
NEURAL NETWORKS CS446 -FALL ‘16

Administration 

Registration

Hw3 is out 
 Due on Thursday 10/6

Lecture Captioning (Extra-Credit)
 Look at Piazza for details

Scribing lectures
 With  pay; come talk to me/send email. 
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Questions

http://l2r.cs.illinois.edu/~danr/Teaching/CS446-16/Hw/HW-hw3/hw3.pdf
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Projects

Projects proposals are due on Friday 10/14/16
Within a week we will give you an approval to continue with your project 
along with comments and/or a request to modify/augment/do a different 
project. There will also be a mechanism for peer comments.

We encourage team projects – a team can be up to 3 people.

Please start thinking and working on the project now.
Your proposal is limited to 1-2 pages, but needs to include references
and, ideally,  some of the ideas you have developed in the direction of the 
project (maybe even some preliminary results).
Any project that has a significant Machine Learning component is good. 
You can do experimental work, theoretical work, a combination of both 
or a critical survey of results in some specialized topic. 
The work has to include some reading. Even if you do not do a survey, you 
must read (at least) two related papers or book chapters and relate your 
work to it. 
Originality is not mandatory but is encouraged. 
Try to make it interesting!
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Examples

KDD Cup 2013:
 "Author-Paper Identification": given an author and a small set of papers, we 

are asked to identify which papers are really written by the author. 

 https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

 “Author Profiling”: given a set of document, profile the author: identification, 
gender, native language, …. 

Caption Control: Is it gibberish? Spam? High quality text?
 Adapt an NLP program to a new domain

Work on making learned hypothesis (e.g., linear threshold 
functions, NN) more comprehensible 
 Explain the prediction

Develop a (multi-modal) People Identifier  
Compare Regularization methods: e.g., Winnow vs. L1 
Regularization
Large scale clustering of documents + name the cluster
Deep Networks: convert a state of the art NLP program to a deep 
network, efficient, architecture. 
Try to prove something
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Neural Networks 

Robust approach to approximating real-valued, 
discrete-valued and vector valued target functions.

Among the most effective general purpose
supervised learning method currently known.

Effective especially for complex and hard to interpret 
input data such as real-world sensory data, where a 
lot of supervision is available. 

The Backpropagation algorithm for neural networks 
has been shown successful in many practical 
problems
 handwritten character recognition, speech recognition,  

object recognition, some NLP problems

4
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Neural Networks 

Neural Networks are functions: NN: 𝑋 → 𝑌
 where 𝑋 = 0,1 𝑛, or {0,1}𝑛 and  𝑌 = 0,1 , {0,1}

NN can be used as an approximation of a target 
classifier
 In their general form, even with a single hidden layer, NN 

can approximate any function

 Algorithms exist that can learn a NN representation from 
labeled training data  (e.g., Backpropagation).

5
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Multi-Layer Neural Networks

Multi-layer network were designed to overcome the 
computational (expressivity) limitation  of a single 
threshold element. 

The idea is to stack several 

layers of threshold elements, 

each layer using the output of 

the previous layer as input.  

6
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Motivation for Neural Networks

Inspired by biological systems
 But don’t take this (as well as any other words in the new on 

“emergence” of intelligent behavior) seriously; 

We are currently on rising part of a wave of interest in 
NN architectures, after a long downtime from the mid-
90-ies.
 Better computer architecture (GPUs, parallelism) 

 A lot more data than before; in many domains, supervision is 
available.

Current surge of interest has seen very minimal 
algorithmic changes

7
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Motivation for Neural Networks

Minimal to no algorithmic changes

One potentially interesting perspective:
 Before we looked at NN only as function approximators.

 Now, we look at  the intermediate representations generated 
while learning as meaningful

 Ideas are being developed on the value of these intermediate 
representations for transfer learning etc. 

We will present in the next two lectures a few of the 
basic architectures and learning algorithms, and 
provide some examples for applications

8
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Basic Unit in Multi-Layer Neural Network

Linear Unit: 𝑜𝑗 = 𝑤. Ԧ𝑥 multiple layers of linear 

functions produce linear functions.  We want to 
represent nonlinear functions.

