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Administration

Final
 Will be done on the official university date for this class: 5/9, 1:30. 

 We will have a review session during the last scheduled lecture, 5/2. 

 The schedule has been updated accordingly.

Projects: 
 Reports are due on 5/11.

 In addition, instead of presentations, we will ask you to send a short 
video of your presentation < 5 min. 

 Project progress reports are due on 4/17.
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Recap: Error Driven Learning 

2

Consider a distribution D over space XY
X - the instance space;   Y - set of labels. (e.g. +/-1)

Can think about the data generation process as governed by D(x), and the 
labeling process as governed by D(y|x), such that 

D(x,y)=D(x) D(y|x)

This can be used to model both the case where labels are generated by a 
function y=f(x), as well as noisy cases and probabilistic generation of the 
label. 

If the distribution D is known, there is no learning. We can simply predict
y = argmaxy D(y|x)

If we are looking for a hypothesis, we can simply find the one that 
minimizes the probability of mislabeling:

h = argminh E(x,y)~D [[h(x) y]]
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Recap: Error Driven Learning (2)

Inductive learning comes into play when the 
distribution is not known. 

Then, there are two basic approaches to take.

Discriminative (direct) learning 
and  

Bayesian Learning (Generative) 

Running example: Text Correction:
“I saw the girl it the park”  I saw the girl in the park

3
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1: Direct Learning

4

Model the problem of text correction as a problem of learning 
from examples.

Goal: learn directly how to make predictions.

PARADIGM

Look at many (positive/negative) examples.

Discover some regularities in the data.

Use these to construct a prediction policy.

A policy (a function, a predictor) needs to be specific.

[it/in] rule: if the occurs after the target in

Assumptions comes in the form of a hypothesis class.

Bottom line: approximating h : X → Y is estimating P(Y|X).
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Direct Learning (2)

5

Consider a distribution D over space XY
X - the instance space;   Y - set of labels. (e.g. +/-1)
Given a sample {(x,y)}1

m
,, and a loss function L(x,y)          

Find  hH that minimizes   

i=1,mD(xi,yi)L(h(xi),yi) + Reg

L can be:   L(h(x),y)=1, h(x)y, o/w L(h(x),y) = 0 (0-1 loss)

L(h(x),y)=(h(x)-y)2 ,                  (L2 ) 

L(h(x),y)= max{0,1-y h(x)}       (hinge loss)

L(h(x),y)= exp{- y h(x)}             (exponential loss)

Guarantees: If we find an algorithm that minimizes loss on the observed 
data. Then, learning theory guarantees good future behavior (as a function 
of H).



Bayesian Learning CS446 –Spring’17

2: Generative Model

6

Model the problem of text correction as that of generating 
correct sentences.

Goal: learn a model of the language; use it to predict.

PARADIGM

Learn a probability distribution over all sentences
 In practice: make assumptions on the distribution’s type

Use it to estimate which sentence is more likely. 
 Pr(I saw the girl it the park) <>   Pr(I saw the girl in the park)

 In practice: a decision policy depends on the assumptions

Guarantees: We need to assume the “right”  probability distribution

Bottom line: the generating paradigm approximates 
P(X,Y) = P(X|Y) P(Y).

The model is called 
“generative” since it 
assumes how data X 
is generated given y
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Probabilistic Learning

There are actually two different notions.

Learning probabilistic concepts 

 The learned concept is a function c:X[0,1]

 c(x) may be interpreted as the probability that the label 1 is 
assigned to x

 The learning theory that we have studied before is 
applicable (with some extensions).

Bayesian Learning: Use of a probabilistic criterion in 
selecting a hypothesis
 The hypothesis can be deterministic, a Boolean function.

It’s not the hypothesis – it’s the process.

7
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Basics of Bayesian Learning

8

Goal: find the best hypothesis from some space H of 
hypotheses, given the observed data D.

Define best to be: most probable hypothesis in H

In order to do that, we need to assume a probability 
distribution over the class H.

In addition, we need to know something about the relation 
between the data observed and the hypotheses (E.g., a coin 
problem.)

