
NEURAL NETWORKS CS446 -FALL ‘16

Administration

Registration

Hw3 is out
 Due on Thursday 10/6

Lecture Captioning (Extra-Credit)
 Look at Piazza for details

Scribing lectures
 With pay; come talk to me/send email.

1

Questions

http://l2r.cs.illinois.edu/~danr/Teaching/CS446-16/Hw/HW-hw3/hw3.pdf

NEURAL NETWORKS CS446 -FALL ‘16

Projects

Projects proposals are due on Friday 10/14/16
Within a week we will give you an approval to continue with your project
along with comments and/or a request to modify/augment/do a different
project. There will also be a mechanism for peer comments.

We encourage team projects – a team can be up to 3 people.

Please start thinking and working on the project now.
Your proposal is limited to 1-2 pages, but needs to include references
and, ideally, some of the ideas you have developed in the direction of the
project (maybe even some preliminary results).
Any project that has a significant Machine Learning component is good.
You can do experimental work, theoretical work, a combination of both
or a critical survey of results in some specialized topic.
The work has to include some reading. Even if you do not do a survey, you
must read (at least) two related papers or book chapters and relate your
work to it.
Originality is not mandatory but is encouraged.
Try to make it interesting!

2

NEURAL NETWORKS CS446 -FALL ‘16

Examples

KDD Cup 2013:
 "Author-Paper Identification": given an author and a small set of papers, we

are asked to identify which papers are really written by the author.

 https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

 “Author Profiling”: given a set of document, profile the author: identification,
gender, native language, ….

Caption Control: Is it gibberish? Spam? High quality text?
 Adapt an NLP program to a new domain

Work on making learned hypothesis (e.g., linear threshold
functions, NN) more comprehensible
 Explain the prediction

Develop a (multi-modal) People Identifier
Compare Regularization methods: e.g., Winnow vs. L1
Regularization
Large scale clustering of documents + name the cluster
Deep Networks: convert a state of the art NLP program to a deep
network, efficient, architecture.
Try to prove something

3

https://www.kaggle.com/c/kdd-cup-2013-author-paper-identification-challenge

NEURAL NETWORKS CS446 -FALL ‘16

Neural Networks

Robust approach to approximating real-valued,
discrete-valued and vector valued target functions.

Among the most effective general purpose
supervised learning method currently known.

Effective especially for complex and hard to interpret
input data such as real-world sensory data, where a
lot of supervision is available.

The Backpropagation algorithm for neural networks
has been shown successful in many practical
problems
 handwritten character recognition, speech recognition,

object recognition, some NLP problems

4

NEURAL NETWORKS CS446 -FALL ‘16

Neural Networks

Neural Networks are functions: NN: 𝑋 → 𝑌
 where 𝑋 = 0,1 𝑛, or {0,1}𝑛 and 𝑌 = 0,1 , {0,1}

NN can be used as an approximation of a target
classifier
 In their general form, even with a single hidden layer, NN

can approximate any function

 Algorithms exist that can learn a NN representation from
labeled training data (e.g., Backpropagation).

5

NEURAL NETWORKS CS446 -FALL ‘16

Multi-Layer Neural Networks

Multi-layer network were designed to overcome the
computational (expressivity) limitation of a single
threshold element.

The idea is to stack several

layers of threshold elements,

each layer using the output of

the previous layer as input.

6

activation

Input

Hidden

Output

NEURAL NETWORKS CS446 -FALL ‘16

Motivation for Neural Networks

Inspired by biological systems
 But don’t take this (as well as any other words in the new on

“emergence” of intelligent behavior) seriously;

We are currently on rising part of a wave of interest in
NN architectures, after a long downtime from the mid-
90-ies.
 Better computer architecture (GPUs, parallelism)

 A lot more data than before; in many domains, supervision is
available.

Current surge of interest has seen very minimal
algorithmic changes

7

NEURAL NETWORKS CS446 -FALL ‘16

Motivation for Neural Networks

Minimal to no algorithmic changes

One potentially interesting perspective:
 Before we looked at NN only as function approximators.

