
Boosting CS446 - Spring ‘17

Where are we?

Algorithms

 DTs

 Perceptron + Winnow

 Gradient Descent

 NN

Theory

 Mistake Bound

 PAC Learning

We have a formal notion of “learnability”

 We understand Generalization

 How will your algorithm do on the next example?

 How it depends on the hypothesis class (VC dim)

 and other complexity parameters

Algorithmic Implications of the theory?

2

Boosting CS446 - Spring ‘17

Boosting

Boosting is (today) a general learning paradigm for putting
together a Strong Learner, given a collection (possibly
infinite) of Weak Learners.

The original Boosting Algorithm was proposed as an answer
to a theoretical question in PAC learning. [The Strength of Weak
Learnability; Schapire, 89]

Consequently, Boosting has interesting theoretical
implications, e.g., on the relations between PAC learnability
and compression.
 If a concept class is efficiently PAC learnable then it is efficiently PAC

learnable by an algorithm whose required memory is bounded by a
polynomial in n, size c and log(1/).

 There is no concept class for which efficient PAC learnability requires
that the entire sample be contained in memory at one time – there is
always another algorithm that “forgets” most of the sample.

3

Boosting CS446 - Spring ‘17

Boosting Notes

However, the key contribution of Boosting has been practical,
as a way to compose a good learner from many weak
learners.

It is a member of a family of Ensemble Algorithms, but has
stronger guarantees than others.

A Boosting demo is available at
http://cseweb.ucsd.edu/~yfreund/adaboost/

Example

Theory of Boosting
 Simple & insightful

4

http://cseweb.ucsd.edu/~yfreund/adaboost/

Boosting CS446 - Spring ‘17

Boosting Motivation

5

Boosting CS446 - Spring ‘17

The Boosting Approach

Algorithm
 Select a small subset of examples

 Derive a rough rule of thumb

 Examine 2nd set of examples

 Derive 2nd rule of thumb

 Repeat T times

 Combine the learned rules into a single hypothesis

Questions:
 How to choose subsets of examples to examine on each round?

 How to combine all the rules of thumb into single prediction rule?

Boosting
 General method of converting rough rules of thumb into highly

accurate prediction rule

6

Boosting CS446 - Spring ‘17

Theoretical Motivation

“Strong” PAC algorithm:
 for any distribution

 8 ², ± > 0

 Given polynomially many random examples

 Finds hypothesis with error · ² with probability ¸ (1-±)

“Weak” PAC algorithm
 Same, but only for some ² · ½ - °

[Kearns & Valiant ’88]:
 Does weak learnability imply strong learnability?

 Anecdote: the importance of the distribution free assumption
 It does not hold if PAC is restricted to only the uniform distribution, say

7

Boosting CS446 - Spring ‘17

History

[Schapire ’89]:
 First provable boosting algorithm

 Call weak learner three times on three modified distributions

 Get slight boost in accuracy

 apply recursively

[Freund ’90]:
 “Optimal” algorithm that “boosts by majority”

[Drucker, Schapire & Simard ’92]:
 First experiments using boosting

 Limited by practical drawbacks

[Freund & Schapire ’95]:
 Introduced “AdaBoost” algorithm

 Strong practical advantages over previous boosting algorithms

AdaBoost was followed by a huge number of papers and
practical applications

8

Some lessons for Ph.D. students

Boosting CS446 - Spring ‘17

A Formal View of Boosting

Given training set (x1, y1), … (xm, ym)

yi 2 {-1, +1} is the correct label of instance xi 2 X

For t = 1, …, T
 Construct a distribution Dt on {1,…m}

 Find weak hypothesis (“rule of thumb”)

ht : X ! {-1, +1}

with small error ²t on Dt:

²t = PrD [ht (xi) := yi]

Output: final hypothesis Hfinal

9

Boosting CS446 - Spring ‘17

Adaboost

Constructing Dt on {1,…m}:

 D1(i) = 1/m

 Given Dt and ht :

 Dt+1 = Dt(i)/zt £ e-®t if yi = ht(xi)

Dt(i)/zt £ e+®t if yi := ht (xi)

= Dt(i)/zt £ exp(-®t yi ht (xi))

where zt = normalization constant

and

®t = ½ ln{ (1 - ²t)/²t }

Final hypothesis: Hfinal (x) = sign (t ®t ht(x))

10

< 1; smaller weight

> 1; larger weight

Notes about ®t:
 Positive due to the weak learning

assumption
 Examples that we predicted correctly are

demoted, others promoted
 Sensible weighting scheme: better

hypothesis (smaller error) larger weight

Think about unwrapping it all
the way to 1/m

e+®t = sqrt{(1 - ²t)/²t }>1

Boosting CS446 - Spring ‘17

A Toy Example

11

Boosting CS446 - Spring ‘17

A Toy Example

12

Boosting CS446 - Spring ‘17

A Toy Example

13

Boosting CS446 - Spring ‘17

A Toy Example

14

Boosting CS446 - Spring ‘17

A Toy Example

15

A cool and important note
about the final hypothesis:
it is possible that the
combined hypothesis makes
no mistakes on the training
data, but boosting can still
learn, by adding more weak
hypotheses.

