Bayesian Classifier

- $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{V}$, finite set of values
\square Instances $x \in X$ can be described as a collection of features

$$
x=\left(x_{1}, x_{2}, \ldots x_{n}\right) \quad x_{i} \in\{0,1\}
$$

- Given an example, assign it the most probable value in V
- Bayes Rule:

$$
\begin{aligned}
\mathbf{v}_{\text {MAP }} & =\operatorname{argmax}_{\mathbf{v}_{\mathrm{j}} \in \mathbf{V}} \mathbf{P}\left(\mathbf{v}_{\mathbf{j}} \mid \mathbf{x}\right)=\operatorname{argmax}_{\mathbf{v}_{\mathbf{j}} \in \mathbf{V}} \mathbf{P}\left(\mathbf{v}_{\mathrm{j}} \mid \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}\right) \\
\mathbf{v}_{\text {MAP }} & =\operatorname{argmax}_{\mathbf{v}_{\mathrm{j}} \in \mathbf{V}} \frac{\mathbf{P}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}} \mid \mathbf{v}_{\mathbf{j}}\right) \mathbf{P}\left(\mathbf{v}_{\mathbf{j}}\right)}{\mathbf{P}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}\right)} \\
& =\operatorname{argmax}_{\mathbf{v}_{\mathbf{j}} \in \mathbf{V}} \mathbf{P}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}} \mid \mathbf{v}_{\mathbf{j}}\right) \mathbf{P}\left(\mathbf{v}_{\mathbf{j}}\right)
\end{aligned}
$$

- Notational convention: $P(y)$ means $P(Y=y)$

Bayesian Classifier

$$
V_{M A P}=\operatorname{argmax}_{v} P\left(x_{1}, x_{2}, \ldots, x_{n} \mid v\right) P(v)
$$

- Given training data we can estimate the two terms.
- Estimating $\mathrm{P}(\mathrm{v})$ is easy. E.g., under the binomial distribution assumption, count the number of times v appears in the training data.

■ However, it is not feasible to estimate $P\left(x_{1}, x_{2}, \ldots, x_{n} \mid v\right)$

- In this case we have to estimate, for each target value, the probability of each instance (most of which will not occur).
- In order to use a Bayesian classifiers in practice, we need to make assumptions that will allow us to estimate these quantities.

Naive Bayes

$$
V_{M A P}=\operatorname{argmax}_{v} P\left(x_{1}, x_{2}, \ldots, x_{n} \mid v\right) P(v)
$$

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}} \mid \mathbf{v}_{\mathbf{j}}\right)= \\
& \quad=\mathbf{P}\left(\mathbf{x}_{1} \mid \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}, \mathbf{v}_{\mathbf{j}}\right) \mathbf{P}\left(\mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}} \mid \mathbf{v}_{\mathbf{j}}\right) \\
& \quad=\mathbf{P}\left(\mathbf{x}_{1} \mid \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}, \mathbf{v}_{\mathbf{j}}\right) \mathbf{P}\left(\mathbf{x}_{2} \mid \mathbf{x}_{3}, \ldots, \mathbf{x}_{\mathrm{n}}, \mathbf{v}_{\mathbf{j}}\right) \mathbf{P}\left(\mathbf{x}_{3}, \ldots, \mathbf{x}_{\mathrm{n}} \mid \mathbf{v}_{\mathbf{j}}\right) \\
& \quad=\ldots \ldots \\
& \quad=\mathbf{P}\left(\mathbf{x}_{1} \mid \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{n}}, \mathbf{v}_{\mathbf{j}}\right) \mathbf{P}\left(\mathbf{x}_{2} \mid \mathbf{x}_{3}, \ldots, \mathbf{x}_{\mathrm{n}}, \mathbf{v}_{\mathbf{j}}\right) \mathbf{P}\left(\mathbf{x}_{3} \mid \mathbf{x}_{4}, \ldots, \mathbf{x}_{\mathrm{n}}, \mathbf{v}_{\mathbf{j}}\right) \ldots \mathbf{P}\left(\mathbf{x}_{\mathrm{n}} \mid \mathbf{v}_{\mathbf{j}}\right)
\end{aligned}
$$

- Assumption: feature values are independent given the target value

Naive Bayes (2)

$$
\mathrm{V}_{\mathrm{MAP}}=\operatorname{argmax}_{\mathrm{v}} \mathrm{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \mid \mathrm{v}\right) \mathrm{P}(\mathrm{v})
$$

\square Assumption: feature values are independent given the target value

$$
P\left(x_{1}=b_{1}, x_{2}=b_{2}, \ldots, x_{n}=b_{n} \mid v=v_{j}\right)=\Pi_{1}^{n} P\left(x_{n}=b_{n} \mid v=v_{j}\right)
$$

- Generative model:
\square First choose a value $v_{j} \in V$ according to $\mathrm{P}(\mathrm{v})$
\square For each v_{j} : choose $x_{1} x_{2}, \ldots, x_{n} \quad$ according to $P\left(x_{k} \mid v_{j}\right)$

Naive Bayes (3)

$$
V_{\text {MAP }}=\operatorname{argmax}_{v} P\left(x_{1}, x_{2}, \ldots, x_{n} \mid v\right) P(v)
$$

- Assumption: feature values are independent given the target value

$$
P\left(x_{1}=b_{1}, x_{2}=b_{2}, \ldots, x_{n}=b_{n} \mid v=v_{j}\right)=\Pi_{1}{ }^{n} P\left(x_{i}=b_{i} \mid v=v_{j}\right)
$$

- Learning method: Estimate $\mathrm{n}|\mathrm{V}|+|\mathrm{V}|$ parameters and use them to make a prediction. (How to estimate?)
- Notice that this is learning without search. Given a collection of training examples, you just compute the best hypothesis (given the assumptions).
- This is learning without trying to achieve consistency or even approximate consistency.
- Why does it work?

Conditional Independence

- Notice that the features values are conditionally independent given the target value, and are not required to be independent.
- Example: The Boolean features are x and y.

