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Before we start
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Before we start

o Feel free to ask questions anytime
@ The slides are newly made. Please
tell me if you find any mistake.
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Today: supervised learning algorithms

machine
training data learning

testing data

model
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Today: supervised learning algorithms

machine
training data learning

testing data

model

Supervised learning algorithms we have mentioned
@ Decision Tree
@ Online Learning: Perceptron, Winnow, ...

@ Generative Model: Naive Bayes
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Today: supervised learning algorithms

machine
training data learning

testing data

model

Supervised learning algorithms we have mentioned
@ Decision Tree
@ Online Learning: Perceptron, Winnow, ...

@ Generative Model: Naive Bayes

What are we going to talk about today?
@ “Modern” supervised learning algorithms

@ Specifically, logistic regression and support vector machine
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Motivation

@ Logistic regression and support vector machine are both very popular!
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Motivation

@ Logistic regression and support vector machine are both very popular!

@ Batch learning algorithms

» Using optimization algorithms as training algorithms
» An important technique we need to be familiar with.
» Learn not to be afraid of these algorithms
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Motivation

@ Logistic regression and support vector machine are both very popular!

@ Batch learning algorithms
» Using optimization algorithms as training algorithms
» An important technique we need to be familiar with.
» Learn not to be afraid of these algorithms

Understand the relationships
between these algorithms and the algorithms we have learned
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Review: Naive Bayes

Notations
o Input: x, Output y € {+1,—1}
@ Assume each x has m features.
We use x/ to represent the j-th features of x

yi
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Review: Naive Bayes

Notations
o Input: x, Output y € {+1,—1}
@ Assume each x has m features.
We use x/ to represent the j-th features of x

yi

5 .
X X X X X" Conditional Independence
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Review: Naive Bayes

m
P(y.x) = P(y) [ P(ly)
j=1
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Review: Naive Bayes

Training
@ Maximize the likelihood of
P(D) = P(Y,X) = I1; p(yi: xi)
@ Algorithm
Estimate P(y = —1) and
‘ ‘ ‘ ‘ ‘ P(y = 1) by counting
Estimate P(x/|y) by counting

P(y.x) = P(y) [ P(ly)
j=1
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Review: Naive Bayes

Training
@ Maximize the likelihood of
P(D) = P(Y,X) = I1; p(yi: xi)
@ Algorithm
Estimate P(y = —1) and
‘ ‘ ‘ ‘ ‘ P(y = 1) by counting
Estimate P(x/|y) by counting

Testing

P(y,x) =P P(x/ P(y=+1]x) _ P(y=+1lx
(%) (y)jl;[1 () Bty _ A=l 5 gy
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Review: Naive Bayes

The prediction function of a Naive Bayes model is a linear function

@ In previous lectures, we have shown that

Iog%ZOinXvaZO

@ The counting results can be re-expressed as a linear function
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Review: Naive Bayes

The prediction function of a Naive Bayes model is a linear function

@ In previous lectures, we have shown that

Iog%ZO#wTXvaZO

@ The counting results can be re-expressed as a linear function

@ Key observation: Naive Bayes cannot express all possible linear
functions

» Intuition: conditional independence assumption
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Review: Naive Bayes

The prediction function of a Naive Bayes model is a linear function

@ In previous lectures, we have shown that

Iog%ZO#wTXvaZO

@ The counting results can be re-expressed as a linear function

@ Key observation: Naive Bayes cannot express all possible linear
functions

» Intuition: conditional independence assumption

e We will propose a model (logistic regression) that can express all
possible linear functions in the next few slides.
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Modeling conditional probability using a linear function
Starting point: the predicting function of Naive Bayes

Iog% =wix+be
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Modeling conditional probability using a linear function

Starting point: the predicting function of Naive Bayes

Iog% =wix+bs
Ply=+1]x) _ e xtb
1-P(y=+1|x) — 1
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Modeling conditional probability using a linear function

Starting point: the predicting function of Naive Bayes

Iog% =wix+bs
P(y=+1]x) ew x+b
1-P(y=+1|x) — 1

WTX
Ply = +1x) = ==y = —t

1+ewa+b 1+e71(wTX+b)
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Modeling conditional probability using a linear function

Starting point: the predicting function of Naive Bayes

Ply=+1lx) _ T
/Ogm =w'x+b<
P(y:+l|x) o ewa+b
—PO=+1x) — 1
T
o e x+b o 1
P(y - +1|X) - 1+ewa+b - 1+e71(wTX+b)

The conditional probability P(y|x) =
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Modeling conditional probability using a linear function

Starting point: the predicting function of Naive Bayes

Iog% =wix+bs
P(y=+1]x) ew x+b
1-P(y=+1|x) — 1

WTX
Ply = +1x) = ==y = —t

1+ewa+b 1+e71(wTX+b)

1
1e—y(w x+b)

The conditional probability P(y|x) =

@ In order to simplify the notation,
» wl — [w' b
» xT— [xT 1]
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Modeling conditional probability using a linear function