 Now, we look at the intermediate representations generated
while learning as meaningful

 Ideas are being developed on the value of these intermediate
representations for transfer learning etc.

We will present in the next two lectures a few of the
basic architectures and learning algorithms, and
provide some examples for applications

8

NEURAL NETWORKS CS446 -FALL ‘16

Basic Unit in Multi-Layer Neural Network

Linear Unit: 𝑜𝑗 = 𝑤. Ԧ𝑥 multiple layers of linear

functions produce linear functions. We want to
represent nonlinear functions.

Threshold units: 𝑜𝑗 = 𝑠𝑔𝑛(𝑤. Ԧ𝑥 − 𝑇) are not

differentiable, hence unsuitable for gradient descent

10

activation

Input

Hidden

Output

NEURAL NETWORKS CS446 -FALL ‘16

Model Neuron (Logistic)

Neuron is modeled by a unit 𝑗 connected by
weighted links 𝑤𝑖𝑗 to other units 𝑖.

 Use a non-linear, differentiable output function such as the
sigmoid or logistic function

 Net input to a unit is defined as:

 Output of a unit is defined as:

11

net𝑗 = ∑𝑤𝑖𝑗 . 𝑥𝑖

𝑜𝑗 =
1

1 + exp −(net𝑗 − 𝑇𝑗)

 𝑜𝑗

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

𝑥7

𝑤17

𝑤67

The parameters so far?
The set of connective weights: 𝑤𝑖𝑗

The threshold value: 𝑇𝑗

NEURAL NETWORKS CS446 -FALL ‘16

History: Neural Computation

McCollough and Pitts (1943) showed how linear
threshold units can be used to compute logical
functions

Can build basic logic gates
 AND:

 OR:

 NOT: use negative weight

Can build arbitrary logic circuits, finite-state machines
and computers given these basis gates.

Can specify any Boolean function using two layer
network (w/ negation)
 DNF and CNF are universal representations

12

net𝑗 = ∑𝑤𝑖𝑗 . 𝑥𝑖

𝑜𝑗 =
1

1 + exp −(net𝑗 − 𝑇𝑗)𝑤𝑖𝑗 = 𝑇𝑗/𝑛

𝑤𝑖𝑗 = 𝑇𝑗

NEURAL NETWORKS CS446 -FALL ‘16

History: Learning Rules

Hebb (1949) suggested that if two units are both
active (firing) then the weights between them should
increase: 𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝑅𝑜𝑖𝑜𝑗
 𝑅 and is a constant called the learning rate

 Supported by physiological evidence

Rosenblatt (1959) suggested that when a target
output value is provided for a single neuron with
fixed input, it can incrementally change weights and
learn to produce the output using the Perceptron
learning rule.
 assumes binary output units; single linear threshold unit

 Led to the Perceptron Algorithm

See: http://people.idsia.ch/~juergen/who-invented-backpropagation.html

13

http://people.idsia.ch/~juergen/who-invented-backpropagation.html

NEURAL NETWORKS CS446 -FALL ‘16

Perceptron Learning Rule

Given:

 the target output for the output unit is 𝑡𝑗

 the input the neuron sees is 𝑥𝑖

 the output it produces is 𝑜𝑗

Update weights according to 𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + 𝑅 𝑡𝑗 − 𝑜𝑗 𝑥𝑖
 If output is correct, don’t change the weights

 If output is wrong, change weights for all inputs which are 1

 If output is low (0, needs to be 1) increment weights

 If output is high (1, needs to be 0) decrement weights

14

𝑇𝑗

𝑜𝑗

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

𝑥7

𝑤17

𝑤67

NEURAL NETWORKS CS446 -FALL ‘16

Widrow-Hoff Rule

This incremental update rule provides an
approximation to the goal:
 Find the best linear approximation of the data