We define the label to be $\ell=f(x, y)=x \wedge y$ over the product distribution: $p(x=0)=p(x=1)=1 / 2 \quad$ and $\quad p(y=0)=p(y=1)=1 / 2$
The distribution is defined so that x and y are independent: $p(x, y)=p(x) p(y)$
That is:

	$X=0$	$X=1$		
$Y=0$	$1 / 4$	$(l=0)$	$1 / 4$	$(l=0)$
$Y=1$	$1 / 4$	$(l=0)$	$1 / 4$	$(l=1)$

- But, given that $\ell=0$:

$$
\begin{array}{ll}
& p(x=1 \mid \ell=0)=p(y=1 \mid \ell=0)=1 / 3 \\
\text { while: } & p(x=1, y=1 \mid \ell=0)=0
\end{array}
$$

so x and y are not conditionally independent.

Conditional Independence

- The other direction also does not hold. x and y can be conditionally independent but not independent.

Example: We define a distribution s.t.: $\ell=0: p(x=1 \mid \ell=0)=1, p(y=1 \mid \ell=0)=0$ $\ell=1: p(x=1 \mid \ell=1)=0, p(y=1 \mid \ell=1)=1$ and assume, that: $p(\ell=0)=p(\ell=1)=1 / 2$

	$X=0$	$X=1$
$Y=0$	$0(l=0)$	$1 / 2 \quad(l=0)$
$Y=1$	$1 / 2(\ell=1)$	0
	$(\ell=1)$	

- Given the value of ℓ, x and y are independent (check)
- What about unconditional independence ?

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x}=1)=\mathrm{p}(\mathrm{x}=1 \mid \ell=0) \mathrm{p}(\ell=0)+\mathrm{p}(\mathrm{x}=1 \mid \ell=1) \mathrm{p}(\ell=1)=0.5+0=0.5 \\
& \mathrm{p}(\mathrm{y}=1)=\mathrm{p}(\mathrm{y}=1 \mid \ell=0) \mathrm{p}(\ell=0)+\mathrm{p}(\mathrm{y}=1 \mid \ell=1) \mathrm{p}(\ell=1)=0+0.5=0.5 \\
& \text { But, } \\
& \mathrm{p}(\mathrm{x}=1, \mathrm{y}=1)=\mathrm{p}(\mathrm{x}=1, \mathrm{y}=1 \mid \ell=0) \mathrm{p}(\ell=0)+\mathrm{p}(\mathrm{x}=1, \mathrm{y}=1 \mid \ell=1) \mathrm{p}(\ell=1)=0
\end{aligned}
$$

so x and y are not independent.

Naïve Bayes Example $\mathbf{v}_{\mathrm{NB}}=\operatorname{argmax}_{\mathrm{v}_{\mathrm{i}} \in \mathrm{v}} \mathbf{P}\left(\mathbf{v}_{\mathrm{i}}\right) \prod_{\mathrm{i}} \mathbf{P}\left(\mathbf{x}_{\mathrm{i}} \mid \mathrm{v}_{\mathrm{i}}\right)$

Day Outlook Temperature Humidity Wind PlayTennis

1	Sunny	Hot	High	Weak	No	
2	Sunny	Hot	High	Strong	No	
3	Overcast	Hot	High	Weak	Yes	
4	Rain	Mild	High	Weak	Yes	
5	Rain	Cool	Normal	Weak	Yes	
6	Rain	Cool	Normal	Strong	No	
7	Overcast	Cool	Normal	Strong	Yes	
8	Sunny	Mild	High	Weak	No	
9	Sunny	Cool	Normal	Weak	Yes	
10	Rain	Mild	Normal	Weak	Yes	
11	Sunny	Mild	Normal	Strong	Yes	
12	Overcast	Mild	High	Strong	Yes	
13	Overcast	Hot	Normal	Weak	Yes	
14	Rain	Mild	High	Strong	No	8
ing		CS446	-Spring 17			

Estimating Probabilities

$$
\mathbf{v}_{\mathrm{NB}}=\operatorname{argmax}_{\mathrm{v} \in\{\mathrm{yes}, \mathbf{n o}\}} \mathbf{P}(\mathbf{v}) \prod_{i} \mathbf{P}\left(\mathbf{x}_{\mathrm{i}}=\text { observation } \mid \mathbf{v}\right)
$$

- How do we estimate $\mathbf{P}($ observation | v) ?

Example

$$
v_{N B}=\operatorname{argmax}_{v_{i} \in V} P\left(v_{j}\right) \prod_{i} P\left(x_{i} \mid v_{j}\right)
$$

- Compute P(PlayTennis= yes); P(PlayTennis=no)
- Compute P(outlook= s/oc/r | PlayTennis= yes/no) (6 numbers)
- Compute P(Temp= h/mild/cool | PlayTennis= yes/no) (6 numbers)
- Compute $P($ humidity= hi/nor | PlayTennis= yes/no) (4 numbers)
- Compute P(wind= w/st
| PlayTennis= yes/no) (4 numbers)

$$
\begin{gathered}
\text { Example } \\
\mathbf{v}_{\text {NB }}=\operatorname{argmax}_{\mathbf{v}_{\mathbf{i}} \in \mathbf{V}} \mathbf{P}\left(\mathbf{v}_{\mathrm{j}}\right) \prod_{\mathrm{i}} \mathbf{P}\left(\mathbf{x}_{\mathrm{i}} \mid \mathbf{v}_{\mathbf{j}}\right)
\end{gathered}
$$

- Compute P(PlayTennis= yes); P(PlayTennis= no)
- Compute P(outlook= s/oc/r | PlayTennis= yes/no) (6 numbers)
- Compute P(Temp= h/mild/cool | PlayTennis= yes/no) (6 numbers)
- Compute $P($ humidity= hi/nor | PlayTennis= yes/no) (4 numbers)
- Compute P(wind= w/st | PlayTennis= yes/no) (4 numbers)
-Given a new instance:
(Outlook=sunny; Temperature=cool; Humidity=high; Wind=strong)
- Predict: PlayTennis=?

