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• If-Then Rules are a standard knowledge representation that has proven
useful in building expert systems

if (Outlook = overcast)                                then Play_Tennis = YES
if (Outlook = sunny)    

 
(Humidity =  high) then Play_Tennis = No

• Relatively easy for people to understand 
• Useful in providing insight and understanding of the regularities in the data

Learning Rules
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• If-Then Rules are a standard knowledge representation that has proven
useful in building expert systems

if (Outlook = overcast)                                then Play_Tennis = YES
if (Outlook = sunny)  

 
(Humidity =  high) then Play_Tennis = No

• Relatively easy for people to understand 
• Useful in providing insight and understanding of the regularities in the data
• There are  a number of methods for inducing sets of rules from data

• Rule learning methods can be extended to handle relational representations
(first-order-representations; inductive logic programming)

if Parent(x,y)                                then Ancestor(x,y)
if Parent(x,z) 

 
Ancestor(z,y)     then Ancestor(x,y) 

Learning Rules

Grandfather(x,y) = father(x,z) & father (z,y) 
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Example: Relational Learning 
Inductive Logic Programming

• Finding a path in a directed acyclic graph

• What is the definition of a path?

• Definition in terms of what?

• If you want to learn this definition, what will the input be?
• How will it be applied later? 

2
4

1

5

3 6

• Today:
• Some Background 
• The difficulties in Learning Rules 

• Learning Sets of Rules
• Rule Learning Algorithm(s)
• Generalization to relational Learning 
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• Set of Rules:

Knowledge Representation

2k21

1m21

CY...YY

or..
CX...XX





• Disjunctive Rules: 

DNF: Disjunction of all rules with YES as a consequent

• Ordered set of Rules:

Decision Lists:           If  (Condition-1)    then C
Else  if  (Condition-2)    then  D

……
Else                               0
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Association Rules

• In the context of Data Mining the search is for rules that 
represent regularities in the data

• Frequent pattern: pattern that occurs frequently in a 
database 

• Motivation: finding regularities in data
– What products are often purchased together? Beer & diapers?!

– What are the subsequent purchases after buying a PC?

• The goal is not to learn a classifier
– Consequently, very simple conceptually (but tricky to scale up)
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Basic Concepts: Frequent Patterns and 
Association Rules

• Itemset X={x1 , …, xk }
• Find all the rules XY with min 

confidence and support
– support, s, fraction of examples that 

contain both X and Y 
– confidence, c, fraction of examples 

that contain X that also contain Y. 

Let  min_support = 50%,    
min_conf  = 50%:

A  C  (s,c) = (50%, 66.7%)
C  A  (s,c) = (50%, 100%)

Customer
buys diaper

Customer
buys both

Customer
buys beer

Transaction-id Items bought
10 A, B, C
20 A, C
30 A, D
40 B, E, F
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Learning Rules

• We will view Rule Learning in the context of Classification. 
The goal is to represent a function (Boolean function; multi- 
value function) as a collection of rules.

• As the example of Data Mining shows, rules can be useful for 
other things. For example, it is possible to view them as 
features, to be used by other learning algorithms.

What does it mean?
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Learning Rules
• Translate decision trees into rules (C4.5) 
• Sequential (set) covering algorithms

- General to Specific (top down)    (CN2, FOIL)
- Specific to General (bottom up)   (GOLEM)
- Hybrid search                               (AQ, Progol)

But other algorithms may be viewed as learning (generalized) rules
(E.g., linear separators)

All the discussion today is algorithmic – given a collection of points, find a set 
of rules that is consistent with it. The hope is that this set of rules will also be 
okay in the future…
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1. Decision Trees to Rules
Color

Blue GreenRed

YesShape No

TriangleCircle
No Yes

Square
Yes

For each path in the decision tree create a rule
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Decision Trees to Rules

NoCircleRed 

Color

Blue GreenRed

YesShape No

TriangleCircle
No Yes

Square
Yes

YesSquareRed 
YesTriangleRed 

YesBlue 
NoGreen 
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Decision Trees to Rules
Color

Blue GreenRed

YesShape No

TriangleCircle
No Yes

Square
Yes

YesSquareRed 
YesTriangleRed 

YesBlue 

In case of a Boolean Function:
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Decision Trees to Rules
Color

Blue GreenRed

B Shape C 

TriangleCircle
A C 

Square
B 

In the general case:

ACircleRed 
BSquareRed 
CTriangleRed 

BBlue 
CGreen 
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Decision Trees to Rules
Color

Blue GreenRed

B Shape C 

TriangleCircle
A C 

Square
B 

• Resulting rules may contain unnecessary antecedents that are not needed to 
eliminate negative examples or that result in overfitting the data (same as in 
Decision Trees)
• Post-prune the rules using MDL, cross-validations or related methods
• After Pruning, rules may conflict (fire together and assign different categories 
to a single novel test instances).                              (unlike Decision Trees)

In the general case:

ACircleRed 
BSquareRed 
CTriangleRed 

BBlue 
CGreen 
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Decision Trees to Rules
Color

Blue GreenRed

B Shape C 

TriangleCircle
A C 

Square
B 

• Resulting rules may contain unnecessary antecedents that are not needed to 
eliminate negative examples or that result in overfitting the data.
• Post-prune the rules using and MDL, cross-validations or related methods
• After Pruning, rules may conflict (fire together and assign different categories 
to a single novel test instances).                              (unlike Decision Trees)

In the general case:

ACircleRed 
BSquareRed 
CTriangleRed 

BBlue 
CGreen 

ACircleRed  BBigRed 
Test Case: (big, red, circle)
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Decision Trees to Rules
Color

Blue GreenRed

YesShape No

TriangleCircle
No Yes

Square
Yes

YesSquareRed 
YesTriangleRed 

YesBlue 

Solution:
• Sort rules by observed accuracy on the training data; treat the rules as an 

ordered set.        