Starting point: the predicting function of Naive Bayes

Iog% =wix+bs
P(y=+1]x) ew x+b
1-P(y=+1|x) — 1

WTX
Ply = +1x) = ==y = —t

1+ewa+b 1+e71(wTX+b)

-1
]_+e—}’(WTX+b)

The conditional probability P(y|x) =

@ In order to simplify the notation,
» wl — [w' b
» xT— [xT 1]

Using the bias trick, P(y|x) = ﬁ
e w' X
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Logistic regression: introduction
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Logistic regression: introduction

o Naive Bayes: model P(y, x)

» conditional independence assumption: training = counting
» not all w are possible
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Logistic regression: introduction

o Naive Bayes: model P(y, x)
» conditional independence assumption: training = counting
» not all w are possible
@ In the testing phase, we just showed that the conditional probability

can be expressed
1

P(ylx, W):m (1)
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Logistic regression: introduction

o Naive Bayes: model P(y, x)
» conditional independence assumption: training = counting
» not all w are possible
@ In the testing phase, we just showed that the conditional probability

can be expressed
1

P(ylx, W):m (1)
Logistic Regression

@ Maximizes conditional likelihood P(y|x) directly in the training phase
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Logistic regression: introduction

o Naive Bayes: model P(y, x)
» conditional independence assumption: training = counting
» not all w are possible
@ In the testing phase, we just showed that the conditional probability

can be expressed
1

P(ylx, W):m (1)

Logistic Regression

@ Maximizes conditional likelihood P(y|x) directly in the training phase
e How to find w?
w = argmax,, P(Y|X, w) = argmax,, Hf’=1 P(yi|xi, w)
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Logistic regression: introduction

o Naive Bayes: model P(y, x)
» conditional independence assumption: training = counting
» not all w are possible
@ In the testing phase, we just showed that the conditional probability

can be expressed
1

P(ylx, W):m (1)

Logistic Regression
@ Maximizes conditional likelihood P(y|x) directly in the training phase
e How to find w?
w = argmax,, P(Y|X, w) = argmax,, Hf’=1 P(yi|xi, w)

For all possible w, find the one that maximizes the conditional
likelihood

drop the conditional independence assumption!
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Logistic regression: the final objective function

e w = argmax,, P(Y|X,w) = argmax,, Hle P(y|x, w)
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Logistic regression: the final objective function
e w = argmax,, P(Y|X,w) = argmax,, Hle P(y|x, w)
Finding w as an optimization problem

w = argmaxlog P(Y|X, w) = argmin — log P(Y| X, w)

I
. 1
= arg;/nln — Z |0g m
i=1
!
= argmin Z log(1 + e i)
W =i
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Logistic regression: the final objective function
e w = argmax,, P(Y|X,w) = argmax,, Hle P(y|x, w)
Finding w as an optimization problem

w = argmaxlog P(Y|X, w) = argmin — log P(Y| X, w)

I
. 1
= arg;/nm — Z |0g m
i=1
!
= argmin Z log(1 + e i)
W =i

Properties of this optimization problem

@ A convex optimization problem
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Adding regularization
Explanation

o Empirical loss : log(1 4 e=¥i(wx))
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Adding regularization

Explanation

e Empirical loss : log(1 + e_yf(WTXi))

. . T .
yi(wTx;) increases — log(1 + e~¥i(" x)) decreases
In order to minimize the empirical loss, w will tend to be large

@ Therefore, to prevent over-fitting, we add a regularization term

@ Regularization Term 3
I

e R
min §WTW + 8 .z;log(l—ke yilw X'))
=

-
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Adding regularization

Explanation

e Empirical loss : log(1 + e_yf(WTXi))

. . T .
yi(wTx;) increases — log(1 + e~¥i(" x)) decreases
In order to minimize the empirical loss, w will tend to be large

@ Therefore, to prevent over-fitting, we add a regularization term

@ Regularization Term 3

/
1T —yi(wTx;)
min S w w + C Ellog(l—keywx)
=

@ Empirical Loss
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Adding regularization

Explanation

e Empirical loss : log(1 + e_yf(WTXi))

yi(wTx;) increases — log(1 + e_y"(WTX/')) decreases
In order to minimize the empirical loss, w will tend to be large

Therefore, to prevent over-fitting, we add a regularization term

Regularization Term 3

I
e R
min EWTW + 8 Ellog(l—ke yilw X'))
=

Empirical Loss

balance parameter
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Optimization

@ An unconstrained problem. We can use the gradient descent
algorithm!
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Optimization
@ An unconstrained problem. We can use the gradient descent

algorithm! However, it is quite slow.

@ Many other methods
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Optimization

@ An unconstrained problem. We can use the gradient descent
algorithm! However, it is quite slow.

@ Many other methods
Iterative scaling; non-linear conjugate gradient; quasi-Newton
methods; truncated Newton methods; trust-region newton method.

