the following forms:
Q(x,y,z…), not-Q(x,y,z…), (x=y), not(x=y)

where Q is a predicate (known from the background information)
x,y,x,… are variables. All but one must already exist in the clause

Candidate additions to the rule precondition:
father(x,y), mother(x,y), father(x,z), female(y), equal(x,y), (and negations)

Search in FOIL

Learning Rules CS446-Fall 10 58

• At every step FOIL considers all known literals plus additional literals
that are generated with a new variable
If we have considered:
father(x,y), mother(x,y), father(x,z), female(y), equal(x,y), (and negations)
we will consider now also:
father(x,w), mother(x,w), father(w,z), father(z,w)…

At some point in the search we will generate the rule
granddaughter(x,y) <---- father(y,z) and mother(z,x) and female(x)

which covers all the positive examples and none of the negatives.
If there are remaining positive examples to be covered, then we begin
at this point a search for a new rule.

Search in FOIL (2)

Learning Rules CS446-Fall 10 59

• At every step FOIL considers all known literals plus additional literal
that are generated with a new variable
If we have considered:
father(x,y), mother(x,y), father(x,z), female(y), equal(x,y), (and negations)
we will consider now also:
father(x,w), mother(x,w), father(w,z), father(z,w)…

At some point in the search we will generate the rule
granddaughter(x,y) <---- father(y,z) and mother(z,x) and female(x)

which covers all the positive examples and none of the negatives.
If there are remaining positive examples to be covered, then we begin
at this point a search for a new rule.

Works since: The relational rule holds in the data.
We search exhaustively.

Search in FOIL (2)

Learning Rules CS446-Fall 10 60

At some point in the search we will generate the rule
granddaughter(x,y) <---- father(y,z) and mother(z,x) and female(x)
which covers all the positive examples and none of the negatives.
If there are remaining positive examples to be covered, then we begin
at this point a search for a new rule.

Works since: The relational rule holds in the data.
We search exhaustively.

Note that (Search in FOIL (2))

• In some sense, this is very similar to propositional learning
y

A and B and C

In an example (A= ,B= ,C= ,D= ,E= ,……;y) a proposition is either T or F

father(x,y) is also either T or F in an example but, possibly, several
things could make it T. (E.g., father(Bob, Sharon),….)
• Problems are introduced when evaluating existential expressions.

Learning Rules CS446-Fall 10 61

• All possible bindings are considered when generating candidate literals
GrandDaughter(Sharon,Victor) Father(Bob,Sharon), Father(Bob,Tom)
Father(Victor,Bob), Female(Sharon)

Closed World Assumption: Any literal involving the predicate GrandDaughter,
Father, or Female and contains the constants above is FALSE unless in the list

Starting with: granddaughter(x,y)
we need to consider any substitution binding x,y to the constants

Some are positive: x/Sharon; y/Victor (since GrandDaughter(Sharon,Victor))
and some negative: x/Bob; y/Victor

Search in FOIL (3)

• Here we have 15 Negative bindings and 1 positive
• New variables -- more bindings --- (|V|**|constants|)

Learning Rules CS446-Fall 10 62

•Consider a rule R and a new literal L
Gain(L, R) :

• Let N be the number of negative bindings of R
• Let N * be the number of negative bindings of R with the addition of L
• Let P be the number of positive bindings of R
• Let P* be the number of positive bindings of R with the addition of L
• Let P+ be the number of positive examples of R that are still covered when

adding L

Search in FOIL (4): Choosing Literals

NP
P

log -
*N*P

*P
logP

Learning Rules CS446-Fall 10 63

Example
• Finding a path in a directed acyclic graph

2
4

1

5

3 6

Learning Rules CS446-Fall 10 64

Example-2
• Finding a path in a directed acyclic graph
• path(x,y):-edge(x,y)
• path(x,y):-edge(x,z),path(z,y) 2

4

1

5

3 6

• edge(1,2), edge(1,3),edge(3,6),edge(4,2),edge(4,6),edge(6,5)