E.g: Decision list: If, Then, else
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2. Why isn’t it trivial?
The Current Best Learning Algorithm

Day    Outlook    Temperature      Humidity    Wind PlayTennis

1       Sunny            Hot              High          Weak   No
2       Sunny            Hot              High         Strong  No
3       Overcast        Hot              High          Weak    Yes
4       Rain              Mild              High          Weak Yes
5       Rain              Cool             Normal       Weak   Yes
6       Rain              Cool             Normal      Strong  No
7       Overcast        Cool             Normal      Strong    Yes 
8       Sunny            Mild             High          Weak   No
9       Sunny            Cool             Normal      Weak     Yes
10      Rain              Mild              Normal      Weak    Yes 
11      Sunny            Mild              Normal     Strong    Yes
12      Overcast        Mild              High         Strong   Yes
13      Overcast         Hot              Normal     Weak       Yes
14      Rain               Mild              High        Strong No 
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The Current Best Learning Algorithm
Day    Outlook    Temperature      Humidity    Wind PlayTennis

4       Rain              Mild              High          Weak Yes
5       Rain              Cool             Normal       Weak   Yes
6       Rain              Cool             Normal      Strong  No
7       Overcast        Cool             Normal      Strong    Yes 
8       Sunny            Mild             High          Weak   No
9       Sunny            Cool             Normal      Weak     Yes

H=rain,mild,high,weakyes

H=rain, *     ,  *    ,weakyes; (overcast,cool,normal,strong)  Yes

H=rain, *     ,  *    ,weakyes
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The Current Best Learning Algorithm

•H: Any hypothesis consistent with the first example in Examples

• For each remaining example e in Examples
• If e  is false  positive for H (it is  negative, H says it’s positive)

• H : a specialization of H that is consistent with Examples
• Else if e is false negative for H (it is positive, H says it’s negative)

• H : a generalization  of H that is consistent with Examples
• If no consistent specialization/generalization can be found

• Fail;
• return H

• The Algorithm needs to choose generalizations and specializations 
(there may be several). If it gets into trouble it has to backtrack to an 
earlier decision or otherwise it fails. 
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The Current Best Learning Algorithm
Learn the rule structure and the set of rules simultaneously, greedily.

• Generalization: 
• Remove a conjunct       (sunny and normal      to        sunny)
• Add a disjunct               (sunny                          to        sunny or cool)

• Specialization:
• Add a conjunct
• Remove a disjunct

When to add and when to remove?
Credit Assignment problem

True Concept

Specifically: Rule construction; Set selection

Difficulties
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3. Learning Rules as Set Cover
• Assume you are given a set of rules, and only needs to find a list
that classifies correctly all the examples. 

• Set Cover Problem: X - a set of elements
F: a family of subsets of X, such that 

FS
SX





• X - set of positive examples
• F - Collection of rules that cover only positive examples
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• Assume you are given a set of rules, and only needs to find a list
that classifies correctly all the examples. 

• Set Cover Problem: X - a set of elements
F: a family of subsets of X, such that 

FS
SX





• X - set of positive examples
• F - Collection of rules that cover only positive examples

Learning Rules as Set CoverSet of Rules
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• Assume you are given a set of rules, and only needs to find a list
that classifies correctly all the examples. 

• Set Cover Problem: X - a set of elements
F: a family of subsets of X, such that 

FS
SX





• X - set of positive examples
• F - Collection of rules that cover only positive examples

• The problem of finding 
a minimal set cover is 
NP-Complete

Learning Rules as Set Cover

• Good greedy 
approximation algorithm

• Can we find F?
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Learning Rules with Sequential Covering
• A set of rules is learned one at a time
• Each time: use best rule:

Rule that covers a large number of positives examples without covering
any negatives;  then, go on with the remaining positive examples.

• Let P be the set of positive examples.
• Until P is empty do:

- Choose a rule R that covers a large number of positives
w/o covering any negatives. 

- Add R to the list of the learned rules
- Remove positives covered by R and from P

• What is the interpretation of this set of rules (I.e., how to use it) ? 
• Minimum set cover is NP-Hard. The greedy algorithm is a good approximation.

• Remaining problem: How to learn a single rule  ?
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4. Learning A Single Rule Top-Down
YES.X...XX A,X k21i 

(will not be covered)
(already rejected)

• A Top-Down (general to specific) approach starts with an empty rule 
and greedily adds antecedents, one at a time, that eliminate negative 
examples while maintaining coverage of positives as much as possible.

• Algorithms based on FOIL (Quinlan, 1990)

• Let  A={}
• Let N be the set of all negative examples 
• Let P be the current set of uncovered positive examples 
• Until N is empty do  

- For every feature-value pair (literal)  L = (f=v )  compute:
Gain(f=v, P, N)

- Pick a literal, L = (f=v ) with highest Gain
- Add L to A
- Remove from P examples that do not satisfy L 
- Remove from N  examples that do not satisfy L 

Return the conjunction of all literals in A

L
{}

Different from 
homework?

Single Rule
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The Gain Metric

• Want to achieve two goals:
- Decrease coverage of negative examples

Measure increase in percentage of positive examples covered
when making the proposed specialization to the current rule

- Maintain coverage of as many positives as possible
Count number of positive examples covered

Gain(L, P, N ) :
• Let N*  be a subset of N  that satisfy the literal L 
• Let P*  be a subset of P that satisfy the literal L    (still covered)
• return:

NP
Plog

 -
*N*P

*Plog
*P





Learning Rules CS446-Fall 10 26

Example: Top Down Rule Learning
(000 -)  (001 -)   (010 -)   (011 -)  (100 +)  (101 +)  (110 -)  (111 -)

N*  be a subset of N  that satisfy the literal L 
P*  be a subset of P that satisfy the literal L    (still covered)

NP
Plog

 -
*N*P

*Plog
*P


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Example: Top Down Rule Learning
(000 -)  (001 -)   (010 -)   (011 -)  (100 +)  (101 +)  (110 -)  (111 -)