 As we will see, we will be Bayesian about other things, e.g., the 
parameters of the model 
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Basics of Bayesian Learning

9

P(h) - the prior probability of a hypothesis h
Reflects background knowledge; before data is observed. If no 
information - uniform distribution.

P(D) - The probability that this sample of the Data is observed. 
(No knowledge of the hypothesis)

P(D|h): The probability of observing the sample D, given that 
hypothesis h is the target

P(h|D): The posterior probability of  h. The probability that h is 
the target, given that D has been observed. 
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Bayes Theorem

10

P(h|D) increases with P(h) and with P(D|h)

P(h|D) decreases with P(D)

P(D)
P(h)

h)|P(DD)|P(h 
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Basic Probability

Product Rule:   P(A,B) = P(A|B)P(B) = P(B|A)P(A)

If A and B are independent:   
 P(A,B) = P(A)P(B);   P(A|B)= P(A), P(A|B,C)=P(A|C)

Sum Rule: P(AB) = P(A)+P(B)-P(A,B)

Bayes Rule: P(A|B)  = P(B|A) P(A)/P(B)

Total Probability: 
 If events A1, A2,…An are mutually exclusive: Ai Å Aj = Á, i P(Ai)= 1

 P(B) =  P(B , Ai) = i P(B|Ai) P(Ai)

Total Conditional Probability: 
 If events A1, A2,…An are mutually exclusive: Ai Å Aj = Á,  i P(Ai)= 1

 P(B|C) =  P(B , Ai|C) = i P(B|Ai,C) P(Ai|C)                   

11
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P(h|D)  = P(D|h) P(h)/P(D)

The learner considers a set of candidate hypotheses H 
(models), and attempts to find the most probable one h H, 
given the observed data.

Such maximally probable hypothesis is called maximum a 
posteriori hypothesis (MAP); Bayes theorem is used to 
compute it:

hMAP = argmaxh 2 H P(h|D)  = argmaxh 2 H P(D|h) P(h)/P(D) 

= argmaxh 2 H P(D|h) P(h)

Learning Scenario

12
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Learning Scenario (2)

13

hMAP = argmaxh 2 H P(h|D)  = argmaxh 2 H P(D|h) P(h)

We may assume that a priori,  hypotheses are equally 
probable:                 P(hi) = P(hj) 8 hi, hj 2 H

We get the Maximum Likelihood hypothesis: 

hML = argmaxh 2 H P(D|h)

Here we just look for the hypothesis that best explains the 
data 
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Examples

14

hMAP = argmaxh 2 H P(h|D)  =  argmaxh 2 H P(D|h) P(h)

A given coin is either fair or has a 60% bias in favor of Head.
Decide what is the bias of the coin [This is a learning problem!]

Two hypotheses:  h1: P(H)=0.5;   h2: P(H)=0.6
 Prior: P(h): P(h1)=0.75   P(h2 )=0.25 
 Now we need Data. 1st Experiment: coin toss is H.
 P(D|h):

P(D|h1)=0.5 ; P(D|h2) =0.6
 P(D):      

P(D)=P(D|h1)P(h1) +  P(D|h2)P(h2 ) 
=  0.5   0.75  +     0.6  0.25  = 0.525

 P(h|D):
P(h1|D) = P(D|h1)P(h1)/P(D) = 0.50.75/0.525 = 0.714
P(h2|D) = P(D|h2)P(h2)/P(D) = 0.60.25/0.525 = 0.286
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Examples(2)

15

hMAP = argmaxh 2 H P(h|D)  =  argmaxh 2 H P(D|h) P(h)

A given coin is either fair or has a 60% bias in favor of Head.
Decide what is the bias of the coin [This is a learning problem!]

Two hypotheses:  h1: P(H)=0.5;   h2: P(H)=0.6
 Prior: P(h): P(h1)=0.75   P(h2 )=0.25 

After 1st coin toss is H we still think that the coin is more likely to be fair

If we were to use Maximum Likelihood approach (i.e., assume equal priors) 
we would think otherwise. The data supports  the biased coin better.

