Administration

Final

- □ Will be done on the official university date for this class: 5/9, 1:30.
- □ We will have a review session during the last scheduled lecture, 5/2.
- □ The schedule has been updated accordingly.

Projects:

- □ Reports are due on 5/11.
- In addition, instead of presentations, we will ask you to send a short video of your presentation < 5 min.</p>
- □ Project progress reports are due on 4/17.

Bayesian Learning

Recap: Error Driven Learning

- Consider a distribution D over space X×Y
- X the instance space; Y set of labels. (e.g. +/-1)
- Can think about the data generation process as governed by D(x), and the labeling process as governed by D(y|x), such that D(x,y)=D(x) D(y|x)
- This can be used to model both the case where labels are generated by a function y=f(x), as well as noisy cases and probabilistic generation of the label.
 - If the distribution D is known, there is no learning. We can simply predict y = argmax_y D(y|x)
- If we are looking for a hypothesis, we can simply find the one that minimizes the probability of mislabeling: h = argmin_h E_{(x,y)~D} [[h(x)≠ y]]

Bayesian Learning

Recap: Error Driven Learning (2)

Inductive learning comes into play when the distribution is not known.

Then, there are two basic approaches to take.

Discriminative (direct) learning

and

Bayesian Learning (Generative)

Running example: Text Correction:
 "I saw the girl it the park" → I saw the girl in the park

Bayesian Learning

1: Direct Learning

- Model the problem of text correction as a problem of learning from examples.
- Goal: learn directly how to make predictions.

PARADIGM

- Look at many (positive/negative) examples.
- Discover some regularities in the data.
- Use these to construct a prediction policy.
- A policy (a function, a predictor) needs to be specific. [it/in] rule: if the occurs after the target \Rightarrow in
- Assumptions comes in the form of a hypothesis class.

Bottom line: approximating $h : X \rightarrow Y$ is estimating P(Y | X).

Direct Learning (2)

- Consider a distribution D over space X×Y
- X the instance space; Y set of labels. (e.g. +/-1)
- Given a sample {(x,y)}^m, and a loss function L(x,y)
- Find h∈H that minimizes

 $\Sigma_{i=1,m} D(x_i, y_i) L(h(x_i), y_i) + \text{Reg}$

L can be:	$L(h(x),y)=1, h(x)\neq y, o/w L(h(x),y) = 0$ (0-1 loss)	
	L(h(x),y)=(h(x)-y) ² ,	(L ₂)
	L(h(x),y)= max{0,1-y h(x)}	(hinge loss)
	$L(h(x),y)=exp\{-yh(x)\}$	(exponential loss)

Guarantees: If we find an algorithm that minimizes loss on the observed data. Then, learning theory guarantees good future behavior (as a function of H).

Bayesian Learning

2: Generative Model

The model is called "generative" since it assumes how data X is generated given y

Erating

6

- Model the problem of text correction as that of correct sentences.
- Goal: learn a model of the language; use it predict.
 <u>PARADIGM</u>
- Learn a probability distribution over a sentences
 In practice: make assumptions on the distribution's type
- Use it to estimate which senter ce is more likely.
 - Pr(I saw the girl it the park) <> Pr(I saw the girl in the park)
 - In practice: a decision policy depends on the assumptions

Bottom line: the generating paradigm approximates P(X,Y) = P(X|Y) P(Y).

Guarantees: We need to assume the "right" probability distribution
 Bayesian Learning CS446 – Spring'17

Probabilistic Learning

- There are actually two different notions.
- Learning probabilistic concepts
 - □ The learned concept is a function $c:X \rightarrow [0,1]$
 - c(x) may be interpreted as the probability that the label 1 is assigned to x
 - The learning theory that we have studied before is applicable (with some extensions).
- Bayesian Learning: Use of a probabilistic criterion in selecting a hypothesis

The hypothesis can be deterministic, a Boolean function.

It's not the hypothesis – it's the process.

Basics of Bayesian Learning

- Goal: find the best hypothesis from some space H of hypotheses, given the observed data D.
- Define <u>best</u> to be: most <u>probable hypothesis</u> in H
- In order to do that, we need to assume a probability distribution over the class H.
- In addition, we need to know something about the relation between the data observed and the hypotheses (E.g., a coin problem.)