• path(1,2),path(1,3),path(1,6),path(1,5),path(3,6),
path(3,5), path(4,2),path(4,6),path(4,5),path(6,5)

Negative examples can be provided directly or with the closed
world assumption

Learning Rules CS446-Fall 10 65

Example-3

2
4

1

5

3 6

Positive Examples: (written as bindings (x,y))
(1,2), (1,3), (1,6), (1,5), (3,6),
(3,5), (4,2), (4,6), (4,5), (6,5)

Negative examples;

Start with empty rule:
path(x,y):-

Consider adding literal edge(x,y)
(also consider edge(y,x), edge(x,z),edge(z,x),path(y,x),path(x,z),path(z,x),
x=y and negations)

Learning Rules CS446-Fall 10 66

Example-4

2
4

1

5

3 6

Positive Examples:
(1,2), (1,3), (1,6), (1,5), (3,6),
(3,5), (4,2), (4,6), (4,5), (6,5)

Negative examples;

The rule:

path(x,y):- edge(x,y)

Covers 6 positive examples and no negative example

(We know that since we have a list of bindings for edge(x,y)

Learning Rules CS446-Fall 10 67

Example-5

2
4

1

5

3 6

Positive Examples:
(1,2), (1,3), (1,6), (1,5), (3,6),
(3,5), (4,2), (4,6), (4,5), (6,5)

Negative examples;

The rule:

path(x,y):- edge(x,y)

Covers 6 positive examples and no negative example.
Done with the internal process -- found a good rule.
We start with this rule and remove covered examples

NP
P

log -
*N*P

*P
logP

Empty Rule: (P,N)= (10,20)
edge(x,y): (P,N) = (6,0)
edge(y,x): (P,N) = (0,6)

Learning Rules CS446-Fall 10 68

Example-6

2
4

1

5

3 6

Positive Examples:
(1,6), (1,5)
(3,5), (4,5),

Negative examples;
(1,4),(2,1),(2,3),(2,4),(2,5)
(2,6),(3,1),(3,2),(3,4),(4,1)
(4,3),(5,1),(5,2),(5,3),(5,4)
(5,6),(6,1),(6,2),(6,3),(6,4)

Start with a new empty rule:
path(x,y)

Consider literal edge(x,z) (among others)

Learning Rules CS446-Fall 10 69

Example-7

2
4

1

5

3 6

Positive Examples:
(1,6), (1,5)
(3,5), (4,5),

Negative examples;
(1,4),(2,1),(2,3),(2,4),(2,5)
(2,6),(3,1),(3,2),(3,4),(4,1)
(4,3),(5,1),(5,2),(5,3),(5,4)
(5,6),(6,1),(6,2),(6,3),(6,4)

Start with a new empty rule:
path(x,y)

Consider literal edge(x,z) (among others)

Empty Rule: (P,N)= (4,20)
edge(x,y): (P,N) = (0,0)
edge(x,z): (P,N) = ?

NP
P

log -
*N*P

*P
logP

Learning Rules CS446-Fall 10 70

Example-8

2
4

1

5

3 6

Positive Examples:
(1, 6, z), (1, 5, z),
(3, 5, z), (4, 5, z),

Negative examples;
(1,4,z), (2,1,z),(2,3,z),(2,4,z),(2,5,z)
(2,6,z), (3,1,z),(3,2,z),(3,4,z),(4,1,z)
(4,3,z), (5,1,z),(5,2,z),(5,3,z),(5,4,z)
(5,6,z), (6,1,z),(6,2,z),(6,3,z),(6,4,z)

path(x,y):-edge(x,z)

Empty Rule: (P,N)= (4,20)
edge(x,y): (P,N) = (0,0)
edge(x,z): (P,N) = ?

