Administration

<u>HW1</u> grades should be up!

Questions

- <u>HW3</u> is due midnight.
- <u>Hw4</u> will be released next Tuesday.
 - Please start working on it as soon as possible
 - Come to sections with questions
- Deadline for project proposals is close
 - Make sure to find a partner and explore the ideas.

Recap: Multi-Layer Perceptrons

- Multi-layer network
 - A global approximator
 - Different rules for training it
- The Back-propagation
 - Forward step
 - Back propagation of errors

- Congrats! Now you know the hardest concept about neural networks!
- Today:
 - Convolutional Neural Networks
 - Recurrent Neural Networks

Receptive Fields

- The **receptive field** of an individual sensory neuron is the particular region of the sensory space (e.g., the body surface, or the retina) in which a stimulus will trigger the firing of that neuron.
 - In the auditory system, receptive fields can correspond to volumes in auditory space
- Designing "proper" receptive fields for the input Neurons is a significant challenge.
- Consider a task with image inputs
 - Receptive fields should give expressive features from the raw input to the system
 - □ How would you design the receptive fields for this problem?

NEURAL NETWORKS

A fully connected layer:

- **Example:**
 - 100x100 images
 - 1000 units in the input

Problems:

- 10^7 edges!
- Spatial correlations lost!
- Variables sized inputs.

Slide Credit: Marc'Aurelio Ranzato CS446 -FALL '16

Consider a task with image inputs:

A locally connected layer:

- **Example:**
 - 100x100 images
 - 1000 units in the input
 - Filter size: 10x10
- □ Local correlations preserved!
- Problems:
 - 10^5 edges
 - This parameterization is good when input image is registered (e.g., face recognition).
 - Variable sized inputs, again.

Slide Credit: Marc'Aurelio Ranzato CS446 -FALL '16

NEURAL NETWORKS

5

Convolutional Layer

A solution:

Filters to capture different patterns in the input space.

- Share parameters across different locations (assuming input is stationary)
- Convolutions with learned filters
- □ Filters will be **learned** during training.

The issue of variable-sized inputs will be resolved with a **pooling** layer.

So what is a convolution?

Slide Credit: Marc'Aurelio Ranzato CS446 -FALL '16

Convolution Operator

"Convolution" is very similar to "crosscorrelation", except that in convolution one of the functions is flipped.

Convolution operator: *

takes two functions and gives another function
 One dimension: (x * h)(t) = \$\int x(\tau)h(t - \tau)d\tau\$

 $(x*h)[n] = \sum_m x[m]h[n-m]$

NEURAL NETWORKS

Convolution Operator (2)

Convolution in two dimension:

- The same idea: flip one matrix and slide it on the other matrix
 0 -1 0
- Example: Sharpen kernel: -1 5 -1

input image

output image

Try other kernels: http://setosa.io/ev/image-kernels/

Convolution Operator (3)

Convolution in two dimension:

The same idea: flip one matrix and slide it on the other matrix

Slide Credit: Marc'Aurelio Ranzato

Complexity of Convolution

- Complexity of convolution operator is $n\log(n)$, for n inputs.
 - Uses Fast-Fourier-Transform (FFT)
- For two-dimension, each convolution takes MNlog(MN) time, where the size of input is MN.

Slide Credit: Marc'Aurelio Ranzato

Convolutional Layer

- The convolution of the **input (vector/matrix)** with weights **(vector/matrix)** results in a **response vector/matrix**.
- We can have multiple filters in each convolutional layer, each producing an output.
- If it is an intermediate layer, it can have **multiple inputs**!

NEURAL NETWORKS

Pooling Layer

How to handle variable sized inputs?

□ A layer which reduces inputs of different size, to a fixed size.

Pooling

Slide Credit: Marc'Aurelio Ranzato

Pooling Layer

How to handle variable sized inputs?

□ A layer which reduces inputs of different size, to a fixed size.

Pooling

- Different variations
 - Max pooling

 $h_i[n] = \max_{i \in N(n)} \tilde{h}[i]$

Average pooling

$$h_i[n] = \frac{1}{n} \sum_{i \in N(n)} \tilde{h}[i]$$

L2-pooling

$$h_i[n] = \frac{1}{n} \sqrt{\sum_{i \in N(n)} \tilde{h}^2[i]}$$

etc

NEURAL NETWORKS

Convolutional Nets

One stage structure:

NEURAL NETWORKS

Training a ConvNet

The same procedure from Back-propagation applies here.