P=2, N=6
L=x1:    P* =2, N* = 2    Gain = 2 log2 /4 - log2 /8 = 3/8

N*  be a subset of N  that satisfy the literal L 
P*  be a subset of P that satisfy the literal L    (still covered)

NP
Plog

 -
*N*P

*Plog
*P


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Example: Top Down Rule Learning
(000 -)  (001 -)   (010 -)   (011 -)  (100 +)  (101 +)  (110 -)  (111 -)

P=2, N=6
L=x1:    P* =2, N* = 2    Gain = 2 log2 /4 - log2 /8 = 3/8
L=x2:    P* =0, N* = 4    Gain = 0             - log2 /8 = -1/8
L=x3:    P* =1, N* = 3    Gain = 1 log1 /4 - log2 /8 = -1/8

N*  be a subset of N  that satisfy the literal L 
P*  be a subset of P that satisfy the literal L    (still covered)

NP
Plog

 -
*N*P

*Plog
*P


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Example: Top Down Rule Learning
(000 -)  (001 -)   (010 -)   (011 -)  (100 +)  (101 +)  (110 -)  (111 -)

P=2, N=6
L=x1:    P* =2, N* = 2    Gain = 2 log2 /4 - log2 /8 = 3/8
L=x2:    P* =0, N* = 4    Gain = 0             - log2 /8 = -1/8
L=x3:    P* =1, N* = 3    Gain = 1 log1 /4 - log2 /8 = -1/8

First literal chosen is x1

N*  be a subset of N  that satisfy the literal L (already rejected)
P*  be a subset of P that satisfy the literal L    (still covered)

NP
Plog

 -
*N*P

*Plog
*P


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Example: Top Down Rule Learning
(000 -)  (001 -)   (010 -)   (011 -)  (100 +)  (101 +)  (110 -)  (111 -)

P=2, N=6
L=x1:    P* =2, N* = 2    Gain = 2 log2 /4 - log2 /8 = 3/8
L=x2:    P* =0, N* = 4    Gain = 0             - log2 /8 = -1/8
L=x3:    P* =1, N* = 3    Gain = 1 log1 /4 - log2 /8 = -1/8

First literal chosen is x1
(100 +)  (101 +)  (110 -)  (111 -)
P=2, N=2

N*  be a subset of N  that satisfy the literal L (already rejected)
P*  be a subset of P that satisfy the literal L    (still covered)

NP
Plog

 -
*N*P

*Plog
*P


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Example: Top Down Rule Learning
(000 -)  (001 -)   (010 -)   (011 -)  (100 +)  (101 +)  (110 -)  (111 -)

P=2, N=6
L=x1:    P* =2, N* = 2    Gain = 2 log2 /4 - log2 /8 = 3/8
L=x2:    P* =0, N* = 4    Gain = 0             - log2 /8 = -1/8
L=x3:    P* =1, N* = 3    Gain = 1 log1 /4 - log2 /8 = -1/8

First literal chosen is x1
(100 +)  (101 +)  (110 -)  (111 -)
P=2, N=2
L=x2:         P* =0, N* = 2    Gain = 0             - log2 /4 = -1/4
L=x3:         P* =1, N* = 1    Gain = 1 log1 /2 - log2 /4 = -1/4
L=not(x2)  P* =2, N* = 0    Gain = 2 log2 /2 - log2 / 4=1-1/4

N*  be a subset of N  that satisfy the literal L (already rejected)
P*  be a subset of P that satisfy the literal L    (still covered)

NP
Plog

 -
*N*P

*Plog
*P


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Example: Top Down Rule Learning
(000 -)  (001 -)   (010 -)   (011 -)  (100 +)  (101 +)  (110 -)  (111 -)

P=2, N=6
L=x1:    P* =2, N* = 2    Gain = 2 log2 /4 - log2 /8 = 3/8
L=x2:    P* =0, N* = 4    Gain = 0             - log2 /8 = -1/8
L=x3:    P* =1, N* = 3    Gain = 1 log1 /4 - log2 /8 = -1/8

First literal chosen is x1
(100 +)  (101 +)  (110 -)  (111 -)
P=2, N=2
L=x2:         P* =0, N* = 2    Gain = 0             - log2 /4 = -1/4
L=x3:         P* =1, N* = 1    Gain = 1 log1 /2 - log2 /4 = -1/4
L=not(x2)  P* =2, N* = 0    Gain = 2 log2 /2 - log2 / 4=1-1/4
we have learned:   x1 and not(x2) 

N*  be a subset of N  that satisfy the literal L (already rejected)
P*  be a subset of P that satisfy the literal L    (still covered)

NP
Plog

 -
*N*P

*Plog
*P


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Example: Top Down Rule Learning
(000 -)  (001 -)   (010 -)   (011 -)  (100 +)  (101 +)  (110 -)  (111 -)

P=2, N=6
L=x1:    P* =2, N* = 2    Gain = 2 log2 /4 - log2 /8 = 3/8
L=x2:    P* =0, N* = 4    Gain = 0             - log2 /8 = -1/8
L=x3:    P* =1, N* = 3    Gain = 1 log1 /4 - log2 /8 = -1/8

First literal chosen is x1
(100 +)  (101 +)  (110 -)  (111 -)
P=2, N=2
L=x2:         P* =0, N* = 2    Gain = 0             - log2 /4 = -1/4
L=x3:         P* =1, N* = 1    Gain = 1 log1 /2 - log2 /4 = -1/4
L=not(x2)  P* =2, N* = 0    Gain = 2 log2 /2 - log2 / 4=1-1/4
we have learned:   x1 and not(x2) 

What if the examples were generated from a DNF?
N*  be a subset of N  that satisfy the literal L (already rejected)
P*  be a subset of P that satisfy the literal L    (still covered)

NP
Plog

 -
*N*P

*Plog
*P


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Other General-to-Specific Methods

• As In ID3
- Follow only the most promising branch at every step.

- Choose best attribute to split on
for each value, choose one of the splits and go on.