𝐸𝑟𝑟 𝑤 𝑗 =
1

2

𝑑∈𝐷

𝑡𝑑 − 𝑜𝑑
2

 where:

𝑜𝑑 =

𝑖

𝑤𝑖𝑗 . 𝑥𝑖 =𝑤 𝑗 . Ԧ𝑥

output of linear unit on example d

 𝑡𝑑 = Target output for example d

15

NEURAL NETWORKS CS446 -FALL ‘16

Gradient Descent

We use gradient descent determine the weight vector that

minimizes 𝐸𝑟𝑟 𝑤 𝑗 ;

Fixing the set 𝐷 of examples, 𝐸 is a function of 𝑤 𝑗

At each step, the weight vector is modified in the direction that
produces the steepest descent along the error surface.

16

𝐸𝑟𝑟(𝑤)

𝑤
𝑤3 𝑤2 𝑤1 𝑤0

NEURAL NETWORKS CS446 -FALL ‘16

Summary: Single Layer Network

Variety of update rules
 Multiplicative

 Additive

Batch and incremental algorithms

Various convergence and efficiency conditions

There are other ways to learn linear functions
 Linear Programming (general purpose)

 Probabilistic Classifiers (some assumption)

Key algorithms are driven by gradient descent

17

NEURAL NETWORKS CS446 -FALL ‘16

wt+1 = wt – rt gw Q(zt, wt) = wt – rt gt

LMS: Q((x, y), w) =1/2 (y – w ¢ x)2

leads to the update rule (Also called Widrow’s Adaline):
wt+1 = wt + r (yt – wt ¢ xt) xt

Here, even though we make binary predictions based on sign (w ¢ x)
we do not take the sign of the dot-product into account in the loss.

Another common loss function is:
Hinge loss:
Q((x, y), w) = max(0, 1 - y w ¢ x)

This leads to the perceptron update rule:

If yi wi ¢ xi > 1 (No mistake, by a margin): No update
Otherwise (Mistake, relative to margin): wt+1 = wt + r yt xt

Stochastic Gradient Algorithms

18

w ¢
x

NEURAL NETWORKS CS446 -FALL ‘16

Summary: Single Layer Network

Variety of update rules
 Multiplicative

 Additive

Batch and incremental algorithms

Various convergence and efficiency conditions

There are other ways to learn linear functions
 Linear Programming (general purpose)

 Probabilistic Classifiers (some assumption)

Key algorithms are driven by gradient descent

However, the representational restriction is limiting
in many applications

19

NEURAL NETWORKS CS446 -FALL ‘16

Learning with a Multi-Layer
Perceptron

It’s easy to learn the top layer – it’s just a linear unit.

Given feedback (truth) at the top layer, and the activation at the
layer below it, you can use the Perceptron update rule (more
generally, gradient descent) to updated these weights.

The problem is what to do with

the other set of weights – we do

not get feedback in the

intermediate layer(s).

20

activation

Input

Hidden

Output

w2
ij

w1
ij

NEURAL NETWORKS CS446 -FALL ‘16

Learning with a Multi-Layer
Perceptron

The problem is what to do with

the other set of weights – we do

not get feedback in the

intermediate layer(s).

Solution: If all the activation

functions are differentiable, then

the output of the network is also

a differentiable function of the input and weights in the network.

Define an error function (e.g., sum of squares) that is a differentiable
function of the output, i.e. this error function is also a differentiable
function of the weights.

We can then evaluate the derivatives of the error with respect to the
weights, and use these derivatives to find weight values that minimize this
error function, using gradient descent (or other optimization methods).

This results in an algorithm called back-propagation.

21

activation

Input

Hidden

Output

w2
ij

w1
ij

NEURAL NETWORKS CS446 -FALL ‘16

Some facts from real analysis

Simple chain rule
 If 𝑧 is a function of 𝑦, and 𝑦 is a function of 𝑥

 Then 𝑧 is a function of 𝑥, as well.