Example
 $$
v_{N B}=\operatorname{argmax}_{v_{i} \in V} P\left(v_{j}\right) \prod_{i} P\left(x_{i} \mid v_{j}\right)
$$

-Given: (Outlook=sunny; Temperature=cool; Humidity=high; Wind=strong)

$$
\begin{aligned}
& \mathrm{P}(\text { Play Tennis= yes) }=9 / 14=0.64 \\
& \mathrm{P}(\text { outlook = sunny | yes) }=2 / 9 \\
& \mathrm{P}(\text { temp = cool | yes) }=3 / 9 \\
& \mathrm{P}(\text { humidity }=\text { hi |yes })=3 / 9 \\
& \mathrm{P}(\text { wind }=\text { strong } \mid \text { yes })=3 / 9
\end{aligned}
$$

$P(y e s,) \sim 0.0053$
$P($ PlayTennis= no) $=5 / 14=0.36$
P (outlook = sunny | no $)=3 / 5$
P(temp = cool | no) $=1 / 5$
$\mathrm{P}($ humidity $=$ hi \mid no $)=4 / 5$
$P($ wind $=$ strong \mid no $)=3 / 5$
$P($ no,) ~ 0.0206

Example
 $$
v_{N B}=\operatorname{argmax}_{v_{i} \in V} P\left(v_{j}\right) \prod_{i} P\left(x_{i} \mid v_{j}\right)
$$

-Given: (Outlook=sunny; Temperature=cool; Humidity=high; Wind=strong)
$P($ PlayTennis= yes $)=9 / 14=0.64$
$P($ outlook $=$ sunny \mid yes $)=2 / 9$
P(temp = cool| yes) =3/9
P (humidity $=$ hi \mid yes $)=3 / 9$
$P($ wind $=$ strong \mid yes $)=3 / 9$
$P($ yes,) ~ 0.0053
$\mathrm{P}($ no \mid instance $)=0.0206 /(0.0053+0.0206)=0.795$
What if we were asked about Outlook=OC ?

Estimating Probabilities

$$
\mathbf{v}_{\mathbf{N B}}=\operatorname{argmax}_{\mathbf{v} \in\{\text { like,dislike }\}} \mathbf{P}(\mathbf{v}) \prod_{\mathbf{i}} \mathbf{P}\left(\mathbf{x}_{\mathbf{i}}=\operatorname{word}_{\mathrm{i}} \mid \mathbf{v}\right)
$$

- How do we estimate $\mathbf{P}\left(\operatorname{word}_{\mathrm{k}} \mid \mathbf{v}\right)$?
- As we suggested before, we made a Binomial assumption; then:
$\mathbf{P}\left(\boldsymbol{w o r d}_{\mathbf{k}} \mid \mathbf{v}\right)=\frac{\#\left(\boldsymbol{w o r d}_{k} \operatorname{appears} \text { in training in } \mathbf{v} \text { documents }\right)}{\#(\mathbf{v} \text { documents })}=\frac{\mathbf{n}_{\mathrm{k}}}{\mathbf{n}}$
- Sparsity of data is a problem
-- if \mathbf{n} is small, the estimate is not accurate
-- if \mathbf{n}_{k} is 0 , it will dominate the estimate: we will never predict \mathbf{v}
if a word that never appeared in training (with \mathbf{v})
appears in the test data

Robust Estimation of Probabilities

$$
\mathbf{v}_{\mathbf{N B}}=\operatorname{argmax}_{\mathbf{v} \in\{\text { like,dislike }\}} \mathbf{P}(\mathbf{v}) \prod_{\mathbf{i}} \mathbf{P}\left(\mathbf{x}_{\mathbf{i}}=\text { word }_{\mathbf{i}} \mid \mathbf{v}\right)
$$

- This process is called smoothing.
- There are many ways to do it, some better justified than others;
- An empirical issue.

$$
\mathbf{P}\left(\mathbf{x}_{\mathbf{k}} \mid \mathbf{v}\right)=\frac{\mathbf{n}_{\mathrm{k}}+\mathbf{m p}}{\mathbf{n}+\mathbf{m}}
$$

Here:

- n_{k} is \# of occurrences of the word in the presence of v
- n is \# of occurrences of the label v
- p is a prior estimate of v (e.g., uniform)
- m is equivalent sample size (\# of labels)
-Is this a reasonable definition?

Robust Estimation of Probabilities

Smoothing:

$$
\mathbf{P}\left(\mathbf{x}_{\mathrm{k}} \mid \mathbf{v}\right)=\frac{\mathbf{n}_{\mathbf{k}}+\mathbf{m p}}{\mathbf{n}+\mathbf{m}}
$$

Common values:

Laplace Rule: for the Boolean case, $\mathrm{p}=1 / 2, \mathrm{~m}=2$

$$
\mathbf{P}\left(\mathbf{x}_{\mathrm{k}} \mid \mathbf{v}\right)=\frac{\mathbf{n}_{\mathrm{k}}+\mathbf{1}}{\mathbf{n}+\mathbf{2}}
$$

Learn to classify text:

$$
\begin{aligned}
& p=1 /(\mid \text { values } \mid) \quad \text { (uniform) } \\
& m=\mid \text { values } \mid
\end{aligned}
$$

Robust Estimation

- Assume a Binomial r.v.:
$\square \mathrm{p}(\mathrm{k} \mid \mathrm{n}, \theta)=\mathrm{C}_{\mathrm{n}}{ }^{k} \theta^{\mathrm{k}}(1-\theta)^{\mathrm{n}-\mathrm{k}}$
- We saw that the maximum likelihood estimate is $\theta_{\mathrm{ML}}=\mathrm{k} / \mathrm{n}$
- In order to compute the MAP estimate, we need to assume a prior.
- It's easier to assume a prior of the form:
$\mathrm{p}(\theta)=\theta^{\mathrm{a}-1}(1-\theta)^{\mathrm{b}-1} \quad$ (a and b are called the hyper parameters)
\square The prior in this case is the beta distribution, and it is called a conjugate prior, since it has the same form as the posterior. Indeed, it's easy to compute the posterior:
$\square \mathrm{p}(\theta \mid \mathrm{D}) \sim \mathrm{p}(\mathrm{D} \mid \theta) \mathrm{p}(\theta)=\theta^{a+k-1}(1-\theta)^{b+n-k-1}$
- Therefore, as we have shown before (differentiate the log posterior)

$$
\theta_{\text {map }}=k+a-1 /(n+a+b-2)
$$

- The posterior mean:
- $E(\theta \mid D)=\int_{0}^{1} \theta p(\theta \mid D) d \theta=a+k /(a+b+n)$
- Under the uniform prior, the posterior mean of observing (k, n) is: $k+1 / n+2$