- At some point, determine the consequent of the rule 
- Go back to search for the best attribute, but on a different  set of examples
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Other General-to-Specific Methods

• As In ID3
- Follow only the most promising branch at every step.

- Choose best attribute to split on
for each value, choose one of the splits and go on.

- At some point, determine the consequent of the rule 
- Go back to search for the best attribute, but on a different  set of examples

Outlook 

Overcast RainSunny
YesHumidity Wind

NormalHigh
No Yes

WeakStrong
No Yes
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Other General-to-Specific Methods

• As In ID3
- Follow only the most promising branch at every step.

- Choose best attribute to split on
for each value, choose one of the splits and go on.

- At some point, determine the consequent of the rule 
- Go back to search for the best attribute, but on a different  set of examples

•This is a greedy depth-first-search, with no backtracking.
- no guarantee that it will make optimal decision

• Beam search: maintain a list of the k best candidates at each step.
- At each step, generate descendants for each of the k best candidates,

and reduce the resulting set again to the best k
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Summary: Incremental Reduced Error Pruning
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IREP

• Integrates Reduced Error Pruning with a Separate and Conquer 
(Sequential Covering) rule learning algorithm.

• A rule is a conjunction of features; a rule set is a DNF formula.
• Builds up a rule set in a greedy fashion, one rule at a time. 
• After each rule is found, all exemplas covered by it (both P and N) are 

deleted. 
• This process is repeated until there are no more positive examples, or 

until the only rule found has unacceptably large error rate. 

An Integrated Rule Learning Algorithm
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Summary: Incremental Reduced Error Pruning
Two classes

Grow Set, Prune 
Set: Rand(2/3, 1/3)

Repeatedly add the 
feature that 

maximizes FOIL’s 
information gain 

criterion

Rule is immediately pruned 
after being grown. Every 

final sequence of conditions 
is considered; chooses a 
deletion that maximizes 

(p* + (N-N*))/(P+N)
Better (Ripper):

(P*-N*)/(P* + N*)

Better (Ripper):
MDL based stopping 

criterion – stops when the 
last rule adds too much to 

the description length.

Optimization (Ripper):
Global REP: 

1. revise (grow/prune) considering 
reduced error on the whole 
set.  

2. If uncovered positives, add rules. 

To Relational 
Learning

Done with this Rule. 
Add a new one.
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Learning Rules Bottom-Up (2)

• Let P be the current set of uncovered positive examples
• Let R be a random sample of s pairs (a, b) from P

• LGGs = {LGG(a,b) | all pairs from R}
• Remove from LGGs ones that cover negative examples

• Let g be the LGG with the greatest positive cover
• Remove from P the examples covered by g  (already covered)                       
• Do while g increases its positive coverage
• Let E be a random sample of s examples from P
• Let LGGs = { LGG(g, e) | e in E}        (all candidates cover more positives than g)
• Remove from LGGs ones that cover negative examples
• Let g be the LGG with the greatest positive coverage
• Remove from P the examples covered by g

• Return rule If g then YES
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Example: Bottom-UP Rule Learning
(0000 -)  (0010 -)   (0100 -)   (0110 -)  (1000 +)  (1010 +)  (1100 -)  (1110 -)
(0001 -)  (0011 -)   (0101 -)   (0111 -)  (1001 +)  (1011 +)  (1101 -)  (1111 -)
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Example: Bottom-UP Rule Learning
(0000 -)  (0010 -)   (0100 -)   (0110 -)  (1000 +)  (1010 +)  (1100 -)  (1110 -)
(0001 -)  (0011 -)   (0101 -)   (0111 -)  (1001 +)  (1011 +)  (1101 -)  (1111 -)

g = LGG(1010,1011)= x1 and not(x2) and x3
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Example: Bottom-UP Rule Learning
(0000 -)  (0010 -)   (0100 -)   (0110 -)  (1000 +)  (1010 +)  (1100 -)  (1110 -)
(0001 -)  (0011 -)   (0101 -)   (0111 -)  (1001 +)  (1011 +)  (1101 -)  (1111 -)

g = LGG(1010,1011)= x1 and not(x2) and x3         Does not cover negatives
Cover some of the positives
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Example: Bottom-UP Rule Learning
(0000 -)  (0010 -)   (0100 -)   (0110 -)  (1000 +)  (1010 +)  (1100 -)  (1110 -)
(0001 -)  (0011 -)   (0101 -)   (0111 -)  (1001 +)  (1011 +)  (1101 -)  (1111 -)

g = LGG(1010,1011)= x1 and not(x2) and x3         Does not cover negatives
Cover some of the positives

LGG(g, 1001)          = x1 and not(x2)
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Example: Bottom-UP Rule Learning
(0000 -)  (0010 -)   (0100 -)   (0110 -)  (1000 +)  (1010 +)  (1100 -)  (1110 -)
(0001 -)  (0011 -)   (0101 -)   (0111 -)  (1001 +)  (1011 +)  (1101 -)  (1111 -)

g = LGG(1010,1011)= x1 and not(x2) and x3         Does not cover negatives
Cover some of the positives

LGG(g, 1001)          = x1 and not(x2)

What if the examples were generated from a DNF
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Other Options for Guiding  the search of Rules

• Sequential covering is one alternative; can be used when a set of rules is   
given or interleaved with a rule search algorithm.

• Relative Frequency:               n  - the number of examples the rule matches
- the number of these it classifies correctly

• Entropy:
S     - the set of examples that match the rule precondition
c  - the number of values taken by the target function

- the proportion of examples from S for which the 
function takes on the ith value

• Mistake Driven:
reduction in # of mistakes made by the current hypothesis

n
n c

cn

i2

c

1i
i plogpEntropy(S) 





ip
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Rule Learning vs. Knowledge Engineering
An influential experiment with AQ (Michalsky & Chilausky, 1980) 
demonstrated  that rule induction from examples can be more efficient 
and  effective than  knowledge engineering (acquiring rules by 
interviewing experts)

Data:
Examples of 15 diseases described using 35 feature; 630 total examples
290 most diverse examples were used for training

Performance:
A few minutes training vs 45 hours consultation with experts
(97.6%  first rule correct, 100%  one rule correct (vs. 72%, 96.9%)

What happens in Larger Domains ? 
Many variables?  Many rules?  Longer rules? 