 Question: how to find
𝜕𝑧

𝜕𝑥

22
Slide Credit: Richard Socher

We will use these facts to derive the details
of the Backpropagation algorithm.

z will be the error (loss) function.
- We need to know how to differentiate z

Intermediate nodes use a logistics function
(or another differentiable step function).
- We need to know how to differentiate it.

NEURAL NETWORKS CS446 -FALL ‘16

Some facts from real analysis

Multiple path chain rule

23
Slide Credit: Richard Socher

NEURAL NETWORKS CS446 -FALL ‘16

Some facts from real analysis

Multiple path chain rule: general

24
Slide Credit: Richard Socher

NEURAL NETWORKS CS446 -FALL ‘16

Backpropagation Learning Rule

Since there could be multiple output units, we define
the error as the sum over all the network output units.

𝐸𝑟𝑟 𝑤 =
1

2
∑𝑑∈𝐷∑𝑘∈𝐾 𝑡𝑘𝑑 − 𝑜𝑘𝑑

2

 where 𝐷 is the set of training examples,

 𝐾 is the set of output units

This is used to derive the (global) learning rule which

performs gradient descent in the weight space in an attempt to
minimize the error function.

Δ𝑤𝑖𝑗 = −𝑅
𝜕𝐸

𝜕𝑤𝑖𝑗

25

𝑜1…𝑜𝑘

(1, 0, 1, 0, 0)

Function 1

NEURAL NETWORKS CS446 -FALL ‘16

Reminder: Model Neuron (Logistic)

Neuron is modeled by a unit 𝑗 connected by
weighted links 𝑤𝑖𝑗 to other units 𝑖.

 Use a non-linear, differentiable output function such as the
sigmoid or logistic function

 Net input to a unit is defined as:

 Output of a unit is defined as:

26

net𝑗 = ∑𝑤𝑖𝑗 . 𝑥𝑖

𝑜𝑗 =
1

1 + exp −(net𝑗 − 𝑇𝑗)

 𝑜𝑗

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

𝑥7

𝑤17

𝑤67

Function 2

Function 3

NEURAL NETWORKS CS446 -FALL ‘16

Derivatives

Function 1 (error):

 𝑦 =
1

2
∑𝑘∈𝐾 𝑐𝑘 − 𝑥𝑘

2

𝜕𝑦

𝜕𝑥𝑖
= − 𝑡𝑖 − 𝑥𝑖

Function 2 (linear gate):

 𝑦 = ∑𝑤𝑖 . 𝑥𝑖

𝜕𝑦

𝜕𝑤𝑖
= 𝑥𝑖

Function 3 (differentiable step function):

 𝑦 =
1

1+exp{−(𝑥−𝑇)}

𝜕𝑦

𝜕𝑥
=

exp{−(𝑥−𝑇)}

(1+exp{−(𝑥−𝑇)})2
= 𝑦(1 − 𝑦)

27

𝑜1…𝑜𝑘

𝑗

𝑖

𝑤𝑖𝑗

NEURAL NETWORKS CS446 -FALL ‘16

Derivation of Learning Rule

The weights are updated incrementally; the error is
computed for each example and the weight update is
then derived.

𝐸𝑟𝑟𝑑 𝑤 =
1

2
∑𝑘∈𝐾 𝑡𝑘 − 𝑜𝑘

2

𝑤𝑖𝑗 influences the output only through net𝑗
net𝑗 = ∑𝑤𝑖𝑗 . 𝑥𝑖𝑗

Therefore:
𝜕𝐸𝑑
𝜕𝑤𝑖𝑗

=
𝜕𝐸𝑑
𝜕net𝑗

𝜕net𝑗

𝜕𝑤𝑖𝑗

28

𝑜1…𝑜𝑘

𝑗

𝑖

𝑤𝑖𝑗

NEURAL NETWORKS CS446 -FALL ‘16

= − 𝑡𝑗 − 𝑜𝑗 𝑜𝑗 1 − 𝑜𝑗 𝑥𝑖𝑗

=
𝜕𝐸𝑑
𝜕o𝑗

𝜕𝑜𝑗

𝜕net𝑗

𝜕net𝑗

𝜕𝑤𝑖𝑗

Derivation of Learning Rule (2)