As we will see, we will be Bayesian about other things, e.g., the parameters of the model

Bayesian Learning

Basics of Bayesian Learning

- P(h) the prior probability of a hypothesis h Reflects background knowledge; before data is observed. If no information - uniform distribution.
- P(D) The probability that <u>this sample</u> of the Data is observed. (No knowledge of the hypothesis)
- P(D|h): The probability of observing the sample D, given that hypothesis h is the target
- P(h|D): The posterior probability of h. The probability that h is the target, given that D has been observed.

Bayesian Learning

Bayes Theorem

$\mathbf{P}(\mathbf{h} \mid \mathbf{D}) = \mathbf{P}(\mathbf{D} \mid \mathbf{h}) \overset{\mathbf{P}(\mathbf{h})}{/} \mathbf{P}(\mathbf{D})$

P(h|D) increases with P(h) and with P(D|h)

P(h|D) decreases with P(D)

Bayesian Learning

Basic Probability

- **Product Rule:** P(A,B) = P(A|B)P(B) = P(B|A)P(A)
- If A and B are independent:

 $\square P(A,B) = P(A)P(B); P(A|B) = P(A), P(A|B,C) = P(A|C)$

- **Sum Rule:** $P(A \lor B) = P(A) + P(B) P(A,B)$
- **Bayes Rule:** P(A|B) = P(B|A) P(A)/P(B)
- Total Probability:

□ If events A_1 , A_2 ,... A_n are mutually exclusive: $A_i \cap A_j = \phi$, $\sum_i P(A_i) = 1$

 $\square P(B) = \sum P(B, A_i) = \sum_i P(B|A_i) P(A_i)$

Total Conditional Probability:

□ If events $A_1, A_2, ..., A_n$ are mutually exclusive: $A_i \cap A_j = \phi$, $\sum_i P(A_i) = 1$ □ $P(B|C) = \sum P(B, A_i|C) = \sum_i P(B|A_i, C) P(A_i|C)$

Bayesian Learning

Learning Scenario

- P(h|D) = P(D|h) P(h)/P(D)
- The learner considers a set of <u>candidate hypotheses</u> H (models), and attempts to find <u>the most probable</u> one h ∈ H, given the observed data.
- Such maximally probable hypothesis is called <u>maximum a</u> <u>posteriori</u> hypothesis (<u>MAP</u>); Bayes theorem is used to compute it:

$$\begin{split} \mathbf{h}_{\mathsf{MAP}} &= \mathsf{argmax}_{h \, \in \, \mathcal{H}} \, \mathsf{P}(\mathsf{h} \, | \, \mathsf{D}) \, = \mathsf{argmax}_{h \, \in \, \mathcal{H}} \, \mathsf{P}(\mathsf{D} \, | \, \mathsf{h}) \, \mathsf{P}(\mathsf{h}) / \mathsf{P}(\mathsf{D}) \\ &= \mathsf{argmax}_{h \, \in \, \mathcal{H}} \, \mathsf{P}(\mathsf{D} \, | \, \mathsf{h}) \, \mathsf{P}(\mathsf{h}) \end{split}$$

Learning Scenario (2)

 $h_{\mathsf{MAP}} = \mathsf{argmax}_{h \, \in \, \mathcal{H}} \, \mathsf{P}(h \, | \, \mathsf{D}) \ = \ \mathsf{argmax}_{h \, \in \, \mathcal{H}} \, \mathsf{P}(\mathsf{D} \, | \, h) \, \mathsf{P}(h)$

We may assume that a priori, hypotheses are equally probable: $P(h_i) = P(h_i) \forall h_i, h_i \in H$

• We get the Maximum Likelihood hypothesis:

$$h_{ML} = argmax_{h \in \mathcal{H}} P(D|h)$$

Here we just look for the hypothesis that best explains the data

Bayesian Learning

Examples

$$n_{\mathsf{MAP}} = \mathsf{argmax}_{\mathsf{h} \in |\mathcal{H}|} \mathsf{P}(\mathsf{h}|\mathsf{D}) = \mathsf{argmax}_{\mathsf{h} \in |\mathcal{H}|} \mathsf{P}(\mathsf{D}|\mathsf{h}) \mathsf{P}(\mathsf{h})$$

