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Where are we?

Algorithms

 DTs

 Perceptron + Winnow

 Gradient Descent

 NN 

Theory

 Mistake Bound

 PAC Learning 

We have a formal notion of “learnability”

 We understand Generalization

 How will your algorithm do on the next example?

 How it depends on the hypothesis class (VC dim)

 and other complexity parameters

Algorithmic Implications of the theory?
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Boosting

Boosting is (today) a general learning paradigm for putting 
together a Strong Learner, given a collection (possibly 
infinite) of Weak Learners.

The original Boosting Algorithm was proposed as an answer 
to a theoretical question in PAC learning. [The Strength of Weak 
Learnability; Schapire, 89]

Consequently, Boosting has interesting theoretical 
implications, e.g., on the relations between PAC learnability 
and compression.
 If a concept class is efficiently PAC learnable then it is efficiently PAC 

learnable by an algorithm whose required memory is bounded by a 
polynomial in n, size c and log(1/).

 There is no concept class for which efficient PAC learnability requires 
that the entire sample be contained in memory at one time – there is 
always another algorithm that “forgets” most of the sample. 
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Boosting Notes

However, the key contribution of Boosting has been practical, 
as a way to compose a good learner from many weak 
learners.

It is a member of a family of Ensemble Algorithms, but has 
stronger guarantees than others.

A Boosting demo is available at 
http://cseweb.ucsd.edu/~yfreund/adaboost/

Example

Theory of Boosting
 Simple & insightful  
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http://cseweb.ucsd.edu/~yfreund/adaboost/
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Boosting Motivation
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The Boosting Approach

Algorithm
 Select a small subset of examples

 Derive a rough rule of thumb

 Examine 2nd set of examples

 Derive 2nd rule of thumb

 Repeat T times

 Combine the learned rules into a single hypothesis

Questions:
 How to choose subsets of examples to examine on each round?

 How to combine all the rules of thumb into single prediction rule?

Boosting 
 General method of converting rough rules of thumb into highly 

accurate prediction rule
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Theoretical Motivation

“Strong” PAC algorithm:
 for any distribution

 8 ², ± > 0

 Given polynomially many random examples 

 Finds hypothesis with error · ² with probability ¸ (1-±)

“Weak” PAC algorithm 
 Same, but only for some ² · ½ - °

[Kearns & Valiant ’88]: 
 Does weak learnability imply strong learnability?

 Anecdote: the importance of the distribution free assumption
 It does not hold if PAC is restricted to only the uniform distribution, say
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History

[Schapire ’89]:
 First provable boosting algorithm

 Call weak learner three times on three modified distributions 

 Get slight boost in accuracy 

 apply recursively

[Freund ’90]:
 “Optimal” algorithm that “boosts by majority”

[Drucker, Schapire & Simard ’92]:
 First experiments using boosting

 Limited by practical drawbacks

[Freund & Schapire ’95]:
 Introduced “AdaBoost” algorithm

 Strong practical advantages over previous boosting algorithms

AdaBoost was followed by a huge number of papers and 
practical applications
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Some lessons for Ph.D. students
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A Formal View of Boosting

Given training set (x1, y1), … (xm, ym)

yi 2 {-1, +1} is the correct label of instance xi 2 X

For t = 1, …, T
 Construct a distribution Dt on {1,…m}

 Find weak hypothesis (“rule of thumb”)

ht : X ! {-1, +1}

with small error ²t on Dt:

²t = PrD [ht (xi) := yi]

Output: final hypothesis Hfinal
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Adaboost

Constructing Dt on {1,…m}:

 D1(i) = 1/m 

 Given Dt and ht : 

 Dt+1 =             Dt(i)/zt £ e-®t if yi = ht(xi)

Dt(i)/zt £ e+®t if yi := ht (xi)

=              Dt(i)/zt £ exp(-®t yi ht (xi))

where zt = normalization constant

and 

®t = ½ ln{ (1 - ²t)/²t } 

Final hypothesis: Hfinal (x) = sign (t ®t ht(x) )
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< 1; smaller weight

> 1; larger weight

Notes about ®t:               
 Positive due to the weak learning 

assumption
 Examples that we predicted correctly are 

demoted, others promoted
 Sensible weighting scheme:   better 

hypothesis (smaller error)  larger weight

Think about unwrapping it all 
the way to 1/m

e+®t = sqrt{(1 - ²t)/²t }>1 
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A Toy Example
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A Toy Example
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A Toy Example
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A Toy Example
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A Toy Example
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A cool and important note 
about the final hypothesis: 
it is possible that the 
combined hypothesis makes 
no mistakes on the training 
data, but boosting can still 
learn, by adding more weak 
hypotheses.
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Analyzing Adaboost
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1. Why is the theorem stated in terms of 
minimizing training error? Is that what we 
want?
2. What does the bound mean?