Naïve Bayes: Two Classes
 $$
\mathbf{v}_{\mathrm{NB}}=\operatorname{argmax}_{\mathbf{v}_{\mathbf{j}} \in \mathrm{V}} \mathbf{P}\left(\mathbf{v}_{\mathbf{j}}\right) \prod_{\mathbf{i}} \mathbf{P}\left(\mathbf{x}_{\mathrm{i}} \mid \mathbf{v}_{\mathbf{j}}\right)
$$

- Notice that the naïve Bayes method gives a method for predicting rather than an explicit classifier.
- In the case of two classes, $v \in\{0,1\}$ we predict that $v=1$ iff:

$$
\frac{P\left(v_{j}=1\right) \bullet \prod_{i=1}^{n} P\left(x_{i} \mid v_{j}=1\right)}{P\left(v_{j}=0\right) \bullet \prod_{i=1}^{n} P\left(x_{i} \mid v_{j}=0\right)}>1
$$

Naïve Bayes: Two Classes
 $$
\mathbf{v}_{\mathrm{NB}}=\operatorname{argmax}_{\mathbf{v}_{\mathbf{j}} \in \mathrm{V}} \mathbf{P}\left(\mathbf{v}_{\mathbf{j}}\right) \prod_{\mathbf{i}} \mathbf{P}\left(\mathbf{x}_{\mathrm{i}} \mid \mathbf{v}_{\mathbf{j}}\right)
$$

- Notice that the naïve Bayes method gives a method for predicting rather than an explicit classifier.
- In the case of two classes, $v \in\{0,1\}$ we predict that $v=1$ iff:

$$
\frac{P\left(v_{j}=1\right) \bullet \prod_{i=1}^{n} P\left(x_{i} \mid v_{j}=1\right)}{P\left(v_{j}=0\right) \bullet \prod_{i=1}^{n} P\left(x_{i} \mid v_{j}=0\right)}>1
$$

Denote : $\mathbf{p}_{\mathbf{i}}=\mathbf{P}\left(\mathbf{x}_{\mathbf{i}}=\mathbf{1} \mid \mathbf{v}=\mathbf{1}\right), \mathbf{q}_{\mathbf{i}}=\mathbf{P}\left(\mathbf{x}_{\mathbf{i}}=\mathbf{1} \mid \mathbf{v}=\mathbf{0}\right)$

$$
\frac{\mathbf{P}\left(\mathbf{v}_{\mathbf{j}}=\mathbf{1}\right) \bullet \prod_{i=1}^{n} \mathbf{p}_{\mathbf{i}}^{\mathbf{x}_{\mathrm{i}}}\left(\mathbf{1}-\mathbf{p}_{\mathbf{i}}\right)^{1-\mathrm{x}_{\mathrm{i}}}}{\mathbf{P}\left(\mathbf{v}_{\mathbf{j}}=\mathbf{0}\right) \bullet \prod_{i=1}^{n} \mathbf{q}_{\mathbf{i}}^{\mathbf{x}_{\mathrm{i}}}\left(\mathbf{1}-\mathbf{q}_{\mathbf{i}}\right)^{1-\mathrm{x}_{\mathrm{i}}}}>\mathbf{1}
$$

Naïve Bayes: Two Classes

\cdot In the case of two classes, $v \in\{0,1\}$ we predict that $v=1$ iff:

$$
\frac{P\left(v_{j}=1\right) \bullet \prod_{i=1}^{n} p_{i} p_{i}^{x_{i}}\left(1-p_{i}\right)^{1-x_{i}}}{P\left(v_{j}=0\right) \cdot \prod_{i=1}^{n} q_{i}^{x_{i}}\left(1-q_{i}\right)^{1-x_{i}}}=\frac{P\left(v_{j}=1\right) \bullet \prod_{i=1}^{n}\left(1-p_{i}\right)\left(\frac{p_{i}}{1-p_{i}}\right)^{x_{i}}}{P\left(v_{j}=0\right) \bullet \prod_{i=1}^{n}\left(1-q_{i}\right)\left(\frac{q_{i}}{1-q_{i}}\right)^{x_{i}}}>1
$$

Naïve Bayes: Two Classes

-In the case of two classes, $v \in\{0,1\}$ we predict that $v=1$ ff:

$$
\frac{\mathbf{P}\left(v_{j}=1\right) \bullet \prod_{i=1}^{n} p_{i}^{x_{i}}\left(1-p_{i}\right)^{1-x_{i}}}{P\left(v_{j}=0\right) \bullet \prod_{i=1}^{n} q_{i}^{x_{i}}\left(1-q_{i}\right)^{1-x_{i}}}=\frac{P\left(v_{j}=1\right) \bullet \prod_{i=1}^{n}\left(1-p_{i}\right)\left(\frac{p_{i}}{1-p_{i}}\right)^{x_{i}}}{P\left(v_{j}=0\right) \bullet \prod_{i=1}^{n}\left(1-q_{i}\right)\left(\frac{q_{i}}{1-q_{i}}\right)^{x_{i}}}>1
$$

Take logarithm; we predict $v=1$ ff :

$$
\log \frac{P\left(v_{j}=1\right)}{P\left(v_{j}=0\right)}+\sum_{i} \log \frac{1-p_{i}}{1-q_{i}}+\sum_{i}\left(\log \frac{p_{i}}{1-p_{i}}-\log \frac{q_{i}}{1-q_{i}}\right) x_{i}>0
$$

Naïve Bayes: Two Classes

-In the case of two classes, $v \in\{0,1\}$ we predict that $v=1$ ff:

$$
\frac{\mathbf{P}\left(v_{j}=1\right) \bullet \prod_{i=1}^{n} p_{i}^{x_{i}}\left(1-p_{i}\right)^{1-x_{i}}}{P\left(v_{j}=0\right) \bullet \prod_{i=1}^{n} q_{i}^{x_{i}}\left(1-q_{i}\right)^{1-x_{i}}}=\frac{P\left(v_{j}=1\right) \bullet \prod_{i=1}^{n}\left(1-p_{i}\right)\left(\frac{p_{i}}{1-p_{i}}\right)^{x_{i}}}{P\left(v_{j}=0\right) \bullet \prod_{i=1}^{n}\left(1-q_{i}\right)\left(\frac{q_{i}}{1-q_{i}}\right)^{x_{i}}}>1
$$