Remember in backprop we started from the error terms in the last stage, and passed them back to the previous layers, one by one.

Back-prop for the pooling layer:

- □ Consider, for example, the case of "max" pooling.
- This layer only routes the gradient to the input that has the highest value in the forward pass.
- Hence, during the forward pass of a pooling layer it is common to keep track of the index of the max activation (sometimes also called *the switches*) so that gradient routing is efficient during backpropagation.

NEURAL NETWORKS

Training a ConvNet

NEURAL NETWORKS

Convolutional Nets

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Anetomole

NEURAL NETWORKS

ConvNet roots

- **Fukushima, 1980s** designed network with same basic structure but did not train by backpropagation.
- The first successful applications of **Convolutional Networks** by Yann LeCun in 1990's (LeNet)
 - Was used to read zip codes, digits, etc.
- Many variants nowadays, but the core idea is the same
 - Example: a system developed in Google (GoogLeNet)
 - Compute different filters
 - Compose one big vector from all of them
 - Layer this iteratively

See more: http://arxiv.org/pdf/1409.4842v1.pdf

NEURAL NETWORKS

mo

Depth matters

Slide from [Kaiming He 2015]

NEURAL NETWORKS

Practical Tips

- Before large scale experiments, test on a small subset of the data and check the error should go to zero.
 - Overfitting on small training
- Visualize features (feature maps need to be uncorrelated) and have high variance
- Bad training: many hidden units ignore the input and/or exhibit strong correlations.

Figure Credit: Marc'Aurelio Ranzato

Debugging

Training diverges:

- \Box Learning rate may be too large \rightarrow decrease learning rate
- □ BackProp is buggy → numerical gradient checking
- Loss is minimized but accuracy is low
 - Check loss function: Is it appropriate for the task you want to solve? Does it have degenerate solutions?
- NN is underperforming / under-fitting
 - □ Compute number of parameters → if too small, make network larger
- NN is too slow
 - □ Compute number of parameters → Use distributed framework, use GPU, make network smaller

Many of these points apply to many machine learning models, no just neural networks.

CNN for vector inputs

Convolutional Layer on vectors

Think about a single convolutional layer

A bunch of vector filters

- Each defined in \mathbb{R}^{dh}
 - Where *h* is the number of the words the filter covers
 - Size of the word vector *d*

000000 000000

0000

$$c_1 = f(w \cdot x_{\mathbb{R}_{2h}}) \neq f(w \cdot x_h \cdot c_{\mathbb{R}_{2h}}) f(w \cdot x_{\mathbb{R}_{2h}}) \neq f(w \cdot x_{\mathbb{R}_{2h}})$$

Result of the convolution with the filter

$$c = [c_1, \dots, c_{n-h+1}]$$

- Convolution with a filter that spans 2 words, is operating on all of the bigrams (vectors of two consecutive word, concatenated): "this is", "is not", "not a", "a spam".
- □ Regardless of whether it is grammatical (not appealing linguistically)

NEURAL NETWORKS

A CONVOLUTIONAL

Convolutional Layer on vectors

NEURAL NETWORKS

Convolutional Layer on vectors

NEURAL NETWORKS

Multi-layer feed-forward NN: DAG

Just computes a fixed sequence of

non-linear learned transformations to convert an input patter into an output pattern

Recurrent Neural Network: Digraph

- Has cycles.
- Cycle can act as a memory;

- The hidden state of a recurrent net can carry along information about a "potentially" unbounded number of previous inputs.
- They can model sequential data in a much more natural way.

Equivalence between RNN and Feed-forward NN

- Assume that there is a time delay of 1 in using each connection.
- The recurrent net is just a layered net that keeps reusing the same weights.

Slide Credit: Geoff Hinton

How would you go about solving this task?

A chain RNN:

- Has a chain-like structure
- \Box Each input is replaced with its vector representation x_t
- Hidden (memory) unit h_t contain information about previous inputs and previous hidden units h_{t-1}, h_{t-2}, etc
 - Computed from the past memory and current word. It summarizes the sentence up to that time.

NEURAL NETWORKS

A popular way of formalizing it: $h_t = f(W_h h_{t-1} + W_i x_t)$

 \Box Where *f* is a nonlinear, differentiable (why?) function.

Outputs?