NP
P

log -
*N*P

*P
logP

New rule covers all the 4 remaining positives
but also 10 of the 20 negatives

Learning Rules CS446-Fall 10 71

Example-9

2
4

1

5

3 6

Generate expanded tuples (bindings) (x,y,z)
Positive: (1,6,2), (1,6,3),(1,5,2),(1,5,3)

(3,5,6), (4,5,2),(4,5,6)
Negative:

(1,4,2), (1,4,3)
(3,1,6),(3,2,6),(3,4,6),
(4,1,2),(4,1,6),(4,3,2),(4,3,6),
(6,1,5),(6,2,5),(6,3,5),(6,4,5)

path(x,y):-edge(x,z)

Empty Rule: (P,N)= (4,26)
edge(x,y): (P,N) = (0,0)
edge(x,z): (P,N) = (7,13)

P+ = 4
(note P+P)

NP
P

log -
*N*P

*P
logP

Learning Rules CS446-Fall 10 72

Example-10

2
4

1

5

3 6

Positive Examples:
(1,6), (1,5),
(3,5), (4,5),

Negative examples;
(1,4), (2,1),(2,3),(2,4),(2,5)
(2,6), (3,1),(3,2),(3,4),(4,1)
(4,3), (5,1),(5,2),(5,3),(5,4)
(5,6), (6,1),(6,2),(6,3),(6,4)

path(x,y):-edge(x,z)
New rule covers all the 4 remaining positives but also 10 of the 20
negatives

Learning Rules CS446-Fall 10 73

Example-10

2
4

1

5

3 6

Positive Examples:
(1,6), (1,5),
(3,5), (4,5),

Negative examples;
(1,4), (2,1),(2,3),(2,4),(2,5)
(2,6), (3,1),(3,2),(3,4),(4,1)
(4,3), (5,1),(5,2),(5,3),(5,4)
(5,6), (6,1),(6,2),(6,3),(6,4)

path(x,y):-edge(x,z)
New rule covers all the 4 remaining positives but also 10 of the 20
negatives

Try to specialize the rule

Learning Rules CS446-Fall 10 74

Example-11

2
4

1

5

3 6

Generate expanded tuples (bindings) (x,y,z)
Positive: (1,6,2), (1,6,3),(1,5,2),(1,5,3)

(3,5,6), (4,5,2),(4,5,6)
Negative:

Current Rule:
(1,4,2), (1,4,3) path(x,y):-edge(x,z)
(3,1,6),(3,2,6),(3,4,6),
(4,1,2),(4,1,6),(4,3,2),(4,3,6),
(6,1,5),(6,2,5),(6,3,5),(6,4,5)

Consider literal path(z,y)
(as well as edge(x,y),edge(y,z)edge(x,z),path(z,x) etc.)

Learning Rules CS446-Fall 10 75

Example-12

2
4

1

5

3 6

Generate expanded tuples (bindings) (x,y,z)
Positive: (1,6,2), (1,6,3),(1,5,2),(1,5,3)

(3,5,6), (4,5,2),(4,5,6)
Negative:

(1,4,2), (1,4,3)
(3,1,6),(3,2,6),(3,4,6),
(4,1,2),(4,1,6),(4,3,2),(4,3,6),
(6,1,5),(6,2,5),(6,3,5),(6,4,5)

Current rule: path(x,y) : - edge(x,z), path(z,y)

No negative covered. Complete clause.

Learning Rules CS446-Fall 10 76

Example-12

2
4

1

5

3 6

Generate expanded tuples (bindings) (x,y,z)
Positive: (1,6,2), (1,6,3),(1,5,2),(1,5,3)

(3,5,6), (4,5,2),(4,5,6)
Negative:

(1,4,2), (1,4,3)
(3,1,6),(3,2,6),(3,4,6),
(4,1,2),(4,1,6),(4,3,2),(4,3,6),
(6,1,5),(6,2,5),(6,3,5),(6,4,5)

Current rule: path(x,y) : - edge(x,z), path(z,y)
Not all the bindings are satisfied now, but all positive examples are.
Since we cover all positive examples, the definition (using two rules)
is complete

Learning Rules CS446-Fall 10 77

More FOIL

• Limitations:
Search space for literals can become intractable
Hill climbing search
Background literals must be sufficient (methods for predicate inventions)
In principle: evaluating the body of the rule is intractable (subsumption)
In some applications there is a need for a mix of relational and
ground literals.

