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Before we start

Feel free to ask questions anytime

The slides are newly made. Please
tell me if you find any mistake.
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Today: supervised learning algorithms

machine
learning
model

training data testing data

Supervised learning algorithms we have mentioned

Decision Tree

Online Learning: Perceptron, Winnow, . . .

Generative Model: Naive Bayes

What are we going to talk about today?

“Modern” supervised learning algorithms

Specifically, logistic regression and support vector machine
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Motivation

Logistic regression and support vector machine are both very popular!

Batch learning algorithms
I Using optimization algorithms as training algorithms
I An important technique we need to be familiar with.
I Learn not to be afraid of these algorithms

Understand the relationships
between these algorithms and the algorithms we have learned
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Review: Naive Bayes

Notations

Input: x , Output y ∈ {+1,−1}
Assume each x has m features.

I We use x j to represent the j-th features of x

x1 x2 x3 x4 x5

y

Conditional Independence
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Review: Naive Bayes

x1 x2 x3 x4 x5

y

P(y , x) = P(y)
m∏

j=1

P(x j |y)

Training

Maximize the likelihood of
P(D) = P(Y ,X ) =

∏l
i p(yi , xi )

Algorithm
I Estimate P(y = −1) and

P(y = 1) by counting
I Estimate P(x j |y) by counting

Testing
P(y=+1|x)
P(y=−1|x) = P(y=+1,x)

P(y=−1,x) ≥ 1?
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Review: Naive Bayes

The prediction function of a Naive Bayes model is a linear function

In previous lectures, we have shown that

log P(y=+1|x)
P(y=−1|x) ≥ 0⇒ wT x + b ≥ 0

The counting results can be re-expressed as a linear function

Key observation: Naive Bayes cannot express all possible linear
functions

I Intuition: conditional independence assumption

We will propose a model (logistic regression) that can express all
possible linear functions in the next few slides.
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Modeling conditional probability using a linear function

Starting point: the predicting function of Naive Bayes

log P(y=+1|x)
P(y=−1|x) = wT x + b ⇔

P(y=+1|x)
1−P(y=+1|x) = ewT x+b

1 ⇔

P(y = +1|x) = ewT x+b

1+ewT x+b
= 1

1+e−1(wT x+b)

The conditional probability P(y |x) = 1

1+e−y(wT x+b)

In order to simplify the notation,

I wT ←
[
wT b

]
I xT ←

[
xT 1

]
Using the bias trick, P(y |x) = 1

1+e−y(wT x)
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Logistic regression: introduction

Naive Bayes: model P(y , x)
I conditional independence assumption: training = counting
I not all w are possible

In the testing phase, we just showed that the conditional probability
can be expressed

P(y |x ,w) =
1

1 + e−y(wT x)
(1)

Logistic Regression

Maximizes conditional likelihood P(y |x) directly in the training phase

How to find w?
I w = argmaxw P(Y |X ,w) = argmaxw

∏l
i=1 P(yi |xi ,w)

I For all possible w , find the one that maximizes the conditional
likelihood

F drop the conditional independence assumption!
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Logistic regression: the final objective function

w = argmaxw P(Y |X ,w) = argmaxw

∏l
i=1 P(y |x ,w)

Finding w as an optimization problem

w = argmax
w

log P(Y |X ,w) = argmin
w
− log P(Y |X ,w)

= argmin
w
−

l∑
i=1

log
1

1 + e−yi (wT xi )

= argmin
w

l∑
i=1

log(1 + e−yi (w
T xi ))

Properties of this optimization problem

A convex optimization problem
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Adding regularization

Explanation

Empirical loss : log(1 + e−yi (w
T xi ))

I yi (w
T xi ) increases → log(1 + e−yi (w

T xi )) decreases
I In order to minimize the empirical loss, w will tend to be large

Therefore, to prevent over-fitting, we add a regularization term

Regularization Term

min
w

1

2
wTw + C

l∑
i=1

log(1 + e−yi (w
T xi ))

Empirical Loss

balance parameter
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Optimization

An unconstrained problem. We can use the gradient descent
algorithm!