Many options; depending on problem and computational resource

- Prediction for x_t , with h_t
- Prediction for x_t , with h_t , ..., $h_{t-\tau}$

$$y_t = \operatorname{softmax}(W_o h_t)$$
$$y_t = \operatorname{softmax}\left(\sum_{i=0}^{\tau} \alpha^i W_o^{-i} h_{t-i}\right)$$

Prediction for the whole chain

 $y_T = \operatorname{softmax}(W_o h_T)$

- Some inherent issues with RNNs:
 - Recurrent neural nets cannot capture phrases without prefix context
 - □ They often capture too much of last words in final vector

NEURAL NETWORKS

Bi-directional RNN

One of the issues with RNN:

Hidden variables capture only one side context

A bi-directional structure

 $h_{t} = f(W_{h}h_{t-1} + W_{i}x_{t})$ $\tilde{h}_{t} = f(\tilde{W}_{h}\tilde{h}_{t+1} + \tilde{W}_{i}x_{t})$ $y_{t} = \text{softmax}(W_{o}h_{t} + \tilde{W}_{o}\tilde{h}_{t})$

Stack of bi-directional networks

Use the same idea and make your model further complicated:

NEURAL NETWORKS

Training RNNs

How to train such model?

 $\frac{\partial E}{\partial W} = \sum_{t=1}^{T} \frac{\partial E_t}{\partial W}$

Generalize the same ideas from back-propagation

 $\frac{\partial E_t}{\partial W} = \sum_{t=1}^{T} \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_{t-k}} \frac{\partial h_{t-k}}{\partial W}$

Total output error: $E(\vec{y}, \vec{t}) = \sum_{t=1}^{T} E_t(y_t, t_t)$

Parameters? W_o, W_i, W_h + vectors for input Backpropagation Backpropagation

This sometimes is called "Backpropagation Through Time", since the gradients are propagated back through time.

NEURAL NETWORKS

34

$$\frac{\partial E}{\partial W} = \sum_{t=1}^{T} \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_{t-k}} \frac{\partial h_{t-k}}{\partial W}$$

Reminder: $y_t = \text{softmax}(W_o h_t)$ $h_t = f(W_h h_{t-1} + W_i x_t)$

$$\frac{\partial h_t}{\partial h_{t-1}} = W_h \text{diag}[f'(W_h h_{t-1} + W_i x_t)] \qquad \text{diag}[a_1, \dots, a_n] = \begin{bmatrix} a_1 & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & a_n \end{bmatrix}$$

$$\frac{\partial h_t}{\partial h_{t-k}} = \prod_{j=t-k+1}^t \frac{\partial h_j}{\partial h_{j-1}} = \prod_{j=t-k+1}^t W_h \operatorname{diag}[f'(W_h h_{t-1} + W_i x_t)]$$

NEURAL NETWORKS

backpropagation for PMN

35

Vanishing/exploding gradients

$$\frac{\partial h_t}{\partial h_{t-k}} = \prod_{j=t-k+1}^t W_h \operatorname{diag}[f'(W_h h_{t-1} + W_i x_t)]$$
$$\frac{\partial h_t}{\partial h_k} \le \prod_{j=t-k+1}^t ||W_h|| ||\operatorname{diag}[f'(W_h h_{t-1} + W_i x_t)]|| \le \prod_{j=t-k+1}^t \alpha \beta = (\alpha \beta)^k$$

Gradient can become very **small or very large quickly**, and the locality assumption of gradient descent breaks down (Vanishing gradient) [Bengio et al 1994]

Vanishing gradients are quite prevalent and a serious issue.

- A real example
 - Training a feed-forward network
 - y-axis: sum of the gradient norms

Earlier layers have exponentially smaller sum of gradient norms

This will make training earlier layers much slower.

NEURAL NETWORKS

Vanishing/exploding gradients

- In an RNN trained on long sequences (*e.g.* 100 time steps) the gradients can easily explode or vanish.
 - So RNNs have difficulty dealing with long-range dependencies.
- Many methods proposed for reduce the effect of vanishing gradients; although it is still a problem
 - Introduce shorter path between long connections
 - Abandon stochastic gradient descent in favor of a much more sophisticated Hessian-Free (HF) optimization
 - Add fancier modules that are robust to handling long memory; e.g. Long Short Term Memory (LSTM)
 - One trick to handle the exploding-gradients:
 - □ Clip gradients with bigger sizes:

Define
$$g = \frac{\partial E}{\partial W}$$

If $||g|| \ge threshold$ then
 $g \leftarrow \frac{threshold}{||g||} g$

NEURAL NETWORKS