• Applications:
Learning Family relations (comparison with Neural Networks)
Text categorization based on words and their ordering relations
Classifying web pages based on the link structure
Learning to take actions
Significant success in computational chemistry

Learning Rules CS446-Fall 10 78

At some point in the search we will generate the rule
granddaughter(x,y)

father(y,z) and mother(z,x) and female(x)

which covers all the positive examples and none of the negatives.
If there are remaining positive examples to be covered, then we begin
at this point a search for a new rule.

Works since: The relational rule holds in the data.
We search exhaustively.

Note that (Search in FOIL (2))

• In some sense, this is very similar to propositional learning
y

A and B and C

In an example (A= ,B= ,C= ,D= ,E= ,……;y) a proposition is either T or F

father(x,y) is also either T of F in an example but, possibly, several
things could make it T. (E.g., father(Bob, Sharon),….)
• Problems are introduced when evaluating existential expressions.

Learning Rules CS446-Fall 10 79

Propositionalization

•

aunt(x,z) =
wife(x,y)^uncle(y,z) or sister(x,y)^father(y,z)

Can we make this a propositional learning problem?

Learning Rules CS446-Fall 10 80

Notes

• Relational Learning
The learning process is essentially propositional --
the ground literals are used in the learning process.

• Generalization:
Done on the relational level as well as the functional level

path(x,y)

path(1,y) path (x,3) path(3,y) ……..

path(1,2), path(1,3), path(1,6), path(1,5), path(3,6),path (3,5),path(4,2)…

• Scaling up:
Is a major issue

Learning Rules CS446-Fall 10 81

1. Instead of a rule representation

Propositionalization

f(x)]y))(x,y)(x,y,(x,[R 21
We use generalized rules:

f(x)])y)](x,wy)(x,[wy,(x,[R 2211 1
• More expressive; Easier to learn

2.

Restrict to Quantified Propositions

f(x)]]))y(x,c,y(w))y(x,c,y([wx,[R' 22221111 1

• Allows use of Propositional Algorithms; but more
predicates are required to maintain expressivity

Single predicate
in scope

Learning Rules CS446-Fall 10 82

Restricting to using quantified proposition
f(x)])))y(x,c,y())y(x,c,y((x,[R' 222111 R

Expressivity
f(x)]y))(x,cy)(x,cy,(x,[R 21

y)](x,f') y)(x,cy)(x,c (y,x,['R' 21

f(x)]) y)(x,f' y,(x,[R

can be overcome using new predicates (features)

Learning Rules CS446-Fall 10 83

Why Quantified Propositions?
Allow different parts of the program’s conditions to
be evaluated separately from others.

f(x)])))y(x,c,y())y(x,c,y((x,[R' 222111

this)x(Sentence,

) y)c(x,y,(

Given a sentence -
binding of x determines the example

Given a binding -
is assigned a single binary value

Yes Yes No
) y)(x,cy,(2) y)(x,cy,(1) y)(x,cy,(8

Learning Rules CS446-Fall 10 84

Why Quantified Propositions?
Allow different parts of the program’s condition to
be evaluated separately from others.

For each x: the sentence is mapped into a
collection of binary features in the relational space

this)x(Sentence,

Yes Yes No
) y)(x,cy,(2) y)(x,cy,(1) y)(x,cy,(8

f(x)])))y(x,c,y())y(x,c,y((x,[R' 222111

Learning Rules CS446-Fall 10 85

At some point in the search we will generate the rule
granddaughter(x,y)

father(y,z) and mother(z,x) and female(x)

which covers all the positive examples and none of the negatives.

Note that (Search in FOIL (2))

This can be achieved using a propositional learning algorithm if the
Features are FUNCTIONS of the primitive predicates.

The feature space may become very large – but these features
are touched anyhow by the relational learning algorithm

Details: [Cumby&Roth, 99, 01; Roth&Yih’01;other propositionalization papers]

Learning Rules CS446-Fall 10 86

Feature Extraction
Features of the type listed below are extracted from the example segment on the left; the binding of the left most feature type is

emphasized on the example segment.