Boosting CS446 - Spring ‘17

Analyzing Adaboost

16

1. Why is the theorem stated in terms of
minimizing training error? Is that what we
want?
2. What does the bound mean?

²t (1- ²t) = (1/2-°t)(1/2+°t)) = 1/4 - °t
2

1-(2°t)
2 · exp(-(2°t)

2)

Need to prove only
the first inequality,
the rest is algebra.

Boosting CS446 - Spring ‘17

AdaBoost Proof (1)

17

Need to prove only
the first inequality,
the rest is algebra.

The final “weight” of
the i-th example

Boosting CS446 - Spring ‘17

AdaBoost Proof (2)

18

The definition
of training error

Always holds for
mistakes (see above)

Using Step 1

D is a distribution
over the m examples

Boosting CS446 - Spring ‘17

AdaBoost Proof(3)

19

Splitting the sum to
“mistakes” and no-
mistakes”

The definition of ²t

The definition of ®t

By definition of Zt; it’s a
normalization term

Steps 2 and 3 together prove the Theorem.
 The error of the final hypothesis can be as
low as you want.

e+®t = sqrt{(1 - ²t)/²t }>1

A strong assumption due to
the “for all distributions”.
But – works well in practice

Why does it work?
The Weak Learning
Hypothesis

Boosting CS446 - Spring ‘17

Boosting The Confidence

Unlike Boosting the accuracy (), Boosting the
confidence () is easy.

Let’s fix the accuracy parameter to .
Suppose that we have a learning algorithm L such
that for any target concept c 2 C and any
distribution D, L outputs h s.t. error(h) < with
confidence at least 1- 0, where 0 = 1/q(n,size(c)),
for some polynomial q.

Then, if we are willing to tolerate a slightly higher
hypothesis error, + (> 0, arbitrarily small) then
we can achieve arbitrary high confidence 1-.

20

Boosting CS446 - Spring ‘17

Boosting The Confidence(2)

Idea: Given the algorithm L, we construct a new algorithm L’
that simulates algorithm L k times (k will be determined later)
on independent samples from the same distribution

Let h1, …hk be the hypotheses produced. Then, since the
simulations are independent, the probability that all of h1,. hk

have error > is as most (1-0)k. Otherwise, at least one hj is
good.

Solving (1-0)k < /2 yields that value of k we need,

k > (1/0) ln(2/)

There is still a need to show how L’ works. It would work by
using the hi that makes the fewest mistakes on the sample S;
we need to compute how large S should be to guarantee that
it does not make too many mistakes. [Kearns and Vazirani’s book]

21

Boosting CS446 - Spring ‘17

Summary of Ensemble Methods

Boosting

Bagging

Random Forests

22

Boosting CS446 - Spring ‘17

Boosting
Initialization:

 Weigh all training samples equally

Iteration Step:

 Train model on (weighted) train set

 Compute error of model on train set

 Increase weights on training cases model gets wrong!!!

Typically requires 100’s to 1000’s of iterations

Return final model:

 Carefully weighted prediction of each model

23

Boosting CS446 - Spring ‘17

Boosting: Different Perspectives

Boosting is a maximum-margin method
(Schapire et al. 1998, Rosset et al. 2004)

 Trades lower margin on easy cases for higher margin on harder cases

Boosting is an additive logistic regression model (Friedman, Hastie and

Tibshirani 2000)

 Tries to fit the logit of the true conditional probabilities

Boosting is an equalizer
(Breiman 1998) (Friedman, Hastie, Tibshirani 2000)

 Weighted proportion of times example is misclassified by base learners
tends to be the same for all training cases

Boosting is a linear classifier, but does not give well calibrated
probability estimate.

24

Boosting CS446 - Spring ‘17

Bagging
Bagging predictors is a method for generating multiple versions of a
predictor and using these to get an aggregated predictor.

The aggregation averages over the versions when predicting a numerical
outcome and does a plurality vote when predicting a class.

The multiple versions are formed by making bootstrap replicates of the
learning set and using these as new learning sets.
 That is, use samples of the data, with repetition

Tests on real and simulated data sets using classification and regression
trees and subset selection in linear regression show that bagging can give
substantial gains in accuracy.

The vital element is the instability of the prediction method. If perturbing
the learning set can cause significant changes in the predictor constructed
then bagging can improve accuracy.

25

Boosting CS446 - Spring ‘17

Example: Bagged Decision Trees
Draw 100 bootstrap samples of data

Train trees on each sample 100 trees

Average prediction of trees on out-of-bag samples

26

…

Average prediction

(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + … + 0.31) / # Trees = 0.24

Boosting CS446 - Spring ‘17

Random Forests (Bagged Trees++)

Draw 1000+ bootstrap samples of data

Draw sample of available attributes at each split

Train trees on each sample/attribute set 1000+ trees

Average prediction of trees on out-of-bag samples

27

…

Average prediction

(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + … + 0.31) / # Trees = 0.24