Threshold units: 𝑜𝑗 = 𝑠𝑔𝑛(𝑤. Ԧ𝑥 − 𝑇) are not 

differentiable,  hence unsuitable for gradient descent
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Model Neuron (Logistic)

Neuron is modeled by a unit  𝑗 connected by 
weighted links 𝑤𝑖𝑗 to other units 𝑖. 

 Use a non-linear, differentiable output function such as the 
sigmoid or logistic function

 Net input to a unit is defined as: 

 Output of a unit is defined as:

11

net𝑗 = ∑𝑤𝑖𝑗 . 𝑥𝑖

𝑜𝑗 =
1

1 + exp −(net𝑗 − 𝑇𝑗)

 𝑜𝑗

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

𝑥7

𝑤17

𝑤67

The parameters so far? 
The set of connective weights:  𝑤𝑖𝑗

The threshold value: 𝑇𝑗
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History: Neural Computation 

McCollough and Pitts (1943) showed how linear 
threshold units can be used to compute logical 
functions 

Can build basic logic gates
 AND:

 OR:

 NOT: use negative weight

Can build arbitrary logic circuits, finite-state machines 
and computers given these basis gates.

Can specify any Boolean function using two layer 
network (w/ negation)
 DNF and CNF are universal representations
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net𝑗 = ∑𝑤𝑖𝑗 . 𝑥𝑖

𝑜𝑗 =
1

1 + exp −(net𝑗 − 𝑇𝑗)𝑤𝑖𝑗 = 𝑇𝑗/𝑛

𝑤𝑖𝑗 = 𝑇𝑗
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History: Learning Rules 

Hebb (1949) suggested that if two units are both 
active (firing) then the weights between them should 
increase:      𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝑅𝑜𝑖𝑜𝑗
 𝑅 and is a constant called the learning rate

 Supported by physiological evidence

Rosenblatt (1959) suggested that when a target 
output value is provided for a single neuron with 
fixed input, it can incrementally change weights and 
learn to produce the output using the Perceptron 
learning rule.
 assumes binary output units; single linear threshold unit

 Led to the Perceptron Algorithm

See: http://people.idsia.ch/~juergen/who-invented-backpropagation.html

13
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Perceptron Learning Rule

Given:

 the target output for the output unit is 𝑡𝑗

 the input the neuron sees is 𝑥𝑖

 the output it produces is  𝑜𝑗

Update weights according to   𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + 𝑅 𝑡𝑗 − 𝑜𝑗 𝑥𝑖
 If output is correct, don’t change the weights

 If output is wrong, change weights for all inputs which are 1

 If output is low (0, needs to be 1) increment weights

 If output is high (1, needs to be 0) decrement weights

14


𝑇𝑗

𝑜𝑗
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Widrow-Hoff Rule 

This incremental update rule provides an 
approximation to the goal:
 Find the best linear approximation of the data 

𝐸𝑟𝑟 𝑤 𝑗 =
1

2


𝑑∈𝐷

𝑡𝑑 − 𝑜𝑑
2

 where: 

𝑜𝑑 =

𝑖

𝑤𝑖𝑗 . 𝑥𝑖 =𝑤 𝑗 . Ԧ𝑥

output of linear unit on example d

 𝑡𝑑 = Target output for example d

15
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Gradient Descent 

We use gradient descent determine the weight vector that 

minimizes  𝐸𝑟𝑟 𝑤 𝑗 ;

Fixing the set 𝐷 of examples, 𝐸 is a function of  𝑤 𝑗

At each step, the weight vector is modified in the direction that 
produces the steepest descent along the error surface.

16

𝐸𝑟𝑟(𝑤)

𝑤
𝑤3 𝑤2 𝑤1 𝑤0
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Summary: Single Layer Network 

Variety of update rules
 Multiplicative

 Additive

Batch and incremental algorithms

Various convergence and efficiency conditions

There are other ways to learn linear functions
 Linear Programming (general purpose)

 Probabilistic Classifiers ( some assumption)

Key algorithms are driven by gradient descent 

17
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wt+1 = wt – rt gw Q(zt, wt) = wt – rt gt

LMS: Q((x, y), w) =1/2 (y – w ¢ x)2

leads to the update rule (Also called Widrow’s Adaline):
wt+1 = wt + r (yt – wt ¢ xt) xt

Here, even though we make binary predictions based on sign (w ¢ x) 
we do not take the sign of the dot-product into account in the loss.