FE

country

nationality

meeting

participant

Country

Country
name(iraq)

feature types

feature vector = list of active
substructures(descriptions)

city

person

date
month(April)
year(2001)

country

meeting

participant

location time

name(Iraq)

affiliationnationality

name(Prague)

organization

Structured Example
Segment

participant

time nationality

meeting

country
name(Iraq)

year(2001)

Attributes (node labels)
Roles (edge labels)

Country=Iraq

nationality
Country

name(iraq)

=1, =1,…()

Learning Rules CS446-Fall 10 87

Summary: Learning Rules and ILP

• A sequential covering algorithm learns a disjunctive set of rules
- A greedy algorithm for learning rule sets
- (different from the “simultaneous” covering of ID3)

• A variety of methods can be used to learn a single rule:
- General to specific search
- Specific to general (LGG) search
- Various statistical measures may guide the search

• Sets of First Order Rules:
- Highly expressive representation
- Extend search techniques from propositional to first-order (FOIL)
- A few systems exist both for propositional and first order learning

• Active research area: mostly via propositialization

Learning Rules CS446-Fall 10 88

When is ILP usefull?

• ILP is a good choice whenever
– relation among considered objects have to be taken into account
– the training data have no uniform structure (some objects are

described extensively, other are mentioned in several facts only)
– there is extensive background knowledge which should be used for

construction of hypothesis

• Key: Good when concise descriptions are good enough
– No need for a lot of propositional (lexical) information

– Has been successful in some domains: Bioinformatics, medicine, ecology
– Needs work: better algorithms

Learning Rules CS446-Fall 10 89

Structured Domain

join

John

will

the

board as

adirector 2G

afternoon, Dr. Ab

C …in Ms. De. F class..

[NP Which type] [PP of] [NP submarine] [VP was bought]
[ADVP recently] [PP by] [NP South Korea] (. ?)

S = John will join the board as a director
1G

Word=
POS=
IS-A=
…

Additional Examples of Relational Domains

Learning Rules CS446-Fall 10 90

The boy ran away quickly

Learning Rules CS446-Fall 10 91

Subject(x) = F(after(x,verb),before(x,determiner), noun(x)…..)

Relational Learning
The theory presented claims that the algorithm runs...

[The theory presented claims] that [the algorithm runs]

• Real world data is stored in relational form:
P is a faculty in department D
S is a student in Department D
P is an advisor of S

• Is there are need to know the names of the people to say something useful?

• Web page classification, e.g, classify Professors pages
– Assume that you learn on Computer Science web pages?
– Will it work on Physics web pages?

Want to exploit relational information when learning

Learning Rules CS446-Fall 10 92

Structured Domain

• Learn labels on nodes and edges
• Have hypotheses that depends on the

structure

1

31

SpellingPOS...Label

Label-1Label-2...Label-n

2 3

3232

2312

13

Learning Rules CS446-Fall 10 93

before

person
name(“Mohammed Atta”)

gender(male)

city

person

date
month(April)
year(2001)

country

Text: Mohammed Atta met with an Iraqi intelligence agent in Prague in April 2001.

meeting
participantparticipant

location time

name(Iraq)

affiliationnationality

after word(an)
tag(DT)

word(intelligence)
tag(NN)

word(Iraqi)
tag(JJ)

before beforebefore ...
...

after after after

country
name(“Czech Republic”) name(Prague)

organization

location

endbegin

Structured Data: Concept Graph Representation

Attributes (node labels)
Roles (edge labels)

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Association Rules
	Basic Concepts: Frequent Patterns and Association Rules
	Learning Rules
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	IREP
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Propositionalization
	Slide Number 80
	Propositionalization
	Expressivity
	Why Quantified Propositions?
	Why Quantified Propositions?
	Slide Number 85
	Feature Extraction�Features of the type listed below are extracted from the example segment on the left; the binding of the left most feature type is emphasized on the example segment.
	Slide Number 87
	Slide Number 88
	Structured Domain
	Slide Number 90
	Slide Number 91
	Structured Domain
	Structured Data: Concept Graph Representation