A given coin is either fair or has a 60% bias in favor of Head.
 Decide what is the bias of the coin [This is a learning problem!]

```
Two hypotheses: h_1: P(H)=0.5; h_2: P(H)=0.6
Prior: P(h): P(h_1)=0.75 P(h_2)=0.25
Now we need Data. 1<sup>st</sup> Experiment: coin toss is H.
P(D|h):
P(D|h_1)=0.5; P(D|h_2) = 0.6
P(D):
P(D)=P(D|h_1)P(h_1) + P(D|h_2)P(h_2)
= 0.5 • 0.75 + 0.6 • 0.25 = 0.525
P(h|D):
P(h_1|D) = P(D|h_1)P(h_1)/P(D) = 0.5•0.75/0.525 = 0.714
P(h_2|D) = P(D|h_2)P(h_2)/P(D) = 0.6•0.25/0.525 = 0.286
```

Bayesian Learning

Examples(2)

$$n_{MAP} = argmax_{h \in \mathcal{H}} P(h|D) = argmax_{h \in \mathcal{H}} P(D|h) P(h)$$

- A given coin is either fair or has a 60% bias in favor of Head.
 Decide what is the bias of the coin [This is a learning problem!]
- Two hypotheses: h₁: P(H)=0.5; h₂: P(H)=0.6
 Prior: P(h): P(h₁)=0.75 P(h₂)=0.25
- After 1st coin toss is H we still think that the coin is more likely to be fair
- If we were to use Maximum Likelihood approach (i.e., assume equal priors) we would think otherwise. The data supports the biased coin better.
- Try: 100 coin tosses; 70 heads.
- You will believe that the coin is biased.

Bayesian Learning

Examples(2)

$$h_{MAP} = argmax_{h \in \mathcal{H}} P(h|D) = argmax_{h \in \mathcal{H}} P(D|h) P(h)$$

A given coin is either fair or has a 60% bias in favor of Head.

- Decide what is the bias of the coin [This is a learning problem!]
- Two hypotheses: h₁: P(H)=0.5; h₂: P(H)=0.6
 Prior: P(h): P(h₁)=0.75 P(h₂)=0.25
- Case of 100 coin tosses; 70 heads.

 $P(D) = P(D|h_1) P(h_1) + P(D|h_2) P(h_2) =$ = 0.5¹⁰⁰ · 0.75 + 0.6⁷⁰ · 0.4³⁰ · 0.25 = = 7.9 · 10⁻³¹ · 0.75 + 3.4 · 10⁻²⁸ · 0.25

 $0.0057 = P(h_1|D) = P(D|h_1) P(h_1)/P(D) \iff P(D|h_2) P(h_2) / P(D) = P(h_2|D) = 0.9943$

Bayesian Learning

Example: A Model of Language

- Model 1: There are 5 characters, A, B, C, D, E, and space
- At any point can generate any of them, according to:
 - $P(A) = p_1; P(B) = p_2; P(C) = p_3; P(D) = p_4; P(E) = p_5 P(SP) = p_6 \sum_i p_i = 1$
- This is a family of distributions; learning is identifying a member of this family.
 E.g., P(A)= 0.3; P(B) =0.1; P(C) =0.2; P(D)= 0.2; P(E)= 0.1 P(SP)=0.1

We assume a generative model of independent characters (fixed k): $P(U) = P(x_1, x_2, ..., x_k) = \prod_{i=1,k} P(x_i | x_{i+1}, x_{i+2}, ..., x_k) = \prod_{i=1,k} P(x_i)$

- The parameters of the model are the character generation probabilities (Unigram).
- Goal: to determine which of two strings U, V is more likely.
- The Bayesian way: compute the probability of each string, and decide which is more likely.