However, it is quite slow.

Many other methods
Iterative scaling; non-linear conjugate gradient; quasi-Newton
methods; truncated Newton methods; trust-region newton method.

All methods are iterative methods, that generate a sequence wk

Converging to the optimal solution of the optimization problem above.

Choice of optimization techniques

Low cost per iteration – High cost per iteration
(slow convergence) (fast convergence)
Iterative scaling Newton Methods
(each w component at a time)

Currently: Limited memory BFGS is very popular in NLP community
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Logistic regression versus Naive Bayes

Logistic regression Naive Bayes

Training maximize P(Y |X ) maximize P(Y ,X )

Training Algorithm optimization algorithms counting

Testing P(y |x) ≥ 0.5? P(y |x) ≥ 0.5?

Table: Comparison between Naive Bayes and logistic regression

LR and NB are both linear functions in the testing phase

However, their training agendas are very different
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Support Vector Machine: another loss function

No magic. Just another loss function

Logistic Regression

min
w

1

2
wTw + C

l∑
i=1

log(1 + e−yi (w
T xi ))

L1-loss SVM

min
w

1

2
wTw + C

l∑
i=1

max(0, 1− yiw
T xi )

L2-loss SVM

min
w

1

2
wTw + C

l∑
i=1

max(0, 1− yiw
T xi )

2

guest lecturer: Ming-Wei Chang CS 446 ()
Introduction to Logistic Regression and Support Vector Machine

14 / 25 Fall, 2009 14 / 25



Support Vector Machine: another loss function

No magic. Just another loss function

Logistic Regression

min
w

1

2
wTw + C

l∑
i=1

log(1 + e−yi (w
T xi ))

L1-loss SVM

min
w

1

2
wTw + C

l∑
i=1

max(0, 1− yiw
T xi )

L2-loss SVM

min
w

1

2
wTw + C

l∑
i=1

max(0, 1− yiw
T xi )

2

guest lecturer: Ming-Wei Chang CS 446 ()
Introduction to Logistic Regression and Support Vector Machine

14 / 25 Fall, 2009 14 / 25



Support Vector Machine: another loss function

No magic. Just another loss function

Logistic Regression

min
w

1

2
wTw + C

l∑
i=1

log(1 + e−yi (w
T xi ))

L1-loss SVM

min
w

1

2
wTw + C

l∑
i=1

max(0, 1− yiw
T xi )

L2-loss SVM

min
w

1

2
wTw + C

l∑
i=1

max(0, 1− yiw
T xi )

2

guest lecturer: Ming-Wei Chang CS 446 ()
Introduction to Logistic Regression and Support Vector Machine

14 / 25 Fall, 2009 14 / 25



Support Vector Machine: another loss function

No magic. Just another loss function

Logistic Regression

min
w

1

2
wTw + C

l∑
i=1

log(1 + e−yi (w
T xi ))

L1-loss SVM

min
w

1

2
wTw + C

l∑
i=1

max(0, 1− yiw
T xi )

L2-loss SVM

min
w

1

2
wTw + C

l∑
i=1

max(0, 1− yiw
T xi )

2

guest lecturer: Ming-Wei Chang CS 446 ()
Introduction to Logistic Regression and Support Vector Machine

14 / 25 Fall, 2009 14 / 25



Compare these loss functions
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The regularization term: maximize margin

The L1-loss SVM: minw
1
2wTw + C

∑l
i=1 max(0, 1− yiw

T xi )

Rewrite it using slack variables (why are they the same?)