Take logarithm; we predict $v=1$ iff :

$$
\log \frac{P\left(v_{j}=1\right)}{P\left(v_{j}=0\right)}+\sum_{i} \log \frac{1-p_{i}}{1-q_{i}}+\sum_{i}\left(\log \frac{p_{i}}{1-p_{i}}-\log \frac{q_{i}}{1-q_{i}}\right) x_{i}>0
$$

- We get that naive Bayes is a linear separator with

$$
w_{i}=\log \frac{p_{i}}{1-p_{i}}-\log \frac{q_{i}}{1-q_{i}}=\log \frac{p_{i}}{q_{i}} \frac{1-q_{i}}{1-p_{i}}
$$

$$
\text { if } p_{i}=q_{i} \text { then } w_{i}=0 \text { and the feature is irrelevant }
$$

Naïve Bayes: Two Classes

- In the case of two classes we have that:
- but since

$$
\begin{aligned}
& \log \frac{\mathbf{P}\left(\mathbf{v}_{j}=1 \mid \mathbf{x}\right)}{\mathbf{P}\left(\mathbf{v}_{\mathrm{j}}=\mathbf{0} \mid \mathbf{x}\right)}=\sum_{\mathrm{i}} \mathbf{w}_{\mathrm{i}} \mathbf{x}_{\mathrm{i}}-\mathbf{b} \\
& \mathbf{P}\left(\mathbf{v}_{\mathrm{j}}=\mathbf{1} \mid \mathbf{x}\right)=\mathbf{1 - P}\left(\mathbf{v}_{\mathrm{j}}=\mathbf{0} \mid \mathbf{x}\right) \\
& \mathbf{P}\left(\mathbf{v}_{\mathrm{j}}=\mathbf{1} \mid \mathbf{x}\right)=\frac{1}{1+\exp \left(-\sum_{i} \mathbf{w}_{\mathrm{i}} \mathbf{x}_{\mathrm{i}}+\mathbf{b}\right)}
\end{aligned}
$$

- We get:
We have:

$A=1-B ; \log (B / A)=-C$
Then:
$\operatorname{Exp}(-C)=B / A=$
$=(1-A) / A=1 / A-1$
$=1+\operatorname{Exp}(-C)=1 / A$
$A=1 /(1+\operatorname{Exp}(-C))$

- Which is simply the logistic function.
- The linearity of NB provides a better explanation for why it works.

A few more NB examples

Example: Learning to Classify Text
 $$
\mathbf{v}_{\mathrm{NB}}=\operatorname{argmax}_{\mathrm{vev}} \mathbf{P}(\mathrm{v}) \prod_{\mathrm{i}} \mathbf{P}\left(\mathbf{x}_{\mathrm{i}} \mid \mathbf{v}\right)
$$

- Instance space X: Text documents
- Instances are labeled according to $\mathrm{f}(\mathrm{x})=$ like/dislike
- Goal: Learn this function such that, given a new document you can use it to decide if you like it or not
- How to represent the document?
- How to estimate the probabilities?
- How to classify?

Document Representation

- Instance space X: Text documents
- Instances are labeled according to $y=f(x)=$ like/dislike
- How to represent the document?
- A document will be represented as a list of its words
- The representation question can be viewed as the generation question
- We have a dictionary of n words (therefore $2 n$ parameters)
- We have documents of size N : can account for word position \& count
- Having a parameter for each word \& position may be too much:
- \# of parameters: $2 \times \mathrm{N} \times \mathrm{n}\left(2 \times 100 \times 50,000 \sim 10^{7}\right)$
- Simplifying Assumption:
- The probability of observing a word in a document is independent of its location
- This still allows us to think about two ways of generating the document

Classification via Bayes Rule (B)

- We want to compute

$$
\begin{aligned}
\operatorname{argmax}_{y} P(y \mid D)= & \operatorname{argmax}_{y} P(D \mid y) P(y) / P(D)= \\
& =\operatorname{argmax}_{y} P(D \mid y) P(y)
\end{aligned}
$$

- Our assumptions will go into estimating $\mathrm{P}(\mathrm{D} \mid \mathrm{y})$:

1. Multivariate Bernoulli
I. To generate a document, first decide if it's good ($y=1$) or bad ($y=0$).
II. Given that, consider your dictionary of words and choose w into your document with probability $p(w \mid y)$, irrespective of anything else.
III. If the size of the dictionary is $|V|=n$, we can then write

$$
P(d \mid y)=\Pi_{1}^{n} P\left(w_{i}=1 \mid y\right)^{b_{i} P\left(w_{i}=0 \mid y\right)^{1-b_{i}}, ~}
$$

- Where:
$p(w=1 / 0 \mid y)$: the probability that w appears/does-not in a y-labeled document.
$b_{i} \in\{0,1\}$ indicates whether word w_{i} occurs in document d
- $2 \mathrm{n}+2$ parameters:

Estimating $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}}=1 \mid \mathrm{y}\right)$ and $\mathrm{P}(\mathrm{y})$ is done in the ML way as before (counting).

A Multinomial Model

- We want to compute

$$
\begin{aligned}
\operatorname{argmax}_{y} P(y \mid D)= & \operatorname{argmax}_{y} P(D \mid y) P(y) / P(D)= \\
& =\operatorname{argmax}_{y} P(D \mid y) P(y)
\end{aligned}
$$

- Our assumptions will go into estimating $P(D \mid y)$:

2. Multinomial
I. To generate a document, first decide if it's good ($y=1$) or bad ($y=0$).
II. Given that, place N words into d, such that w_{i} is placed with probability $P\left(w_{i} \mid y\right)$, and $\sum_{i}^{N} P\left(w_{i} \mid y\right)=1$.
III. The Probability of a document is:

$$
P(d \mid y) N!/ n_{1}!\ldots n_{k}!P\left(w_{1} \mid y\right)^{n_{1}} \ldots p\left(w_{k} \mid y\right)^{n_{k}}
$$

- Where n_{i} is the \# of times w_{i} appears in the document.
- Same \# of parameters: $2 n+2$, where $n=\mid$ Dictionary \mid, but the estimation is done a bit differently. (HW).