Try: 100 coin tosses; 70 heads. 
You will believe that the coin is biased.
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Examples(2)

16

hMAP = argmaxh 2 H P(h|D)  =  argmaxh 2 H P(D|h) P(h)

A given coin is either fair or has a 60% bias in favor of Head.
Decide what is the bias of the coin [This is a learning problem!]

Two hypotheses:  h1: P(H)=0.5;   h2: P(H)=0.6
 Prior: P(h): P(h1)=0.75   P(h2 )=0.25 

Case of  100 coin tosses; 70 heads. 

P(D) = P(D|h1) P(h1) + P(D|h2) P(h2) = 
= 0.5100 ¢ 0.75 + 0.670 ¢ 0.430 ¢ 0.25 = 
= 7.9 ¢ 10-31 ¢ 0.75 + 3.4 ¢ 10-28 ¢ 0.25

0.0057 = P(h1|D) = P(D|h1) P(h1)/P(D) << P(D|h2) P(h2) /P(D) = P(h2|D) =0.9943
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Example: A Model of Language

19

Model 1: There are 5 characters, A, B, C, D, E, and space

At any point can generate any of them, according to:

P(A)= p1;   P(B) =p2;   P(C) =p3;   P(D)= p4;   P(E)= p5 P(SP)= p6 i pi = 1 

This is a family of distributions; learning is identifying a member of this family.

E.g., P(A)= 0.3;   P(B) =0.1;   P(C) =0.2;   P(D)= 0.2;   P(E)= 0.1    P(SP)=0.1

We assume a generative model of independent characters (fixed k): 

P(U) = P(x1, x2,…, xk)= i=1,k P(xi| xi+1, xi+2,…, xk)= i=1,k P(xi)

The parameters of the model are the character generation probabilities (Unigram).

Goal: to determine which of two strings U, V is more likely.

The Bayesian way: compute the probability of each string, and decide which is 
more likely.

Learning here is: learning the parameters of a known model family

How?

Consider Strings: AABBC & ABBBA

You observe a string; use it to learn the language model. 
E.g., S= AABBABC;                      Compute P(A)
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Maximum Likelihood Estimate

20

Assume that you toss a (p,1-p) coin m times and get k Heads, 
m-k Tails.  What is p?

If p is the probability of Head, the probability of the data 
observed is:    

P(D|p) = pk (1-p)m-k

The log Likelihood:
L(p) = log P(D|p) = k log(p) + (m-k)log(1-p)

To maximize, set the derivative w.r.t. p equal to 0:

dL(p)/dp = k/p – (m-k)/(1-p) 

Solving this for p, gives:      p=k/m

2. In practice, smoothing is advisable – deriving the 
right smoothing can be done by assuming a prior. 

1. The model we assumed is binomial. You could assume a different model! 
Next we will consider other models and see how to learn their parameters.
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Bernoulli Distribution:  

 Random Variable X takes values {0, 1} s.t  P(X=1) = p = 1 – P(X=0)

 (Think of tossing a coin)

Binomial Distribution: 

 Random Variable X takes values {1, 2,…, n} representing  the number of 
successes (X=1) in n Bernoulli trials.

 P(X=k) = f(n, p, k) = Cn
k pk (1-p)n-k

 Note that if X ~ Binom(n, p) and Y ~ Bernulli (p),    X = i=1,n Y

 (Think of multiple coin tosses) 

n!
x1!:::xk!

px11 :::pxkk

Probability Distributions

21
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Categorical Distribution:  

 Random Variable X takes on values in {1,2,…k}  s.t P(X=i) = pi and  1
k pi = 1

 (Think of a dice) 

Multinomial Distribution:

 Let the random variables Xi (i=1, 2,…, k) indicates the number of times 
outcome i was observed over the n trials. 

 The vector X = (X1, ..., Xk) follows a multinomial distribution (n,p) where 
p = (p1, ..., pk) and 1

k pi = 1 

 f(x1, x2,…xk, n, p) = P(X1= x1, … Xk = xk) =

 (Think of n tosses of a k sided dice)

n!
x1!:::xk!

px11 :::pxkk

Probability Distributions(2)

22
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Our eventual goal will be: Given a document, 
predict whether it’s “good” or “bad”

We are given a collection of documents written in a three word language {a, b, c}. All the 
documents have exactly n words (each word can be either a, b or c). 