A lot of successful works on “generalized rules” learning (Linear functions)

Does it Work ?

Ripper is currently 
one of the best 
Rule Learning 

Algorithms, and in 
some contexts, 

competitive with 
linear threshold 

functions. 
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• Target concept: Daughter(x,y) (x is a daughter of y)     

Relational Learning

• Propositional Rule Learning may result in very specific rules:
If (father(1) = Bob) and (Name(2)= Bob) and (m/f(1)=f)
then True

• Too specific to be useful

• examples:                                  (names are unique identifiers)
(name,       mother,  father, m/f;   name, mother, father, m/f ; label) 

E.g,:     (Sharon, Louise, Bob,f;       Bob, Nora,   Victor,m;  True)

• We want something like:
If father(y,x) and  female(x) 
then daughter (x,y) 

where x, y are variables that can be bound to any person
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Grandfather(x,y) = father(x,z) & father (z,y) 
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• More generally:
If father(y,z)  and  mother(z,x) and female(x) 
then granddaughter (x,y) 

where x, y,z are variables; z appears in the precondition, 
but not in the postcondition
(z is existentially quantified)

• We may even want to use the same predicates in the 
precondition and in the postcondition

if Parent(x,y)                                 then Ancestor(x,y)
if Parent(x,z)  and Ancestor(z,y)     then Ancestor(x,y) 

yielding a recursive definition
More powerful representation language;    how about learning?

Relational Learning - cont.
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• Traditionally, this work was done in a sub-field of Machine Learning 
called Inductive Logic Programming (ILP) and focused on trying to 
learn Logical Definitions (Prolog Programs) 

• More recently, work in this area is called Statistical Relational 
Learning, although this term is loaded and is used for more than just 
dealing with “relational domains”.
• Key idea: often you want to, or have to abstract over feature values.

• In some problems this is necessary; in some impossible

• We will:
• Show a few examples to illustrate the need  [Some NLP examples at the end]
• Exemplify one ILP algorithm
• Comment on when/why these learning techniques are needed. 

• Possible area for a class project (next time)    

Work on Relational Learning
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• More generally:
If father(y,z)  and  mother(z,x) and female(x) 
then granddaughter (x,y) 

where x, y,z are variables; z appears in the precondition, 
but not in the postcondition
(z is existentially quantified)

• We may even want to use the same predicates in the 
precondition and in the postcondition

if Parent(x,y)                                 then Ancestor(x,y)
if Parent(x,z)  and Ancestor(z,y)     then Ancestor(x,y) 

yielding a recursive definition

Relational Learning - cont.
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• Examples may be represented using relations
• Concepts may be relational 

• Basic building blocks: literals - predicates applied to terms
father(Bob,Sharon), not-married(x), greater_than(age(Sharon),20)

• Inductive Logic Programming:
Induce a disjunction of (Horn) clauses (If-then rules) definitions
for some target predicate P

• Given background predicates

Relational Learning and ILP

k21 L...LLP 
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• Inductive Logic Programming:
Induce a Horn-clause definition for some target predicate P
given definition of background predicates

Goal: Find syntactically simple definition D for P  such that
given background definitions B
For every positive  example p :        D  together with B imply p
For every negative  example n :       D  together with B do not imply n

Background Definitions can be provided
- Extensionally: List of ground literals 
- Intensionally: Horn definition of the predicate 

Relational Learning and ILP

• Usually there is no distinction between examples and background
knowledge, and everything is given extensionally. (List of facts)
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• Top down sequential covering algorithm, 
adapted for Prolog clauses without functions

• Learn-one-Rule:  General to specific search, extended to accommodate 
first order rules

• Rules are extensions of Horn; allow negative literals in the antecedent

• Background (examples) provided extensionally
This is how we learn what predicates are available
father(Bob,Sharon), mother(Louisa, Sharon),  female(Sharon)

Positive examples are those literals in which the target predicate is True
Negative examples are provided using the closed world assumption 

FOIL
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Let P be the set of positive examples.
• Until P is empty do:

- Learn a new rule R that covers a large number of positives
w/o covering any negatives. 
- Let  A={}  be a set of preconditions    (predicts Target with no precondition)
- Let N  be the set of all negative examples  
- Until N  is empty do  

(Add a new literal to specialize R)
* Generate candidate literals for R

L= Best Literal =  argmax Gain(Lit, P, N)
*  Add L to A
*  Remove from P examples that do not satisfy L (will not be covered)
*  Remove from N  examples that do not satisfy L   (already rejected)

- Add R to the list of the learned rules
- Update the set P : Remove positives covered by R and from P

• Return the list of learned rules

FOIL - Algorithm
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• Background provided extensionally
This is how we learn what predicates are available
father(Bob,Sharon), mother(Louisa, Sharon),  female(Sharon), 

• Initialization:
Most general target predicate 

granddaughter (x,y) <------
• Possible specializations of a clause:

consider literals that fit one of the following forms:
Q(x,y,z…),  not-Q(x,y,z…), (x=y),  not(x=y)

where Q is a predicate (known from the background information)
x,y,x,… are variables. All but one must already exist in the clause 

Candidate additions to the rule precondition:  
father(x,y), mother(x,y), father(x,z), female(y), equal(x,y), (and negations)

Search in FOIL
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• At every step FOIL considers all known literals plus additional literals
that are generated with a new variable
If we have considered: 
father(x,y), mother(x,y), father(x,z), female(y), equal(x,y), (and negations)
we will consider now also:
father(x,w), mother(x,w), father(w,z), father(z,w)…

At some point in the search we will generate the rule
granddaughter(x,y) <---- father(y,z) and  mother(z,x) and female(x)

which covers all the positive examples and none of the negatives.
If there are remaining positive examples to be covered, then we begin
at this point a search for a new rule.