Weight updates of output units:

 𝑤𝑖𝑗 influences the output only through net𝑗

Therefore:

29

𝑗

𝑖

𝑤𝑖𝑗
𝜕𝐸𝑑
𝜕𝑤𝑖𝑗

=
𝜕𝐸𝑑
𝜕net𝑗

𝜕net𝑗

𝜕𝑤𝑖𝑗

𝐸𝑟𝑟𝑑 𝑤 =
1

2

𝑘∈𝐾

𝑡𝑘 − 𝑜𝑘
2 net𝑗 = ∑𝑤𝑖𝑗 . 𝑥𝑖𝑗

𝜕𝑜𝑗

𝜕net𝑗
= 𝑜𝑗(1 − 𝑜𝑗)

𝑜𝑗 =
1

1 + exp{−(net𝑗 − 𝑇𝑗)}

NEURAL NETWORKS CS446 -FALL ‘16

Derivation of Learning Rule (3)

Weights of output units:

 𝑤𝑖𝑗 is changed by:

where

𝛿𝑗 = 𝑡𝑗 − 𝑜𝑗 𝑜𝑗 1 − 𝑜𝑗

30

Δ𝑤𝑖𝑗 = 𝑅 𝑡𝑗 − 𝑜𝑗 𝑜𝑗 1 − 𝑜𝑗 𝑥𝑖𝑗
= 𝑅𝛿𝑗𝑥𝑖𝑗

𝑗

𝑖

𝑤𝑖𝑗

𝑜𝑗

𝑥𝑖𝑗

NEURAL NETWORKS CS446 -FALL ‘16

=

𝑘∈𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

−𝛿𝑘
𝜕net𝑘
𝜕net𝑗

𝑥𝑖𝑗

=

𝑘∈𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

𝜕𝐸𝑑
𝜕net𝑘

𝜕net𝑘
𝜕net𝑗

𝑥𝑖𝑗

𝜕𝐸𝑑
𝜕𝑤𝑖𝑗

=
𝜕𝐸𝑑
𝜕net𝑗

𝜕net𝑗

𝜕𝑤𝑖𝑗
=

Derivation of Learning Rule (4)

Weights of hidden units:

 𝑤𝑖𝑗 Influences the output only through all the units whose

direct input include 𝑗

31

𝑘

𝑗

𝑖

𝑤𝑖𝑗

𝑜𝑘

net𝑗 = ∑𝑤𝑖𝑗 . 𝑥𝑖𝑗

NEURAL NETWORKS CS446 -FALL ‘16

=

𝑘∈𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

−𝛿𝑘
𝜕net𝑘
𝜕𝑜𝑗

𝜕𝑜𝑗

𝜕net𝑗
𝑥𝑖𝑗

=

𝑘∈𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

−𝛿𝑘 𝑤𝑗𝑘 𝑜𝑗(1 − 𝑜𝑗) 𝑥𝑖𝑗

Derivation of Learning Rule (5)

Weights of hidden units:

 𝑤𝑖𝑗 influences the output only through all the units whose

direct input include 𝑗

32

𝑘

𝑗

𝑖

𝑤𝑖𝑗

𝑜𝑘

𝜕𝐸𝑑
𝜕𝑤𝑖𝑗

=

𝑘∈𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

−𝛿𝑘
𝜕net𝑘
𝜕net𝑗

𝑥𝑖𝑗 =

NEURAL NETWORKS CS446 -FALL ‘16

Derivation of Learning Rule (6)

Weights of hidden units:

 𝑤𝑖𝑗 is changed by:

Where

𝛿𝑗 = 𝑜𝑗 1 − 𝑜𝑗 .