Model Representation

- The generative model in these two cases is different

Bernoulli: A binary variable corresponds to a document d and a dictionary word w, and it takes the value 1 if w appears in d. Document topic/label is governed by a prior θ, its topic (label), and the variable in the intersection of the plates is governed by θ and the Bernoulli parameter β for the dictionary word w

Multinomial: Words do not correspond to dictionary words but to positions (occurrences) in the document d. The internal variable is then $\mathrm{W}(\mathrm{D}, \mathrm{P})$. These variables are generated from the same multinomial distribution β, and depend on the topic/label.

General NB Scenario

- We assume a mixture probability model, parameterized by μ.
- Different components $\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \mathrm{c}_{\mathrm{k}}\right\}$ of the model are parameterize by disjoint subsets of μ.

The generative story: A document d is created by
(1) selecting a component according to the priors, $\mathrm{P}\left(c_{j} / \mu\right)$, then
(2) having the mixture component generate a document according to its own parameters, with distribution $\mathrm{P}\left(d / c_{j} \mu\right)$

- So we have:

$$
P(d \mid \mu)=\sum_{1} k P\left(c_{j} \mid \mu\right) P\left(d \mid c_{j}, \mu\right)
$$

- In the case of document classification, we assume a one to one correspondence between components and labels.

Naïve Bayes: Continuous Features

- X_{i} can be continuous
- We can still use

$$
P\left(X_{1}, \ldots, X_{n} \mid Y\right)=\prod_{i} P\left(X_{i} \mid Y\right)
$$

- And

$$
P\left(Y=y \mid X_{1}, \ldots, X_{n}\right)=\frac{P(Y=y) \prod_{i} P\left(X_{i} \mid Y=y\right)}{\sum_{j} P\left(Y=y_{j}\right) \prod_{i} P\left(X_{i} \mid Y=y_{j}\right)}
$$

Naïve Bayes: Continuous Features

- X_{i} can be continuous
- We can still use

$$
P\left(X_{1}, \ldots, X_{n} \mid Y\right)=\prod_{i} P\left(X_{i} \mid Y\right)
$$

- And

$$
P\left(Y=y \mid X_{1}, \ldots, X_{n}\right)=\frac{P(Y=y) \prod_{i} P\left(X_{i} \mid Y=y\right)}{\sum_{j} P\left(Y=y_{j}\right) \prod_{i} P\left(X_{i} \mid Y=y_{j}\right)}
$$

- Naïve Bayes classifier:

$$
Y=\arg \max _{y} P(Y=y) \prod_{i} P\left(X_{i} \mid Y=y\right)
$$

Naïve Bayes: Continuous Features

- X_{i} can be continuous
- We can still use

$$
P\left(X_{1}, \ldots, X_{n} \mid Y\right)=\prod_{i} P\left(X_{i} \mid Y\right)
$$

- And

$$
P\left(Y=y \mid X_{1}, \ldots, X_{n}\right)=\frac{P(Y=y) \prod_{i} P\left(X_{i} \mid Y=y\right)}{\sum_{j} P\left(Y=y_{j}\right) \prod_{i} P\left(X_{i} \mid Y=y_{j}\right)}
$$

- Naïve Bayes classifier:

$$
Y=\arg \max _{y} P(Y=y) \prod_{i} P\left(X_{i} \mid Y=y\right)
$$

- Assumption: $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Y}\right)$ has a Gaussian distribution

The Gaussian Probability Distribution

- Gaussian probability distribution also called normal distribution.
- It is a continuous distribution with pdf:
$\mu=$ mean of distribution $\sigma^{2}=$ variance of distribution

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$ x is a continuous variable $(-\infty \leq x \leq \infty)$

- Probability of x being in the range $[a, b]$ cannot be evaluated analytically (has to be looked up in a table)

Naïve Bayes: Continuous Features

- $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Y}\right)$ is Gaussian
- Training: estimate mean and standard deviation

$$
\begin{gathered}
\mu_{i}=E\left[X_{i} \mid Y=y\right] \\
\sigma_{i}^{2}=E\left[\left(X_{i}-\mu_{i}\right)^{2} \mid Y=y\right]
\end{gathered}
$$

Note that the following slides abuse notation significantly. Since $P(x)=0$ for continues distributions, we think of $P(X=x \mid Y=y)$, not as a classic probability distribution, but just as a function $\mathrm{f}(\mathrm{x})=\mathrm{N}\left(\mathrm{x}, \mu, \sigma^{2}\right)$.
$f(x)$ behaves as a probability distribution in the sense that $\forall x, f(x) \geq 0$ and the values add up to 1 . Also, note that $f(x)$ satisfies Bayes Rule, that is, it is true that:

$$
f_{Y}(y \mid X=x)=f_{X}(x \mid Y=y) f_{Y}(y) / f_{X}(x)
$$

Naïve Bayes: Continuous Features

$\cdot \mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mathrm{Y}\right)$ is Gaussian

- Training: estimate mean and standard deviation

$$
\begin{gathered}
\mu_{i}=E\left[X_{i} \mid Y=y\right] \\
\sigma_{i}^{2}=E\left[\left(X_{i}-\mu_{i}\right)^{2} \mid Y=y\right]
\end{gathered}
$$

X_{1}	X_{2}	X_{3}	Y
2	3	1	1
-1.2	2	.4	1
2	0.3	0	0
2.2	1.1	0	1

Naïve Bayes: Continuous Features

$\cdot \mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mathrm{Y}\right)$ is Gaussian

- Training: estimate mean and standard deviation

$$
\begin{gathered}
\mu_{i}=E\left[X_{i} \mid Y=y\right] \\
\sigma_{i}^{2}=E\left[\left(X_{i}-\mu_{i}\right)^{2} \mid Y=y\right]
\end{gathered}
$$