Another common loss function is:
Hinge loss: 
Q((x, y), w) = max(0, 1 - y w ¢ x)

This leads to the perceptron update rule:

If yi wi ¢ xi > 1   (No mistake, by a margin):       No update
Otherwise (Mistake, relative to margin): wt+1 = wt + r yt xt

Stochastic Gradient Algorithms 

18

w ¢
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Summary: Single Layer Network 

Variety of update rules
 Multiplicative

 Additive

Batch and incremental algorithms

Various convergence and efficiency conditions

There are other ways to learn linear functions
 Linear Programming (general purpose)

 Probabilistic Classifiers ( some assumption)

Key algorithms are driven by gradient descent 

However, the representational restriction is limiting 
in many applications

19
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Learning with a Multi-Layer  
Perceptron

It’s easy to learn the top layer – it’s just a linear unit. 

Given feedback (truth) at the top layer, and the activation at the 
layer below it, you can use the Perceptron update rule (more 
generally, gradient descent) to updated these weights.

The problem is what to do with 

the other set of weights – we do

not get feedback in the 

intermediate layer(s). 

20
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Learning with a Multi-Layer  
Perceptron

The problem is what to do with 

the other set of weights – we do 

not get feedback in the 

intermediate layer(s). 

Solution: If all the activation 

functions are differentiable, then 

the output of the network is also 

a differentiable function of the input and weights in the network.

Define an error function (e.g., sum of squares) that is a differentiable 
function of the output, i.e. this error function is also a differentiable 
function of the weights. 

We can then evaluate the derivatives of the error with respect to the 
weights, and use these derivatives to find weight values that minimize this 
error function, using gradient descent (or other optimization methods). 

This results in an algorithm called back-propagation.
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Some facts from real analysis

Simple chain rule
 If 𝑧 is a function of 𝑦, and 𝑦 is a function of 𝑥

 Then 𝑧 is a function of 𝑥, as well. 

 Question:  how to find 
𝜕𝑧

𝜕𝑥

22
Slide Credit: Richard Socher

We will use these facts to derive the details 
of the Backpropagation algorithm. 

z will be the error (loss) function.
- We need to know how to differentiate z 

Intermediate nodes use a logistics function 
(or another differentiable step function). 
- We need to know how to differentiate it. 
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Some facts from real analysis

Multiple path chain rule 

23
Slide Credit: Richard Socher
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Some facts from real analysis

Multiple path chain rule: general 

24
Slide Credit: Richard Socher
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Backpropagation Learning Rule

Since there could be multiple output units, we define 
the error as the sum over all the network output units.

𝐸𝑟𝑟 𝑤 =
1

2
∑𝑑∈𝐷∑𝑘∈𝐾 𝑡𝑘𝑑 − 𝑜𝑘𝑑

2

 where 𝐷 is the set of training examples, 

 𝐾 is the set of output units

This is used to derive the (global) learning rule which 

performs gradient descent in the weight space in an attempt to 
minimize the error function. 

Δ𝑤𝑖𝑗 = −𝑅
𝜕𝐸

𝜕𝑤𝑖𝑗

25

𝑜1…𝑜𝑘

(1, 0, 1, 0, 0)

Function 1
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Reminder: Model Neuron (Logistic)

Neuron is modeled by a unit  𝑗 connected by 
weighted links 𝑤𝑖𝑗 to other units 𝑖. 