𝑘∈𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑗

−𝛿𝑘 𝑤𝑗𝑘

First determine the error for the output units.

Then, backpropagate this error layer by layer through the
network, changing weights appropriately in each layer.

33

𝑘

𝑗

𝑖

𝑤𝑖𝑗

𝑜𝑘

Δ𝑤𝑖𝑗 = 𝑅 𝑜𝑗 1 − 𝑜𝑗 .

𝑘∈𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑗

−𝛿𝑘 𝑤𝑗𝑘 𝑥𝑖𝑗

= 𝑅𝛿𝑗𝑥𝑖𝑗

NEURAL NETWORKS CS446 -FALL ‘16

The Backpropagation Algorithm

Create a fully connected three layer network. Initialize weights.

Until all examples produce the correct output within 𝜖 (or other
criteria)

For each example in the training set do:

1. Compute the network output for this example

2. Compute the error between the output and target value
𝛿𝑘 = 𝑡𝑘 − 𝑜𝑘 𝑜𝑘 1 − 𝑜𝑘

1. For each output unit k, compute error term

𝛿𝑗 = 𝑜𝑗 1 − 𝑜𝑗 .

𝑘∈𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑗

−𝛿𝑘 𝑤𝑗𝑘

1. For each hidden unit, compute error term:
Δ𝑤𝑖𝑗 = 𝑅𝛿𝑗𝑥𝑖𝑗

1. Update network weights

End epoch

34

NEURAL NETWORKS CS446 -FALL ‘16

More Hidden Layers

The same algorithm holds for more hidden layers.

35

input ℎ1 ℎ2 ℎ3 output

NEURAL NETWORKS CS446 -FALL ‘16

Comments on Training

No guarantee of convergence; may oscillate or reach a
local minima.

In practice, many large networks can be trained on large
amounts of data for realistic problems.

Many epochs (tens of thousands) may be needed for
adequate training. Large data sets may require many
hours of CPU

Termination criteria: Number of epochs; Threshold on
training set error; No decrease in error; Increased error on
a validation set.

To avoid local minima: several trials with different random
initial weights with majority or voting techniques

36

NEURAL NETWORKS CS446 -FALL ‘16

Over-training Prevention

Running too many epochs may over-train the network
and result in over-fitting. (improved result on training,
decrease in performance on test set)

Keep an hold-out validation set and test accuracy after
every epoch

Maintain weights for best performing network on the
validation set and return it when performance decreases
significantly beyond that.

To avoid losing training data to validation:
 Use 10-fold cross-validation to determine the average number of

epochs that optimizes validation performance

 Train on the full data set using this many epochs to produce the
final results

37

NEURAL NETWORKS CS446 -FALL ‘16

Over-fitting prevention

Too few hidden units prevent the system from
adequately fitting the data and learning the concept.

Using too many hidden units leads to over-fitting.

Similar cross-validation method can be used to
determine an appropriate number of hidden units.
(general)

Another approach to prevent over-fitting is weight-
decay: all weights are multiplied by some fraction in
(0,1) after every epoch.
 Encourages smaller weights and less complex hypothesis

 Equivalently: change Error function to include a term for the
sum of the squares of the weights in the network. (general)

38

NEURAL NETWORKS CS446 -FALL ‘16

Dropout training
Proposed by (Hinton et al, 2012)

Each time decide whether to delete one hidden unit with
some probability p

39

NEURAL NETWORKS CS446 -FALL ‘16

Dropout training

 Dropout of 50% of the hidden units and 20% of the input units (Hinton
et al, 2012)

40

NEURAL NETWORKS CS446 -FALL ‘16

Dropout training
Model averaging effect

 Among models, with shared parameters

 H: number of units in the network

 Only a few get trained

 Much stronger than the known regularizer

What about the input space?

 Do the same thing!

2H

41

NEURAL NETWORKS CS446 -FALL ‘16

Input-Output Coding

Appropriate coding of inputs and outputs can make
learning problem easier and improve generalization.