X_{1}	X_{2}	X_{3}	Y
2	3	1	1
-1.2	2	.4	1
2	0.3	0	0
2.2	1.1	0	1

$$
\begin{gathered}
\mu_{1}=E\left[X_{1} \mid Y=1\right]=\frac{2+(-1.2)+2.2}{3}=1 \\
\sigma_{1}^{2}=E\left[\left(X_{1}-\mu_{1}\right) \mid Y=1\right]=\frac{(2-1)^{2}+(-1.2-1)^{2}+(2.2-1)^{2}}{3}=2.43
\end{gathered}
$$

Recall: Naïve Bayes, Two Classes

-In the case of two classes we have that:
-but since

$$
\log \frac{\mathbf{P}(\mathbf{v}=1 \mid \mathbf{x})}{\mathbf{P}(\mathbf{v}=\mathbf{0} \mid \mathrm{x})}=\sum_{\mathrm{i}} \mathbf{w}_{\mathrm{i}} \mathbf{x}_{\mathrm{i}}-\mathbf{b}
$$

$$
\mathbf{P}(\mathbf{v}=\mathbf{1} \mid \mathbf{x})=\mathbf{1 - P}(\mathbf{v}=\mathbf{0} \mid \mathbf{x})
$$

-We get:

$$
\mathbf{P}(\mathbf{v}=1 \mid \mathbf{x})=\frac{1}{1+\exp \left(-\sum_{\mathbf{i}} \mathbf{w}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}+\mathbf{b}\right)}
$$

- Which is simply the logistic function (also used in the neural network representation)
- The same formula can be written for continuous features

Logistic Function: Continuous Features

- Logistic function for Gaussian features

$$
\begin{aligned}
& P(v=1 \mid x)=\frac{1}{1+\exp \left(\log \frac{P(v=0 \mid x)}{P(v=1 \mid x)}\right)} \\
&=\frac{1}{1+\exp \left(\log \frac{P(v=0) P(x \mid v=0)}{P(v=1) P(x \mid v=1)}\right)} \\
& \text { we are } \\
& \text { tio of } \\
& \text { s, since } x
\end{aligned}
$$

Note that we are using ratio of probabilities, since x
is a continuous variable.

$$
\begin{aligned}
& \qquad \begin{aligned}
\sum_{i} \log \frac{P\left(x_{i} \mid v=0\right)}{P\left(x_{i} \mid v=1\right)}= & \sum_{i} \log \frac{\frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(\frac{-\left(x_{i}-\mu_{i 0}\right)^{2}}{2 \sigma_{i}^{2}}\right)}{\frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(\frac{-\left(x_{i}-\mu_{i 1}\right)^{2}}{2 \sigma_{i}^{2}}\right)} \\
= & \sum_{i} \log \exp \left(\frac{\left(x_{i}-\mu_{i 1}\right)^{2}-\left(x_{i}-\mu_{i 0}\right)^{2}}{2 \sigma_{i}^{2}}\right) \\
= & \sum_{i}\left(\frac{\mu_{i 0}-\mu_{i 1}}{\sigma_{i}^{2}} x_{i}+\frac{\mu_{i 1}^{2}-\mu_{i 0}^{2}}{2 \sigma_{i}^{2}}\right) \\
& C S 446-\text { Spring '17 }^{\text {CSarning }}
\end{aligned},
\end{aligned}
$$

Hidden Markov Model (HMM)

- A probabilistic generative model: models the generation of an observed sequence.
- At each time step, there are two variables: Current state (hidden), Observation

- Elements
- Initial state probability $\mathrm{P}\left(\mathrm{s}_{1}\right)$
- Transition probability $\mathrm{P}\left(\mathrm{s}_{\mathrm{t}} \mid \mathrm{s}_{\mathrm{t}-1}\right)$
\square Observation probability $\mathrm{P}\left(\mathrm{o}_{\mathrm{t}} \mid s_{t}\right)$
(|S| parameters)
(|S|^2 parameters)
(|S|x |O| parameters)
- As before, the graphical model is an encoding of the independence assumptions:
$\square \mathrm{P}\left(\mathrm{s}_{\mathrm{t}} \mid \mathrm{s}_{\mathrm{t}-1}, \mathrm{~s}_{\mathrm{t}-2}, \ldots \mathrm{~s}_{1}\right)=\mathrm{P}\left(\mathrm{s}_{\mathrm{t}} \mid \mathrm{s}_{\mathrm{t}-1}\right)$
$\square P\left(o_{t} \mid s_{T}, \ldots, s_{t}, \ldots s_{1}, o_{T}, \ldots, o_{t}, \ldots o_{1}\right)=P\left(o_{t} \mid s_{t}\right)$
- Examples: POS tagging, Sequential Segmentation

HMM for Shallow Parsing

- States:
$\square\{B, I, O\}$
■ Observations:
\square Actual words and/or part-of-speech tags

HMM for Shallow Parsing

Initial statrancitiont agebabilty:

Given a senteptces, we can ask what thet mostrikely state sequence is

Three Computational Problems

- Decoding - finding the most likely prath
- Have: model, parameters, observations (data)
- Want: most likely states sequence

$$
S_{1}^{*} S_{2}^{*} \ldots S_{T}^{*}=\underset{S_{1} S_{2} \ldots S_{T}}{\arg \max } p\left(S_{1} S_{2} \ldots S_{T} \mid O\right)=\underset{S_{1} S_{2} \ldots S_{T}}{\arg \max } p\left(S_{1} S_{2} \ldots S_{T}, O\right)
$$

- Evaluation - computing observation likelihood
- Have: model, parameters, observations (data)
- Want: the likelihood to generate the observed data

$$
p(O \mid \lambda)=\sum_{S_{1} S_{0} \ldots S_{T}} p\left(O \mid S_{1} S_{2} \ldots S_{T}\right) p\left(S_{1} S_{2} \ldots S_{T}\right)
$$

- In both cases - a ${ }^{S} S_{S}^{S} \mathrm{~S}^{\top}$ ple minded solution depends on $|S|^{\top}$ steps
- Training - estimating parameters
- Supervised: Have: model, annotated data(data + states sequence)
- Unsupervised: Have: model, data
- Want: parameters