 Use a non-linear, differentiable output function such as the 
sigmoid or logistic function

 Net input to a unit is defined as: 

 Output of a unit is defined as:

26

net𝑗 = ∑𝑤𝑖𝑗 . 𝑥𝑖

𝑜𝑗 =
1

1 + exp −(net𝑗 − 𝑇𝑗)

 𝑜𝑗

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

𝑥7

𝑤17

𝑤67

Function 2

Function 3
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Derivatives

Function 1 (error): 

 𝑦 =
1

2
∑𝑘∈𝐾 𝑐𝑘 − 𝑥𝑘

2



𝜕𝑦

𝜕𝑥𝑖
= − 𝑡𝑖 − 𝑥𝑖

Function 2 (linear gate): 

 𝑦 = ∑𝑤𝑖 . 𝑥𝑖



𝜕𝑦

𝜕𝑤𝑖
= 𝑥𝑖

Function 3 (differentiable step function):

 𝑦 =
1

1+exp{−(𝑥−𝑇)}



𝜕𝑦

𝜕𝑥
=

exp{−(𝑥−𝑇)}

(1+exp{−(𝑥−𝑇)})2
= 𝑦(1 − 𝑦)

27

𝑜1…𝑜𝑘

𝑗
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Derivation of Learning Rule

The weights are updated incrementally;  the error is 
computed for each example and the weight update is 
then derived.

𝐸𝑟𝑟𝑑 𝑤 =
1

2
∑𝑘∈𝐾 𝑡𝑘 − 𝑜𝑘

2

𝑤𝑖𝑗 influences the output only through  net𝑗
net𝑗 = ∑𝑤𝑖𝑗 . 𝑥𝑖𝑗

Therefore:
𝜕𝐸𝑑
𝜕𝑤𝑖𝑗

=
𝜕𝐸𝑑
𝜕net𝑗

𝜕net𝑗

𝜕𝑤𝑖𝑗

28

𝑜1…𝑜𝑘
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= − 𝑡𝑗 − 𝑜𝑗 𝑜𝑗 1 − 𝑜𝑗 𝑥𝑖𝑗

=
𝜕𝐸𝑑
𝜕o𝑗

𝜕𝑜𝑗

𝜕net𝑗

𝜕net𝑗

𝜕𝑤𝑖𝑗

Derivation of Learning Rule (2)

Weight updates of output units:

 𝑤𝑖𝑗 influences the output only through net𝑗

Therefore:

29

𝑗

𝑖

𝑤𝑖𝑗
𝜕𝐸𝑑
𝜕𝑤𝑖𝑗

=
𝜕𝐸𝑑
𝜕net𝑗

𝜕net𝑗

𝜕𝑤𝑖𝑗

𝐸𝑟𝑟𝑑 𝑤 =
1

2


𝑘∈𝐾

𝑡𝑘 − 𝑜𝑘
2 net𝑗 = ∑𝑤𝑖𝑗 . 𝑥𝑖𝑗

𝜕𝑜𝑗

𝜕net𝑗
= 𝑜𝑗(1 − 𝑜𝑗)

𝑜𝑗 =
1

1 + exp{−(net𝑗 − 𝑇𝑗)}
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Derivation of Learning Rule (3)

Weights of output units:

 𝑤𝑖𝑗 is changed by:

where 

𝛿𝑗 = 𝑡𝑗 − 𝑜𝑗 𝑜𝑗 1 − 𝑜𝑗

30

Δ𝑤𝑖𝑗 = 𝑅 𝑡𝑗 − 𝑜𝑗 𝑜𝑗 1 − 𝑜𝑗 𝑥𝑖𝑗
= 𝑅𝛿𝑗𝑥𝑖𝑗

𝑗

𝑖

𝑤𝑖𝑗

𝑜𝑗

𝑥𝑖𝑗
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= 

𝑘∈𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

−𝛿𝑘
𝜕net𝑘
𝜕net𝑗

𝑥𝑖𝑗

= 

𝑘∈𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

𝜕𝐸𝑑
𝜕net𝑘

𝜕net𝑘
𝜕net𝑗

𝑥𝑖𝑗

𝜕𝐸𝑑
𝜕𝑤𝑖𝑗

=
𝜕𝐸𝑑
𝜕net𝑗

𝜕net𝑗

𝜕𝑤𝑖𝑗
=

Derivation of Learning Rule (4)

Weights of hidden units:

 𝑤𝑖𝑗 Influences the output only through all the units whose 

direct input include 𝑗

31

𝑘

𝑗

𝑖

𝑤𝑖𝑗

𝑜𝑘

net𝑗 = ∑𝑤𝑖𝑗 . 𝑥𝑖𝑗
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= 

𝑘∈𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

−𝛿𝑘
𝜕net𝑘
𝜕𝑜𝑗

𝜕𝑜𝑗

𝜕net𝑗
𝑥𝑖𝑗

= 

𝑘∈𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

−𝛿𝑘 𝑤𝑗𝑘 𝑜𝑗(1 − 𝑜𝑗) 𝑥𝑖𝑗

Derivation of Learning Rule (5)

Weights of hidden units:

 𝑤𝑖𝑗 influences the output only through all the units whose 

direct input include 𝑗

32

𝑘

𝑗

𝑖

𝑤𝑖𝑗

𝑜𝑘

𝜕𝐸𝑑
𝜕𝑤𝑖𝑗

= 

𝑘∈𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

−𝛿𝑘
𝜕net𝑘
𝜕net𝑗

𝑥𝑖𝑗 =
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Derivation of Learning Rule (6)

Weights of hidden units:

 𝑤𝑖𝑗 is changed by:

Where 

𝛿𝑗 = 𝑜𝑗 1 − 𝑜𝑗 . 

𝑘∈𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑗

−𝛿𝑘 𝑤𝑗𝑘

First determine the error for the output units.

Then, backpropagate this error layer by layer through the 
network, changing weights appropriately in each layer.

33

𝑘

𝑗

𝑖

𝑤𝑖𝑗

𝑜𝑘

Δ𝑤𝑖𝑗 = 𝑅 𝑜𝑗 1 − 𝑜𝑗 . 

𝑘∈𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑗

−𝛿𝑘 𝑤𝑗𝑘 𝑥𝑖𝑗

= 𝑅𝛿𝑗𝑥𝑖𝑗
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The Backpropagation Algorithm

Create a fully connected three layer network. Initialize weights.

Until all examples produce the correct output within 𝜖 (or other 
criteria)

For each example in the training set do:

1. Compute the network output for this example 

2. Compute the error between the output and target value
𝛿𝑘 = 𝑡𝑘 − 𝑜𝑘 𝑜𝑘 1 − 𝑜𝑘

1. For each output unit k, compute error term 

𝛿𝑗 = 𝑜𝑗 1 − 𝑜𝑗 . 

𝑘∈𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑗

−𝛿𝑘 𝑤𝑗𝑘

1. For each hidden unit, compute error term:
Δ𝑤𝑖𝑗 = 𝑅𝛿𝑗𝑥𝑖𝑗

1. Update network weights

End epoch

34
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More Hidden Layers

The same algorithm holds for more hidden layers. 

35

input    ℎ1 ℎ2 ℎ3 output
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Comments on Training 

No guarantee of convergence; may oscillate or reach a 
local minima.

In practice, many large networks can be trained on large 
amounts of data for realistic problems.

Many epochs (tens of thousands) may be needed for 
adequate training. Large data sets may require many 
hours of CPU 

Termination criteria: Number of epochs;  Threshold on 
training set error; No decrease in error; Increased error on 
a validation set.

To avoid local minima: several trials with different random 
initial weights with majority or voting techniques

36



NEURAL NETWORKS CS446 -FALL ‘16

Over-training Prevention 

Running too many epochs may over-train the network 
and result in over-fitting. (improved result on training, 
decrease in performance on test set) 

Keep an hold-out validation set and test accuracy after 
every epoch

Maintain weights for best performing network on the 
validation set and return it when performance decreases 
significantly beyond that.

To avoid losing training data to validation:
 Use 10-fold cross-validation to determine the average number of 

epochs that optimizes validation performance

 Train on the full data set using this many epochs to produce the 
final results

37
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Over-fitting prevention 

Too few hidden units prevent the system from 
adequately fitting the data and learning the concept.

Using too many hidden units leads to over-fitting.

Similar cross-validation method can  be used to 
determine an appropriate number of hidden units.  
(general)

Another approach to prevent over-fitting is weight-
decay: all weights are multiplied by some fraction in 
(0,1) after every epoch.
 Encourages smaller weights and less complex hypothesis

 Equivalently: change Error function to include a term for the 
sum of the squares of the weights in the network. (general)
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Dropout training
Proposed by (Hinton et al, 2012)

Each time decide whether to delete one hidden unit with 
some probability p
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Dropout training

 Dropout of 50% of the hidden units and 20% of the input units (Hinton 
et al, 2012)
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Dropout training
Model averaging effect 

 Among       models, with shared parameters 

 H: number of units in the network 

 Only a few get trained 

 Much stronger than the known regularizer

What about the input space?