Consider Strings: AABBC & ABBBA

Learning here is: learning the parameters of a known model family

How?	You observe a string; use it to learn the language model.	
	E.g., S= AABBABC;	Compute P(A)
Bayesian Learning	CS446 – Spring 17	

1. The model we assumed is binomial. You could assume a different model! Next we will consider other models and see how to learn their parameters. Maximum Likelihood Estimate

Assume that you toss a (p,1-p) coin m times and get k Heads, m-k Tails. What is p?

2. In practice, smoothing is advisable – deriving the right smoothing can be done by assuming a prior.

If p is the probability of Head, the probability of the data observed is:

 $P(D|p) = p^{k} (1-p)^{m-k}$

- The log Likelihood: L(p) = log P(D|p) = k log(p) + (m-k)log(1-p)
 - To maximize, set the derivative w.r.t. p equal to 0:

dL(p)/dp = k/p - (m-k)/(1-p)

Solving this for p, gives: p=k/m
 Bayesian Learning
 CS446 – Spring'17

Probability Distributions

Bernoulli Distribution:

- □ Random Variable X takes values $\{0, 1\}$ s.t P(X=1) = p = 1 P(X=0)
- □ (Think of tossing a coin)

Binomial Distribution:

- Random Variable X takes values {1, 2,..., n} representing the number of successes (X=1) in n Bernoulli trials.
- □ $P(X=k) = f(n, p, k) = C_n^k p^k (1-p)^{n-k}$
- □ Note that if X ~ Binom(n, p) and Y ~ Bernulli (p), $X = \sum_{i=1,n} Y$
- (Think of multiple coin tosses)

Probability Distributions(2)

Categorical Distribution:

- □ Random Variable X takes on values in $\{1,2,...k\}$ s.t P(X=i) = p_i and $\sum_1 k p_i = 1$
- □ (Think of a dice)

Multinomial Distribution:

- Let the random variables X_i (i=1, 2,..., k) indicates the number of times outcome i was observed over the n trials.
- □ The vector X = (X₁, ..., X_k) follows a multinomial distribution (n,p) where $p = (p_1, ..., p_k)$ and $\sum_1^k p_i = 1$

$$\Box f(x_1, x_2, \dots, x_k, n, p) = P(X_1 = x_1, \dots, X_k = x_k) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}, \quad \text{when } \sum_{i=1}^k x_i = n$$

(Think of n tosses of a k sided dice)

Our eventual goal will be: Given a document, predict whether it's "good" or "bad" A Multinomial Bag of Words

- We are given a collection of documents written in a three word language {a, b, c}. All the documents have exactly n words (each word can be either a, b or c).
- We are given a labeled document collection {D₁, D₂ ... , D_m}. The label y_i of document D_i is 1 or 0, indicating whether D_i is "good" or "bad".
- This model uses the multinominal distribution. That is, a_i (b_i, c_i, resp.) is the number of times word a (b, c, resp.) appears in document D_i.
- Therefore: $a_i + b_i + c_i = |D_i| = n.$
- In this generative model, we have:

 $P(D_i | y = 1) = n! / (a_i! b_i! c_i!) \alpha_1^{a_i} \beta_1^{b_i} \gamma_1^{c_i}$

where α_1 (β_1 , γ_1 resp.) is the probability that a (b , c) appears in a "good" document.

- Similarly, $P(D_i | y = 0) = n!/(a_i! b_i! c_i!) \alpha_o^{a_i} \beta_o^{b_i} \gamma_o^{c_i}$
- Note that: $\alpha_0 + \beta_0 + \gamma_0 = \alpha_1 + \beta_1 + \gamma_1 = 1$

Unlike the discriminative case, the "game" here is different:

❑ We make an assumption on how the data is being generated.

 \Box (multinomial, with α_i , β_i , γ_i)

- ❑ Now, we observe documents, and estimate these parameters.
- Once we have the parameters, we can predict the corresponding label.

A Multinomial Bag of Words (2)

- We are given a collection of documents written in a three word language {a, b, c}. All the documents have exactly n words (each word can be either a, b or c).
- We are given a labeled document collection {D₁, D₂ ... , D_m}. The label y_i of document D_i is 1 or 0, indicating whether D_i is "good" or "bad".

- The classification problem: given a document D, determine if it is good or bad; that is, determine P(y|D).
- This can be determined via Bayes rule: P(y|D) = P(D|y) P(y)/P(D)

But, we need to know the parameters of the model to compute that.