minw
1

2
wTw + C

l∑
i=1

ξi

s.t. 1− yiw
T xi ≤ ξi , ξi ≥ 0

If there is no training error, what is the margin of w? 1
‖w‖

Maximizing 1
‖w‖ ⇔ minimizing wTw

SVM regularization: find the linear line that maximizes the margin

Learning theory: Link to SVM theory notes
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Balance between regularization and empirical loss

(a) Training data and an over-
fitting classifier

(b) Testing data and an over-
fitting classifier

The maximal margin line with 0 training error

Best?
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Balance between regularization and empirical loss

(c) Training data and a better
classifier

(d) Testing data and a better
classifier

If we allow some training error, we can find a better line
We need to balance the regularization term and the empirically loss term

Problem of model selection. Select balance parameter with cross validation
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Primal and Dual Formulations

Explaining the primal-dual relationship

Link to the lecture notes: 07-LecSvm-opt.pdf

Why primal-dual relationship is useful

Link to a talk by Professor Chih-Jen Lin in 2005.
I Optimization, Support Vector Machines, and Machine Learning. Talk

in DIS, University of Rome and IASI, CNR, Italy. September 1-2, 2005.

We will only use the slides from page 11-20.

Link to notes
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Nonlinear SVM

SVM tries to find a linear line that maximizes the margin.

Why people mention about non-linear SVM?

I Usually this means: x → φ(x)
F Find a linear function of φ(x)
F This can be a non linear function for x

Primal

minw ,ξi

1

2
wTw + C

l∑
i=1

ξi

s.t. 1− yiw
Tφ(x)i ≤ ξi

ξi ≥ 0,∀i = 1 . . . l

Dual

minα
1

2
αTQα− eTα

s.t. ∀i , 0 ≤ αi ≤ C

where Q is a l-by-l matrix
with Qij = yiyjK (xi , xj)

Same for Kernel perceptron: find a linear function on φ(x)

Demo
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Solving SVM

Both primal and dual problems have constraints
I We can not use the gradient descent algorithm

For linear dual SVM, there is a simple optimization algorithm
I Coordinate descent method!

minα
1

2
αTQα− eTα

s.t. ∀i , 0 ≤ αi ≤ C

I # of αi = # of training example
I The idea: pick one example i . Optimize αi only
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Coordinate Descent Algorithm

Algorithm

Run through the training data multiple times

I Pick a random example (i) among the training data.
I Fix α1, α2, . . . , αi−1, αi+1, . . . , αl , only change αi

α′
i = αi + s

I Solve the problem

mins
1

2
(α + sd)TQ(α + sd)− eT (α + sd)

s.t. 0 ≤ αi + s ≤ C ⇐ only one constraint,

where d is a vector of l − 1 zeros. The i-th component of d is 1.
I It is a single variable problem. We know how to solve this.
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Coordinate Descent Algorithm

Assume that the optimal s is s∗. We can update αi using:

α′
i = αi + s∗

⇐ Similar to dual perceptron

Given that w =
∑l

i αiyixi , this is equivalent to is equivalent to

w ← w + (α′
i − αi )yixi

⇐ Similar to primal perceptron

Isn’t this familiar?
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Relationships between linear classifiers

NB, LR, Perceptron and SVM are all linear classifiers

NB and LR have the same interpretation for conditional probability

P(y |x ,w) =
1

1 + e−y(wT x)
(2)

The difference between LR and SVM are their loss functions
I But they are quite similar!

Perceptron algorithm and the coordinate descent algorithm for SVM
are very similar
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Summary

Logistic regression

Maximizes P(Y |X ) while Naive Bayes maximizes the joint probability
P(Y ,X )

Model the conditional probability using a linear line. Drop the
conditional independence assumption

Many available methods of optimizing the objective function

Support Vector Machine

Similar to Logistic Regression; Different Loss function

Maximizes Margin; Has many nice theoretical properties

Interesting Primal-Dual relationship
I Allows us to choose the easier one to solve

Many available methods of optimizing the objective function
I The linear dual coordinate descent method turns out to be similar to

Perceptron
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