We are given a labeled document collection {D1, D2 ... , Dm}. The label yi of document Di is 
1 or 0, indicating whether Di is “good” or “bad”.

This model uses the multinominal distribution. That is, ai (bi, ci, resp.) is the number of 
times word a (b, c, resp.) appears in document Di. 

Therefore:                        ai + bi + ci = |Di| = n.

In this generative model, we have: 

P(Di|y = 1) =n!/(ai! bi! ci!) ®1
ai ¯1

bi °1
ci

where ®1 (¯1, °1 resp.) is the probability that a (b , c) appears in a “good”  document. 

Similarly, P(Di|y = 0) =n!/(ai! bi! ci!) ®0
ai ¯0

bi °0
ci

Note that: ®0+¯0+°0= ®1+¯1+°1 =1

n!
x1!:::xk!

px11 :::pxkk

A Multinomial Bag of Words

23

Unlike the discriminative case, the “game” here is different: 
 We make an assumption on how the data is being generated. 

 (multinomial, with ®i, ¯i, °i) 
 Now, we observe documents, and estimate these parameters. 
 Once we have the parameters, we can predict the corresponding label. 
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We are given a collection of documents written in a three word language {a, b, c}. All the 
documents have exactly n words (each word can be either a, b or c). 

We are given a labeled document collection {D1, D2 ... , Dm}. The label yi of document Di is 
1 or 0, indicating whether Di is “good” or “bad”.

The classification problem: given a document D, determine if it is good or bad; that is, 
determine P(y|D). 

This can be determined via Bayes rule: P(y|D)  = P(D|y) P(y)/P(D)

But, we need to know the parameters of the model to compute that. 

n!
x1!:::xk!

px11 :::pxkk

A Multinomial Bag of Words (2)

24
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A Multinomial Bag of Words (3)

n!
x1!:::xk!

px11 :::pxkk

25

How do we estimate the parameters?

We derive the most likely value of the parameters defined above, by maximizing the log 
likelihood of the observed data. 

PD = i P(yi , Di ) = i P(Di |y
i
) P(y

i
)  = 

 We denote by P(y
i
) = ´ the probability  that an example is “good” (yi=1; otherwise yi=0).     Then:

i P(y, Di ) = i [(´ n!/(ai! bi! ci!) ®1
ai ¯1

bi °1
ci )yi ¢((1 - ´)  n!/(ai! bi! ci!) ®0

ai ¯0
bi °0

ci )1-yi]

We want to maximize it with respect to each of the parameters. We first compute log (PD) 
and then differentiate: 

log(PD) =
i
yi [ log(´) + C + ai log(®1) + bi log(¯1) + ci log(°1) +            

(1- yi) [log(1-´) + C’ + ai log(®0) + bi log(¯0) + ci log(°0) ]

dlogPD/d ´ = i [yi /´ - (1-yi)/(1-´)] = 0  i (yi - ´) = 0     ´ = i yi /m

The same can be done for the other 6 parameters. However, notice that they are not 
independent: ®0+¯0+°0= ®1+¯1+°1 =1 and also ai + bi + ci = |Di| = n.

Labeled data, assuming that the 
examples are independent

Notice that this is an important trick to write down the 
joint probability without knowing what the outcome of the 

experiment is. The ith expression evaluates to p(Di , yi)
(Could be written as a sum with multiplicative yi but less convenient) 
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Consider data over 5 characters, x=a, b, c, d, e,  and 2 states s=B, I
 Think about chunking a sentence to phrases; B is the Beginning of each phrase, I is Inside 

a phrase.

We generate characters according to:

Initial state prob: p(B)= 1; p(I)=0

State transition prob:

 p(BB)=0.8 p(BI)=0.2

 p(IB)=0.5 p(II)=0.5

Output prob:

 p(a|B) = 0.25,p(b|B)=0.10, p(c|B)=0.10,…. 

 p(a|I) = 0.25,p(b,I)=0,…

Can follow the generation process to get the observed sequence.