Bayesian Learning

A Mult

Notice that this is an important trick to write down the joint probability without knowing what the outcome of the experiment is. The ith expression evaluates to $p(D_i, y_i)$ (Could be written as a sum with multiplicative y_i but less convenient)

- How do we estimate the paramet
- We derive the most likely value of the likelihood of the observed data.
- $PD = \Pi_i P(y_i, D_i) = \Pi_i P(D_i | y_i) P(y_i) =$

rs defined above, by maximizing the log

Labeled data, assuming that the examples are independent

- We denote by $P(y_i) = \eta$ the probability that a example is "good" ($y_i=1$; otherwise $y_i=0$). Then:
- $\Pi_{i} P(y, D_{i}) = \Pi_{i} [(\eta n!/(a_{i}! b_{i}! c_{i}!) \alpha_{1}^{a_{i}} \beta_{1}^{b_{i}} \gamma_{1}^{c_{i}})^{y_{i}} \cdot ((1 \eta) n!/(a_{i}! b_{i}! c_{i}!) \alpha_{0}^{a_{i}} \beta_{0}^{b_{i}} \gamma_{0}^{c_{i}})^{1-y_{i}}]$
- We want to maximize it with respect to each of the parameters. We first compute log (PD) and then differentiate:

 $\log(PD) = \sum_{i} y_{i} \qquad [\log(\eta) + C + a_{i}\log(\alpha_{1}) + b_{i}\log(\beta_{1}) + c_{i}\log(\gamma_{1}) + (1 - y_{i})[\log(1 - \eta) + C' + a_{i}\log(\alpha_{o}) + b_{i}\log(\beta_{o}) + c_{i}\log(\gamma_{o})]$

 $\operatorname{dlogPD/d} \eta = \sum_{i} \left[y_{i} / \eta - (1 - y_{i}) / (1 - \eta) \right] = 0 \quad \Rightarrow \quad \sum_{i} \left(y_{i} - \eta \right) = 0 \quad \Rightarrow \quad \eta = \sum_{i} y_{i} / m$

The same can be done for the other 6 parameters. However, notice that they are not independent: $\alpha_0 + \beta_0 + \gamma_0 = \alpha_1 + \beta_1 + \gamma_1 = 1$ and also $a_i + b_i + c_i = |D_i| = n$.

Bayesian Learning

Other Examples (HMMs)

Consider data over 5 characters, x=a, b, c, d, e, and 2 states s=B, I

□ We can do the same exercise we did before.

Data: $\{(x_1, x_2, ..., x_m, s_1, s_2, ..., s_m)\}_1^n$

Find the most likely parameters of the model: P(x_i | s_i), P(s_{i+1} | s_i), p(s₁)

```
    Given an unlabeled example
        x = (x<sub>1</sub>, x<sub>2</sub>,...x<sub>m</sub>)
    use Bayes rule to predict the label ℓ=(s<sub>1</sub>, s<sub>2</sub>,...s<sub>m</sub>):
```

 $\ell^* = \operatorname{argmax}_{\ell} P(\ell | x) = \operatorname{argmax}_{l} P(x | \ell) P(\ell) / P(x)$

□ The only issue is computational: there are 2^m possible values of *ℓ*

```
    This is an HMM model, but nothing was hidden;
    next week, S<sub>1</sub>, S<sub>2</sub>,...S<sub>m</sub> will be hidden
```

he Beginning of each phrase, I is Inside

Bayes Optimal Classifier

- How should we use the general formalism?What should H be?
- H can be a collection of functions. Given the training data, choose an optimal function. Then, given new data, evaluate the selected function on it.
- H can be a collection of possible predictions. Given the data, try to directly choose the optimal prediction.
- Could be different!

Bayesian Learning

Bayes Optimal Classifier

The first formalism suggests to learn a good hypothesis and use it.