²t (1- ²t) = (1/2-°t)(1/2+°t)) = 1/4 - °t
2

1-(2°t)
2 · exp(-(2°t)

2)

Need to prove only 
the first inequality, 
the rest is algebra.
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AdaBoost Proof (1)
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Need to prove only 
the first inequality, 
the rest is algebra.

The final “weight” of 
the i-th example
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AdaBoost Proof (2)

18

The definition 
of training error

Always holds for 
mistakes (see above)

Using Step 1

D is a distribution 
over the m examples
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AdaBoost Proof(3)
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Splitting the sum to 
“mistakes” and no-
mistakes”

The definition of ²t

The definition of ®t

By definition of Zt; it’s a 
normalization term

Steps 2 and 3 together prove the Theorem.
 The error of the final hypothesis can be as 
low as you want.

e+®t = sqrt{(1 - ²t)/²t }>1 

A strong assumption due to 
the “for all distributions”.
But – works  well in practice

Why does it work? 
The Weak Learning 
Hypothesis
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Boosting The Confidence

Unlike Boosting the accuracy (), Boosting the 
confidence () is easy. 

Let’s fix the accuracy parameter to . 
Suppose that we have a learning algorithm L such 
that for any target concept c 2 C and any 
distribution D, L outputs h s.t. error(h) <  with 
confidence at least 1- 0, where 0 = 1/q(n,size(c)), 
for some polynomial q.

Then, if we are willing to tolerate a slightly higher 
hypothesis error,  +  ( > 0, arbitrarily small) then 
we can achieve arbitrary high confidence 1-.
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Boosting The Confidence(2)

Idea: Given the algorithm L, we construct a new algorithm L’
that simulates algorithm L k times (k will be determined later) 
on independent samples from the same distribution

Let h1, …hk be the hypotheses produced. Then, since the 
simulations are independent, the probability that all of h1,. hk

have error > is as most (1-0)k. Otherwise, at least one hj is 
good. 

Solving (1-0)k < /2 yields that value of k we need,             

k > (1/0) ln(2/)

There is still a need to show how L’ works. It would work by 
using the hi that makes the fewest mistakes on the sample S; 
we need to compute how large S should be to guarantee that 
it does not make too many mistakes.     [Kearns and Vazirani’s book]
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Summary of Ensemble Methods 

Boosting

Bagging

Random Forests
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Boosting
Initialization:

 Weigh all training samples equally

Iteration Step:

 Train model on (weighted) train set

 Compute error of model on train set

 Increase weights on training cases model gets wrong!!!

Typically requires 100’s to 1000’s of iterations

Return final model: 

 Carefully weighted prediction of each model

23



Boosting CS446 - Spring ‘17

Boosting: Different Perspectives

Boosting is a maximum-margin method
(Schapire et al. 1998, Rosset et al. 2004)

 Trades lower margin on easy cases for higher margin on harder cases

Boosting is an additive logistic regression model  (Friedman, Hastie and 

Tibshirani 2000)

 Tries to fit the logit of the true conditional probabilities

Boosting is an equalizer
(Breiman 1998) (Friedman, Hastie, Tibshirani 2000)

 Weighted proportion of times example is misclassified by base learners 
tends to be the same for all training cases

Boosting is a linear classifier, but does not give well calibrated 
probability estimate.
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Bagging
Bagging predictors is a method for generating multiple versions of a 
predictor and using these to get an aggregated predictor.

The aggregation averages over the versions when predicting a numerical 
outcome and does a plurality vote when predicting a class.

The multiple versions are formed by making bootstrap replicates of the 
learning set and using these as new learning sets.
 That is, use samples of the data, with repetition

Tests on real and simulated data sets using classification and regression 
trees and subset selection in linear regression show that bagging can give 
substantial gains in accuracy.

The vital element is the instability of the prediction method. If perturbing 
the learning set can cause significant changes in the predictor constructed 
then bagging can improve accuracy.
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Example: Bagged Decision Trees
Draw 100 bootstrap samples of data

Train trees on each sample  100 trees

Average prediction of trees on out-of-bag samples
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…

Average prediction

(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + … + 0.31) / # Trees = 0.24
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Random Forests (Bagged Trees++)

Draw 1000+ bootstrap samples of data

Draw sample of available attributes at each split

Train trees on each sample/attribute set  1000+ trees

Average prediction of trees on out-of-bag samples
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…

Average prediction

(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + … + 0.31) / # Trees = 0.24