Search in FOIL (2)
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• At every step FOIL considers all known literals plus additional literal
that are generated with a new variable
If we have considered: 
father(x,y), mother(x,y), father(x,z), female(y), equal(x,y), (and negations)
we will consider now also:
father(x,w), mother(x,w), father(w,z), father(z,w)…

At some point in the search we will generate the rule
granddaughter(x,y) <---- father(y,z) and  mother(z,x) and female(x)

which covers all the positive examples and none of the negatives.
If there are remaining positive examples to be covered, then we begin
at this point a search for a new rule.

Works  since:  The relational rule holds in  the data.
We search exhaustively.

Search in FOIL (2)
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At some point in the search we will generate the rule
granddaughter(x,y) <---- father(y,z) and  mother(z,x) and female(x)
which covers all the positive examples and none of the negatives.
If there are remaining positive examples to be covered, then we begin
at this point a search for a new rule.

Works  since:  The relational rule holds in  the data.
We search exhaustively.

Note that (Search in FOIL (2))

• In some sense, this is very similar to propositional learning
y 

 
A  and  B and C 

In an example (A= ,B= ,C= ,D= ,E= ,……;y) a proposition is either T or F

father(x,y) is also either T or F in an example but, possibly, several
things could make it T. (E.g., father( Bob, Sharon),….)
• Problems are introduced when evaluating existential expressions.
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• All possible bindings are considered when generating candidate literals
GrandDaughter(Sharon,Victor) Father(Bob,Sharon), Father(Bob,Tom)
Father(Victor,Bob), Female(Sharon)

Closed World Assumption: Any literal involving the predicate GrandDaughter,
Father, or Female and contains the constants above is FALSE unless in the list

Starting with: granddaughter(x,y) 
we need to consider any substitution binding x,y to the constants

Some are positive: x/Sharon; y/Victor (since GrandDaughter(Sharon,Victor)) 
and some negative: x/Bob; y/Victor 

Search in FOIL (3)

• Here we have 15 Negative bindings and 1 positive
• New variables -- more bindings  --- (|V|**|constants|) 
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•Consider a rule R and a new literal L
Gain(L, R ) :

• Let N    be the number of negative bindings of R  
• Let N * be the number of negative bindings of R  with the addition of L 
• Let P    be the number of positive bindings of R  
• Let P*  be the number of positive bindings of R  with the addition of L 
• Let P+  be the number of positive examples of R  that are still covered when 

adding L

Search in FOIL (4): Choosing Literals

NP
P

log -
*N*P

*P
logP



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Example
• Finding a path in a directed acyclic graph

2
4

1

5

3 6
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Example-2
• Finding a path in a directed acyclic graph
• path(x,y):-edge(x,y)
• path(x,y):-edge(x,z),path(z,y) 2

4

1

5

3 6

• edge(1,2), edge(1,3),edge(3,6),edge(4,2),edge(4,6),edge(6,5)

• path(1,2),path(1,3),path(1,6),path(1,5),path(3,6),
path(3,5), path(4,2),path(4,6),path(4,5),path(6,5)

Negative examples can be provided directly or with the closed 
world assumption
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Example-3

2
4

1

5

3 6

Positive Examples: (written as bindings (x,y))
(1,2), (1,3), (1,6), (1,5), (3,6),
(3,5), (4,2), (4,6), (4,5), (6,5)

Negative examples;

Start with empty rule:
path(x,y):-

Consider adding literal edge(x,y)
(also consider edge(y,x), edge(x,z),edge(z,x),path(y,x),path(x,z),path(z,x),
x=y and negations)
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Example-4

2
4

1

5

3 6

Positive Examples: 
(1,2), (1,3), (1,6), (1,5), (3,6),
(3,5), (4,2), (4,6), (4,5), (6,5)

Negative examples;

The rule:

path(x,y):- edge(x,y)

Covers 6 positive examples and no negative example

(We know that since we have a list of bindings for edge(x,y)
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Example-5

2
4

1

5

3 6

Positive Examples: 
(1,2), (1,3), (1,6), (1,5), (3,6),
(3,5), (4,2), (4,6), (4,5), (6,5)

Negative examples;

The rule:

path(x,y):- edge(x,y)

Covers 6 positive examples and no negative example.
Done with the internal process -- found a good rule. 
We start with this rule and remove covered examples

NP
P

log -
*N*P

*P
logP




Empty Rule: (P,N)= (10,20)
edge(x,y):   (P,N) =  (6,0)
edge(y,x):   (P,N) =  (0,6)
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Example-6

2
4

1

5

3 6

Positive Examples: 
(1,6), (1,5) 
(3,5), (4,5), 

Negative examples;
(1,4),(2,1),(2,3),(2,4),(2,5)
(2,6),(3,1),(3,2),(3,4),(4,1) 
(4,3),(5,1),(5,2),(5,3),(5,4)
(5,6),(6,1),(6,2),(6,3),(6,4)

Start with a new empty rule: 
path(x,y)

Consider literal edge(x,z)  (among others)
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Example-7

2
4

1

5

3 6

Positive Examples: 
(1,6), (1,5) 
(3,5), (4,5), 

Negative examples;
(1,4),(2,1),(2,3),(2,4),(2,5)
(2,6),(3,1),(3,2),(3,4),(4,1) 
(4,3),(5,1),(5,2),(5,3),(5,4)
(5,6),(6,1),(6,2),(6,3),(6,4)

Start with a new empty rule: 
path(x,y)

Consider literal edge(x,z)  (among others)

Empty Rule: (P,N)= (4,20)
edge(x,y):   (P,N) =  (0,0)
edge(x,z):   (P,N) =  ?