Encode each binary feature as a separate input unit;

For multi-valued features include one binary unit per
value rather than trying to encode input information
in fewer units.
 Very common today to use distributed representation of the

input – real valued, dense representation.

For disjoint categorization problem, best to have one
output unit for each category rather than encoding N
categories into log N bits.

42

One way to do it, if you start with a collection of sparsely
representation examples, is to use dimensionality reduction
methods:
- Your m examples are represented as a m x 106 matrix
- Multiple it by a random matrix of size 106 x 300, say.
- Random matrix: Normal(0,1)
- New representation: m x 300 dense rows

NEURAL NETWORKS CS446 -FALL ‘16

Representational Power

The Backpropagation version presented is for networks
with a single hidden layer,

But:

Any Boolean function can be represented by a two layer
network (simulate a two layer AND-OR network)

Any bounded continuous function can be approximated
with arbitrary small error by a two layer network.

Sigmoid functions provide a set of basis function from
which arbitrary function can be composed.

Any function can be approximated to arbitrary accuracy
by a three layer network.

43

NEURAL NETWORKS CS446 -FALL ‘16

Hidden Layer Representation

Weight tuning procedure sets weights that define
whatever hidden units representation is most
effective at minimizing the error.

Sometimes Backpropagation will define new hidden
layer features that are not explicit in the input
representation, but which capture properties of the
input instances that are most relevant to learning the
target function.

Trained hidden units can be seen as newly
constructed features that re-represent the examples
so that they are linearly separable

44

NEURAL NETWORKS CS446 -FALL ‘16

Auto-associative Network

An auto-associative network trained with 8 inputs, 3 hidden
units and 8 output nodes, where the output must reproduce the
input.

When trained with vectors with only one bit on

INPUT HIDDEN

1 0 0 0 0 0 0 0 .89 .40 0.8

0 1 0 0 0 0 0 0 .97 .99 .71

….

0 0 0 0 0 0 0 1 .01 .11 .88

Learned the standard 3-bit encoding for the 8 bit vectors.

Illustrates also data compression aspects of learning

46

1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

NEURAL NETWORKS CS446 -FALL ‘16

Sparse Auto-encoder

Encoding:

Decoding:

 Goal: perfect reconstruction of

input vector 𝒙, by the output ෝ𝒙 = ℎ𝜽(𝒙)

 Where 𝜽 = {𝑾,𝑾′}

 Minimize an error function 𝒍(ℎ𝜽 𝒙 , 𝒙)

 For example:

 And regularize it

After optimization drop the

reconstruction layer and add a new layer

47

𝒚 = 𝑓(𝑊𝒙 + 𝒃)

ෝ𝒙 = 𝑔(𝑊′𝒚 + 𝒃′)

𝑙 ℎ𝜃 𝒙 , 𝒙 = ℎ𝜃 𝒙 − 𝒙 2

min𝜃

𝒙

𝑙 ℎ𝜃 𝒙 , 𝒙 +

𝑖

|𝑤𝑖|

NEURAL NETWORKS CS446 -FALL ‘16

Stacking Auto-encoder

Add a new layer, and a reconstruction layer for it.

And try to tune its parameters such that

And continue this for each layer

48

NEURAL NETWORKS CS446 -FALL ‘16

Beyond supervised learning

So far what we had was purely supervised.

 Initialize parameters randomly

 Train in supervised mode typically, using backprop

 Used in most practical systems (e.g. speech and image recognition)

Unsupervised, layer-wise + supervised classifier on top
 Train each layer unsupervised, one after the other

 Train a supervised classifier on top, keeping the other layers fixed

 Good when very few labeled samples are available

Unsupervised, layer-wise + global supervised fine-tuning

 Train each layer unsupervised, one after the other

 Add a classifier layer, and retrain the whole thing supervised

 Good when label set is poor (e.g. pedestrian detection)

49

We won’t talk about unsupervised pre-
training here. But it’s good to have this in

mind, since it is an active topic of research.