(Language modeling, grammar learning, etc. are here)

$\mathbf{h}_{\mathrm{MAP}} = argmax_{\mathbf{h}\in\mathbf{H}} \mathbf{P}(\mathbf{h} \mid \mathbf{D}) = argmax_{\mathbf{h}\in\mathbf{H}} \mathbf{P}(\mathbf{D} \mid \mathbf{h}) \mathbf{P}(\mathbf{h})$

The second one suggests to directly choose a decision.[it/in]:
This is the issue of "thresholding" vs. entertaining all options until the last minute. (Computational Issues)

Bayes Optimal Classifier: Example

Assume a space of 3 hypotheses:

□ $P(h_1|D) = 0.4$; $P(h_2|D) = 0.3$; $P(h_3|D) = 0.3 \rightarrow h_{MAP} = h_1$

Given a new instance x, assume that

u $h_1(x) = 1$ $h_2(x) = 0$ $h_3(x) = 0$

In this case,

P(f(x) = 1) = 0.4 ; P(f(x) = 0) = 0.6 but $h_{MAP}(x) = 1$

We want to determine the most probable classification by combining the prediction of all hypotheses, weighted by their posterior probabilities

Bayes Optimal Classifier: Example(2)

Let V be a set of possible classifications $P(v_{j} | D) = \sum_{h_{i} \in H} P(v_{j} | h_{i}, D)P(h_{i} | D) = \sum_{h_{i} \in H} P(v_{j} | h_{i})P(h_{i} | D)$ Bayes Optimal Classification: $v = \operatorname{argmax}_{v_{i} \in V} P(v_{j} | D) = \operatorname{argmax}_{v_{i} \in V} \sum_{h_{i} \in H} P(v_{j} | h_{i})P(h_{i} | D)$

In the example:
 P(1|D) = \$\sum_{h_i \in H} P(1|h_i)P(h_i | D)\$ = 1 • 0.4 + 0 • 0.3 + 0 • 0.3 = 0.4
 P(0|D) = \$\sum_{h_i \in H} P(0|h_i)P(h_i | D)\$ = 0 • 0.4 + 1 • 0.3 + 1 • 0.3 = 0.6
 and the optimal prediction is indeed 0.

The key example of using a "Bayes optimal Classifier" is that of the <u>naïve Bayes algorithm</u>.

CS446 – Spring'17

Bayesian Learning

30

Justification: Bayesian Approach

The Bayes optimal function is

 $f_B(x) = argmax_y D(x; y)$

- That is, given input x, return the most likely label
- It can be shown that f_B has the lowest possible value for Err(f)
- Caveat: we can never construct this function: it is a function of
 D, which is unknown.
- But, it is a useful theoretical construct, and drives attempts to make assumptions on D

Bayesian Learning

Maximum-Likelihood Estimates

We attempt to model the underlying distribution

D(x, y) or D(y | x)

To do that, we assume a model

$P(x, y | \theta) \text{ or } P(y | x, \theta),$

where $\boldsymbol{\theta}$ is the set of parameters of the model

- Example: Probabilistic Language Model (Markov Model):
 - □ We assume a model of language generation. Therefore, $P(x, y | \theta)$ was written as a function of symbol & state probabilities (the parameters).
- We typically look at the log-likelihood
- Given training samples (x_i; y_i), maximize the log-likelihood
- $L(\theta) = \Sigma_i \log P(x_i; y_i \mid \theta) \text{ or } L(\theta) = \Sigma_i \log P(y_i \mid x_i, \theta))$

Bayesian Learning

Justification: Bayesian Approach

Assumption: Our selection of the model is good; there is some parameter setting θ^* such that the true distribution is really represented by our model

 $\mathsf{D}(\mathsf{x},\mathsf{y}) = \mathsf{P}(\mathsf{x},\mathsf{y} \mid \theta^*)$

Define the maximum-likelihood estimates:

 $\theta_{ML} = \operatorname{argmax}_{\theta} L(\theta)$

As the training sample size goes to ∞ , then

 $P(x, y | \theta_{ML})$ converges to D(x, y)

Given the assumption above, and the availability of enough data

 $argmax_{y} P(x, y | \theta_{ML})$ converges to the Bayes-optimal function $f_{B}(x) = argmax_{y} D(x; y)$

Bayesian Learning

CS446 – Spring'17

Are we done? We provided also Learning Theory explanations for why these algorithms work.

33