NP
P

log -
*N*P

*P
logP



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Example-8

2
4

1

5

3 6

Positive Examples: 
(1, 6, z), (1, 5, z), 
(3, 5, z), (4, 5, z), 

Negative examples;
(1,4,z), (2,1,z),(2,3,z),(2,4,z),(2,5,z)
(2,6,z), (3,1,z),(3,2,z),(3,4,z),(4,1,z)
(4,3,z), (5,1,z),(5,2,z),(5,3,z),(5,4,z)
(5,6,z), (6,1,z),(6,2,z),(6,3,z),(6,4,z)

path(x,y):-edge(x,z)

Empty Rule: (P,N)= (4,20)
edge(x,y):   (P,N) =  (0,0)
edge(x,z):   (P,N) =  ?

NP
P

log -
*N*P

*P
logP




New rule covers all the 4 remaining positives
but also 10 of the 20 negatives
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Example-9

2
4

1

5

3 6

Generate expanded tuples (bindings) (x,y,z)
Positive:       (1,6,2), (1,6,3),(1,5,2),(1,5,3) 

(3,5,6), (4,5,2),(4,5,6)
Negative:

(1,4,2), (1,4,3)
(3,1,6),(3,2,6),(3,4,6),
(4,1,2),(4,1,6),(4,3,2),(4,3,6),
(6,1,5),(6,2,5),(6,3,5),(6,4,5)

path(x,y):-edge(x,z)

Empty Rule: (P,N)= (4,26)
edge(x,y):   (P,N) =  (0,0)
edge(x,z):   (P,N) =  (7,13)

P+   =  4
(note P+P)

NP
P

log -
*N*P

*P
logP



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Example-10

2
4

1

5

3 6

Positive Examples: 
(1,6), (1,5), 
(3,5), (4,5),

Negative examples;
(1,4), (2,1),(2,3),(2,4),(2,5)
(2,6), (3,1),(3,2),(3,4),(4,1)
(4,3), (5,1),(5,2),(5,3),(5,4)
(5,6), (6,1),(6,2),(6,3),(6,4)

path(x,y):-edge(x,z)
New rule covers all the 4 remaining positives but also 10 of the 20 
negatives
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Example-10

2
4

1

5

3 6

Positive Examples: 
(1,6), (1,5), 
(3,5), (4,5),

Negative examples;
(1,4), (2,1),(2,3),(2,4),(2,5)
(2,6), (3,1),(3,2),(3,4),(4,1)
(4,3), (5,1),(5,2),(5,3),(5,4)
(5,6), (6,1),(6,2),(6,3),(6,4)

path(x,y):-edge(x,z)
New rule covers all the 4 remaining positives but also 10 of the 20 
negatives

Try to specialize the rule
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Example-11

2
4

1

5

3 6

Generate expanded tuples (bindings) (x,y,z)
Positive:       (1,6,2), (1,6,3),(1,5,2),(1,5,3) 

(3,5,6), (4,5,2),(4,5,6) 
Negative:

Current Rule:
(1,4,2), (1,4,3)                                             path(x,y):-edge(x,z)
(3,1,6),(3,2,6),(3,4,6),
(4,1,2),(4,1,6),(4,3,2),(4,3,6),
(6,1,5),(6,2,5),(6,3,5),(6,4,5)

Consider literal path(z,y) 
(as well as edge(x,y),edge(y,z)edge(x,z),path(z,x) etc.)



Learning Rules CS446-Fall 10 75

Example-12

2
4

1

5

3 6

Generate expanded tuples (bindings) (x,y,z)
Positive:       (1,6,2), (1,6,3),(1,5,2),(1,5,3) 

(3,5,6), (4,5,2),(4,5,6)
Negative:

(1,4,2), (1,4,3)                                            
(3,1,6),(3,2,6),(3,4,6),
(4,1,2),(4,1,6),(4,3,2),(4,3,6),
(6,1,5),(6,2,5),(6,3,5),(6,4,5)

Current rule: path(x,y) : - edge(x,z), path(z,y)

No negative covered. Complete clause.
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Example-12

2
4

1

5

3 6

Generate expanded tuples (bindings) (x,y,z)
Positive:       (1,6,2), (1,6,3),(1,5,2),(1,5,3) 

(3,5,6), (4,5,2),(4,5,6)
Negative:

(1,4,2), (1,4,3)                                            
(3,1,6),(3,2,6),(3,4,6),
(4,1,2),(4,1,6),(4,3,2),(4,3,6),
(6,1,5),(6,2,5),(6,3,5),(6,4,5)

Current rule: path(x,y) : - edge(x,z), path(z,y)
Not all the bindings are satisfied now, but all positive examples are.
Since we cover all positive examples, the definition (using two rules) 
is complete    
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More FOIL

• Limitations: 
Search space for literals can become intractable
Hill climbing search     
Background literals must be sufficient  (methods for predicate inventions)
In principle: evaluating the body of the rule is intractable (subsumption) 
In some applications there is a need for a mix of relational and 
ground literals.

• Applications:
Learning Family relations (comparison with Neural Networks)
Text categorization based on words and their ordering relations
Classifying web pages based on the link structure 
Learning to take actions
Significant success in computational chemistry
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At some point in the search we will generate the rule
granddaughter(x,y) 

 
father(y,z) and  mother(z,x) and female(x)

which covers all the positive examples and none of the negatives.
If there are remaining positive examples to be covered, then we begin
at this point a search for a new rule.

Works  since:  The relational rule holds in  the data.
We search exhaustively.

Note that (Search in FOIL (2))

• In some sense, this is very similar to propositional learning
y 

 
A  and  B and C 

In an example (A= ,B= ,C= ,D= ,E= ,……;y) a proposition is either T or F

father(x,y) is also either T of F in an example but, possibly, several
things could make it T. (E.g., father( Bob, Sharon),….)
• Problems are introduced when evaluating existential expressions.
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Propositionalization

•
 

aunt(x,z) = 
wife(x,y)^uncle(y,z)  or sister(x,y)^father(y,z)

Can we make this a propositional  learning problem?
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Notes

• Relational Learning
The learning process is essentially propositional --
the ground literals are used in the learning process. 