Finding most likely state sequence in HMM (1)

$$
\begin{aligned}
& P\left(s_{k}, s_{k}-1, \ldots, s_{1}, o_{k}, o_{k}-1, \ldots, o_{1}\right) \\
&= P\left(o_{k} \mid o_{k-1}, o_{k}-2, \ldots, o_{1}, s_{k}, s_{k-1}, \ldots, s_{1}\right) \\
& \cdot P\left(o_{k}-1, o_{k-2}, \ldots, o_{1}, s_{k}, s_{k-1}, \ldots, s_{1}\right) \\
&= P\left(o_{k} \mid s_{k}\right) \cdot P\left(o_{k}-1, o_{k}-2, \ldots, o_{1}, s_{k}, s_{k-1}, \ldots, s_{1}\right) \\
&= P\left(\left.o_{k}\right|_{k}\right) \cdot P\left(s_{k} \mid s_{k-1}, s_{k-2}, \ldots, s_{1}, o_{k-1}, o_{k-2}, \ldots, o_{1}\right) \\
& \cdot P\left(s_{k-1}, s_{k-2}, \ldots, s_{1}, o_{k-1}, o_{k-2}, \ldots, o_{1}\right) \\
&= P\left(o_{k} \mid s_{k}\right) \cdot P\left(s_{k} \mid s_{k-1}\right) \\
& \cdot P\left(s_{k}-1, s_{k}-2, \ldots, s_{1}, o_{k}-1, o_{k-2}, \ldots, o_{1}\right) \\
&= P\left(o_{k} \mid s_{k}\right) \cdot\left[\prod_{t=1}^{k-1} P\left(s_{t+1} \mid s_{t}\right) \cdot P\left(o_{t} \mid s_{t}\right)\right] \cdot P\left(s_{1}\right)
\end{aligned}
$$

Finding most likely state sequence in HMM (2)

$$
\begin{aligned}
& \underset{s_{k}, s_{k}-1, \ldots, s_{1}}{\arg \max } P\left(s_{k}, s_{k-1}, \ldots,\left.s_{1}\right|_{o_{k}}, o_{k-1}, \ldots, o_{1}\right) \\
& =\underset{s_{k}, s_{k-1}, \ldots, s_{1}}{\operatorname{argmax}} \frac{P\left(s_{k}, s_{k-1}, \ldots, s_{1}, o_{k}, o_{k-1}, \ldots, o 1\right)}{P\left(o_{k}, o_{k}-1, \ldots, o 1\right)} \\
& =\underset{s_{k}, s_{k-1}, \ldots, s_{1}}{\operatorname{argmax}} P\left(s_{k}, s_{k-1}, \ldots, s 1, o_{k}, o_{k}-1, \ldots, o 1\right) \\
& =\underset{s_{k}, s_{k-1}, \ldots, s_{1}}{\arg \max } P\left(\left.o_{k}\right|_{s_{k}}\right) \cdot\left[\prod_{t=1}^{k-1} P\left(\left.s_{t+1}\right|_{s_{t}}\right) \cdot P\left(o_{t} \mid s_{t}\right)\right] \cdot P\left(s_{1}\right)
\end{aligned}
$$

Finding most likely state sequence in HMM (3)

A function of s_{k}

$$
\begin{aligned}
& \max _{s_{k}, s_{k}-1, \ldots, s_{1}} P\left(o_{k} \mid s_{k}\right) \cdot\left[\prod_{t=1}^{k-1} P\left(\left.s_{t+1}\right|_{s_{t}}\right) \cdot P\left(o_{t} \mid s_{t}\right)\right] \cdot P\left(s_{1}\right) \\
& =\max _{s_{k}} P\left(o_{k} \mid s_{k}\right) \cdot \prod_{\max _{k-1, \ldots, s 1}\left[\prod_{t=1}^{k-1} P\left(s_{t+1} \mid s_{t}\right) \cdot P\left(o_{t} \mid s_{t}\right)\right] \cdot P\left(s_{1}\right)}^{t=1} \\
& =\max _{s_{k}} P\left(o_{k} \mid s_{k}\right) \cdot \max _{s_{k}-1}\left[P\left(s_{k} s_{k-1}\right) \cdot P\left(\left.o_{k-1}\right|_{s_{k}-1}\right)\right] \\
& \cdot \max _{s_{k}-2, \ldots, s 1}\left[\prod_{t=1}^{k-2} P\left(\left.s_{t+1}\right|_{s_{t}}\right) \cdot P\left(o_{t} \mid s_{t}\right)\right] \cdot P\left(s_{1}\right) \\
& =\max _{s_{k}} P\left(o_{k} \mid s_{k}\right) \cdot \max _{s_{k}-1}\left[P\left(s_{k} \mid s_{k-1}\right) \cdot P\left(\left.o_{k-1}\right|_{s_{k-1}}\right)\right] \\
& \text { - } \max _{s_{k}-2}\left[P\left(\left.s_{k-1}\right|_{s_{k}-2}\right) \cdot P\left(o_{k-2} \mid s_{k-2}\right)\right] \cdot \ldots \\
& \cdot \max _{s 1}\left[P\left(s_{2} \mid s_{1}\right) \cdot P\left(o_{1} \mid s_{1}\right)\right] \cdot P\left(s_{1}\right)
\end{aligned}
$$

Finding most likely state sequence in HMM (4)

```
\mp@subsup{m}{\mp@subsup{s}{k}{}}{}P(ox
```



```
    sk-2
- max m}[P(s3|s2) \cdot P(o2 s2)]
- max [ [P(s2 |s1 ) 'P(o1 |s1)] P P(s1)
```

- Viterbi's Algorithm
\square Dynamic Programming

Learning the Model

- Estimate
- Initial state probability P $\left(s_{1}\right)$
\square Transition probability $\mathrm{P}\left(\mathrm{s}_{\mathrm{t}} \mid \mathrm{s}_{\mathrm{t}-1}\right)$
\square Observation probability $\mathrm{P}\left(\mathrm{o}_{\mathrm{t}} \mid \mathrm{s}_{\mathrm{t}}\right)$
- Unsupervised Learning (states are not observed)
\square EM Algorithm
- Supervised Learning (states are observed; more common)
\square ML Estimate of above terms directly from data

■ Notice that this is completely analogues to the case of naive Bayes, and essentially all other models.