Other Examples (HMMs)

P(B)=1

P(I) = 0

P(x|B)
B I

0.8

0.2

0.5

0.5
P(x|I)

0.8

0.2

0.5

0.5

a

B I BII

ddc

1
0.2 0.50.50.5

0.40.250.250.250.25

a

 We can do the same exercise we did before. 

 Data: {(x1 ,x2,…xm ,s1 ,s2,…sm)}1
n

 Find the most likely parameters of the model:
P(xi |si), P(si+1 |si), p(s1)

 Given an unlabeled example 
x = (x1, x2,…xm)

 use Bayes rule to predict the label  l=(s1, s2,…sm):

l* = argmaxl P(l|x) = argmaxl P(x|l) P(l)/P(x)

 The only issue is computational: there are 2m possible 
values of l

 This is an HMM model, but nothing was hidden; 
 next week, s1 ,s2,…sm will be hidden
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Bayes Optimal Classifier

27

How should we use the general formalism?
What should H be?

H can be a collection of functions. Given the training data, 
choose an optimal function. Then, given new data, evaluate 
the selected function on it.

H can be a collection of possible predictions. Given the data, 
try to directly choose the optimal prediction. 

Could be different!
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Bayes Optimal Classifier

28

The first formalism suggests to learn a good hypothesis and 
use it. 
(Language modeling, grammar learning, etc. are here)

The second one suggests to directly choose a decision.[it/in]:
This is the issue of “thresholding” vs. entertaining all options 
until the last minute. (Computational Issues) 

h)P(h)|P(DargmaxD)|P(hargmaxh HhHhMAP  
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Bayes Optimal Classifier: Example
Assume a space of 3 hypotheses:

 P(h1|D) = 0.4; P(h2|D) = 0.3; P(h3|D) = 0.3 hMAP = h1

Given a new instance x, assume that
 h1(x) = 1                h2(x) = 0                 h3(x) = 0

In this case, 
 P(f(x) =1 ) = 0.4   ; P(f(x) = 0) = 0.6    but    hMAP (x) =1

We want to determine the most probable 
classification by combining the prediction of all 
hypotheses, weighted by their posterior probabilities

29
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Click here to move 
to the next lecture

Bayes Optimal Classifier: Example(2)
Let V be a set of possible classifications

Bayes Optimal Classification: 

In the example: 

and the optimal prediction is indeed 0.

The key example of using a “Bayes optimal Classifier” 
is that of the naïve Bayes algorithm.

30

D)|)P(hh | P(v D)|)P(hD,h | P(v D)|P(v iHh ijiHh ijj
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D)|)P(hh | P(vargmax  D)|P(vargmax v iHh ijVvjVv
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Justification: Bayesian Approach

31

The Bayes optimal function is

fB(x) = argmaxyD(x; y)

That is, given input x, return the most likely label

It can be shown that fB has the lowest possible value for Err(f)

Caveat: we can never construct this function: it is a function of
D, which is unknown. 

But, it is a useful theoretical construct, and drives attempts to 
make assumptions on D
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Maximum-Likelihood Estimates

32

We attempt to model the underlying distribution

D(x, y) or D(y | x)

To do that, we assume a model 

P(x, y | ) or P(y | x ,  ),

where  is the set of parameters of the model

Example: Probabilistic Language Model (Markov Model):

 We assume a model of language generation. Therefore, P(x, y | )  was 
written as a function of symbol & state probabilities (the parameters). 

We typically look at the log-likelihood 

Given training samples (xi; yi), maximize the log-likelihood

L() = i log P (xi; yi | )  or   L() = i log P (yi | xi , ))
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Justification: Bayesian Approach

33

Assumption: Our selection of the model is good; there is some parameter 
setting * such that the true distribution is really represented by our model

D(x, y)  = P(x, y | *)

Define the maximum-likelihood estimates:

ML = argmaxL() 

As the training sample size goes to , then 

P(x, y | ML ) converges to D(x, y) 

Given the assumption above, and the availability of enough data

argmaxy P(x, y | ML )

converges to the Bayes-optimal function 

fB(x) = argmaxyD(x; y)

Are we done?
We provided also 
Learning Theory 
explanations for why 
these algorithms work.
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