• Generalization:
Done on the relational level as well as the functional level

path(x,y)

path(1,y)        path (x,3)     path(3,y) ……..

path(1,2), path(1,3), path(1,6), path(1,5), path(3,6),path (3,5),path(4,2)…

• Scaling up: 
Is a major issue
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1. Instead of a rule representation

Propositionalization

f(x)]y))(x,y)(x,y,(x,[R 21 
We use generalized rules:

f(x)])y)](x,wy)(x,[wy,(x,[R 2211  1
• More expressive;  Easier to learn

2.
 

Restrict to Quantified Propositions

f(x)] ] ))y(x,c,y(  w) )y(x,c,y(  [wx,[R' 22221111  1

• Allows use of Propositional Algorithms; but more 
predicates are required to maintain expressivity

Single predicate 
in scope
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Restricting to using  quantified  proposition
f(x)]) ))y(x,c,y() )y(x,c,y(  (x,[R' 222111  R

Expressivity 
f(x)]y))(x,cy)(x,cy,(x,[R 21 

y)](x,f' ) y)(x,cy)(x,c  (y,x,['R' 21 

f(x)] ) y)(x,f' y,( x,[R 

can be  overcome using  new   predicates  (features)
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Why Quantified  Propositions?
Allow  different  parts  of  the  program’s conditions to
be  evaluated  separately  from  others.

f(x)]) ))y(x,c,y() )y(x,c,y(  (x,[R' 222111 

this)x(Sentence,  

) y)c(x,y,(  

Given a sentence -
binding of x determines  the example 

Given a binding -
is assigned a single binary value

Yes Yes No
) y)(x,cy,(  2) y)(x,cy,(  1 ) y)(x,cy,(  8
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Why Quantified  Propositions?
Allow  different  parts  of  the  program’s condition to
be  evaluated  separately  from  others.

For each x:      the sentence is mapped into a 
collection of binary features  in the relational space

this)x(Sentence,  

Yes Yes No
) y)(x,cy,(  2) y)(x,cy,(  1 ) y)(x,cy,(  8

f(x)]) ))y(x,c,y() )y(x,c,y(  (x,[R' 222111 
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At some point in the search we will generate the rule
granddaughter(x,y) 

 
father(y,z) and  mother(z,x) and female(x)

which covers all the positive examples and none of the negatives.

Note that (Search in FOIL (2))

This can be achieved using a propositional learning algorithm if the 
Features are FUNCTIONS of the primitive predicates. 

The feature space may become very large – but these features
are touched anyhow by the relational learning algorithm

Details: [Cumby&Roth, 99, 01; Roth&Yih’01;other propositionalization papers]
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Feature Extraction 
Features of the type listed below are extracted from the example segment on the left; the binding of the left most feature type is 

emphasized on the example segment. 

FE

country

nationality

meeting

participant

Country

Country 
name(iraq)

feature types

feature vector = list of active 
substructures(descriptions)

city

person

date
month(April)
year(2001)

country

meeting

participant

location time

name(Iraq)

affiliationnationality

name(Prague)

organization

Structured Example 
Segment

participant

time nationality

meeting

country
name(Iraq)

year(2001)

Attributes (node labels)
Roles (edge labels)

Country=Iraq

nationality
Country 

name(iraq)

=1, =1,…( )
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Summary: Learning Rules and ILP 

• A sequential covering algorithm learns a disjunctive set of rules
- A greedy algorithm for learning rule sets
- (different from the “simultaneous” covering of ID3)

• A variety of methods can be used to learn a single rule: 
- General to specific search 
- Specific to general (LGG) search
- Various statistical measures may guide the search

• Sets of First Order Rules:
- Highly expressive representation 
- Extend search techniques from propositional to first-order (FOIL)
- A few systems exist both for propositional and first order learning

• Active research area: mostly via propositialization
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When is ILP usefull?

• ILP is a good choice whenever
– relation among considered objects have to be taken into account
– the training data have no uniform structure (some objects are 

described extensively, other are mentioned in several facts only)
– there is extensive background knowledge which should be used for 

construction of hypothesis

• Key: Good when concise descriptions are good enough 
– No need for a lot of propositional (lexical) information

– Has been successful in some domains: Bioinformatics, medicine, ecology
– Needs work: better algorithms
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Structured Domain

join

John

will

the

board as

adirector 2G 

afternoon,      Dr.   Ab
 
C         …in    Ms.    De. F class..

[NP Which type] [PP of ] [NP submarine] [VP was bought ] 
[ADVP recently ] [PP by ] [NP South Korea ] (. ?)

S = John will join the board as a director    
1G 

Word=
POS=
IS-A=
…

Additional Examples of Relational Domains
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The boy ran away quickly



Learning Rules CS446-Fall 10 91

Subject(x) = F(after(x,verb),before(x,determiner), noun(x)…..)

Relational Learning
The theory presented claims that the algorithm runs...

[The theory presented claims] that [the algorithm runs]

• Real world data is stored in relational form:
P is a faculty in department D 
S is a student in Department D
P is an advisor of S

• Is there are need to know the names of the people to say something useful?

• Web page classification, e.g, classify Professors pages
– Assume that you learn on Computer Science web pages? 
– Will it work on Physics web pages? 

Want to exploit relational information  when learning
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Structured Domain

• Learn labels on nodes and edges
• Have hypotheses that depends on the 

structure

1

31

SpellingPOS...Label

Label-1Label-2...Label-n

2 3

3232

2312

13
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before

person
name(“Mohammed Atta”)

gender(male)

city

person

date
month(April)
year(2001)

country

Text: Mohammed Atta met with an Iraqi intelligence agent in Prague in April 2001.

meeting
participantparticipant

location time

name(Iraq)

affiliationnationality

after word(an)
tag(DT)

word(intelligence)
tag(NN)

word(Iraqi)
tag(JJ)

before beforebefore ...
...

after after after

country
name(“Czech Republic”) name(Prague)

organization

location

endbegin

Structured Data: Concept Graph Representation

Attributes (node labels)
Roles (edge labels)
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