 Do the same thing! 

2H
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Input-Output Coding

Appropriate coding of inputs and outputs can make 
learning problem easier and improve generalization. 

Encode each binary feature as a separate input unit;

For multi-valued features include one binary unit per 
value rather than trying to encode input information 
in fewer units.
 Very common today to use distributed representation of the 

input – real valued, dense representation. 

For disjoint categorization problem, best to have one 
output unit for each category rather than encoding N 
categories into log N bits.

42

One way to do it, if you start with a collection of sparsely 
representation examples, is to use dimensionality reduction 
methods:
- Your m examples are represented as a m x 106 matrix
- Multiple it by a random matrix of size 106 x 300, say.
- Random matrix: Normal(0,1) 
- New representation: m x 300 dense rows 
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Representational Power 

The Backpropagation version presented is for networks 
with a single hidden layer,

But:

Any Boolean function can be represented by a two layer 
network (simulate a two layer AND-OR network)

Any bounded continuous function can be approximated 
with arbitrary small error by a two layer network.

Sigmoid functions provide a set of basis function from 
which arbitrary function can be composed. 

Any function can be approximated to arbitrary accuracy 
by a three layer network.
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Hidden Layer Representation 

Weight tuning procedure sets weights that define 
whatever hidden units representation is most 
effective at minimizing the error.

Sometimes Backpropagation will define new hidden 
layer features that are not explicit in the input 
representation, but which capture properties of the 
input instances that are most relevant to learning the 
target function.

Trained hidden units can be seen as newly 
constructed features that re-represent the examples 
so that they are linearly separable
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Auto-associative Network

An auto-associative network trained with 8 inputs, 3 hidden 
units and 8 output nodes, where the output must reproduce the 
input.

When trained with vectors with only one bit on

INPUT                HIDDEN

1 0 0 0 0 0 0 0    .89   .40  0.8

0 1 0 0 0 0 0 0    .97   .99  .71

….

0 0 0 0 0 0 0 1    .01   .11  .88

Learned the standard 3-bit encoding for the 8 bit vectors.

Illustrates also data compression aspects of learning
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Sparse Auto-encoder 

Encoding: 

Decoding: 

 Goal: perfect reconstruction of 

input vector 𝒙, by the output ෝ𝒙 = ℎ𝜽(𝒙)

 Where 𝜽 = {𝑾,𝑾′}

 Minimize an error function 𝒍(ℎ𝜽 𝒙 , 𝒙)

 For example:

 And regularize it 

After optimization drop the 

reconstruction layer and add a new layer

47

𝒚 = 𝑓(𝑊𝒙 + 𝒃)

ෝ𝒙 = 𝑔(𝑊′𝒚 + 𝒃′)

𝑙 ℎ𝜃 𝒙 , 𝒙 = ℎ𝜃 𝒙 − 𝒙 2

min𝜃

𝒙

𝑙 ℎ𝜃 𝒙 , 𝒙 +

𝑖

|𝑤𝑖|
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Stacking Auto-encoder 

Add a new layer, and a reconstruction layer for it. 

And try to tune its parameters such that 

And continue this for each layer 
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Beyond supervised learning

So far what we had was purely supervised.

 Initialize parameters randomly 

 Train in supervised mode typically, using backprop

 Used in most practical systems (e.g. speech and image recognition)

Unsupervised, layer-wise + supervised classifier on top 
 Train each layer unsupervised, one after the other 

 Train a supervised classifier on top, keeping the other layers fixed 

 Good when very few labeled samples are available

Unsupervised, layer-wise + global supervised fine-tuning 

 Train each layer unsupervised, one after the other 

 Add a classifier layer, and retrain the whole thing supervised 

 Good when label set is poor (e.g. pedestrian detection)  

49

We won’t talk about unsupervised pre-
training here.  But it’s good to have this in 

mind, since it is an active topic of research. 