@ All methods are iterative methods, that generate a sequence wy
Converging to the optimal solution of the optimization problem above.
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Optimization

@ An unconstrained problem. We can use the gradient descent
algorithm! However, it is quite slow.

@ Many other methods
Iterative scaling; non-linear conjugate gradient; quasi-Newton
methods; truncated Newton methods; trust-region newton method.

@ All methods are iterative methods, that generate a sequence wy
Converging to the optimal solution of the optimization problem above.

Choice of optimization techniques

Low cost per iteration — High cost per iteration
(slow convergence) (fast convergence)
Iterative scaling Newton Methods

(each w component at a time)
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Optimization

@ An unconstrained problem. We can use the gradient descent
algorithm! However, it is quite slow.

@ Many other methods
Iterative scaling; non-linear conjugate gradient; quasi-Newton
methods; truncated Newton methods; trust-region newton method.

@ All methods are iterative methods, that generate a sequence wy
Converging to the optimal solution of the optimization problem above.

Choice of optimization techniques

Low cost per iteration — High cost per iteration
(slow convergence) (fast convergence)
Iterative scaling Newton Methods

(each w component at a time)

Currently: Limited memory BFGS is very popular in NLP community
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Logistic regression versus Naive Bayes

Logistic regression Naive Bayes
Training maximize P(Y|X) maximize P(Y, X)
Training Algorithm | optimization algorithms counting
Testing P(y|x) > 0.57 P(y|x) > 0.57

Table: Comparison between Naive Bayes and logistic regression
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Logistic regression versus Naive Bayes

Logistic regression Naive Bayes
Training maximize P(Y|X) maximize P(Y, X)
Training Algorithm | optimization algorithms counting
Testing P(y|x) > 0.57 P(y|x) > 0.57

Table: Comparison between Naive Bayes and logistic regression

@ LR and NB are both linear functions in the testing phase

@ However, their training agendas are very different
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Support Vector Machine: another loss function

@ No magic. Just another loss function
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Support Vector Machine: another loss function

@ No magic. Just another loss function
o Logistic Regression

/
1 vwTx
min EWTW+ C El log(1+ e yilw X'))
=
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Support Vector Machine: another loss function

@ No magic. Just another loss function
o Logistic Regression

/
1 v (wT
min EWTW +C E 1 log(1 + e (W X))y
=
o Ll-loss SVM

/
o1
min EWTW + C; max(0,1 — yiw " x;)
=
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Support Vector Machine: another loss function

@ No magic. Just another loss function
o Logistic Regression

/
1 vwTx
min EWTW+ C El log(1+ e yilw X'))
=

o Ll-loss SVM
1 I
mmin EWTW + C; max(0,1 — y,-WTx,-)
o L2-loss SVM

I
.1 T
min EWTW +C E 1 max(0,1 — y;w x,-)2
=
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Compare these loss functions

5 T T T T T
Logistic regression
L1-loss function
L2-loss function
4

g 2
1
0
,l 1 1 1 L L
2 1 0 1 2
A WATX
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The regularization term: maximize margin

o The L1-loss SVM: min,, 2ww + CZ;ZI max(0,1 — y;w’x;)
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file:07-LecSVMNotes.ppt

The regularization term: maximize margin

o The L1-loss SVM: min,, 2ww + CZ;:I max(0,1 — y;w’x;)

@ Rewrite it using slack variables (why are they the same?)

I
) 1
min,, EWTW—l- CZIE;
=
st 1—yw'x <&,6>0
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The regularization term: maximize margin

o The L1-loss SVM: min,, 2ww + CZ;:I max(0,1 — y;w’x;)

@ Rewrite it using slack variables (why are they the same?)

/
. 1
min,, EwTw—i— CEIfi
=
sit. 1—yw!x <¢&,&>0

o If there is no training error, what is the margin of w?
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The regularization term: maximize margin

o The L1-loss SVM: min,, 2ww + CZ;:I max(0,1 — y;w’x;)

@ Rewrite it using slack variables (why are they the same?)

/
. 1
min,, EwTw—i— CEIfi
=
sit. 1—yw!x <¢&,&>0

o If there is no training error, what is the margin of w? Wl
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The regularization term: maximize margin

o The L1-loss SVM: min,, 2ww + CZf-:l max(0,1 — y;w’x;)
@ Rewrite it using slack variables (why are they the same?)

/
. 1
min,, EwTw—i— Czlﬁi
=
sit. 1—yw!x <¢&,&>0

o If there is no training error, what is the margin of w?

@ Maximizing ||_v1vH & minimizing w'w

[wll

SVM regularization: find the linear line that maximizes the margin
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The regularization term: maximize margin

o The L1-loss SVM: min,, 2ww + CZf-:l max(0,1 — y;w’x;)
@ Rewrite it using slack variables (why are they the same?)

/
. 1
min,, EwTw—i— Czlﬁi
=
sit. 1—yw!x <¢&,&>0

o If there is no training error, what is the margin of w?

@ Maximizing ||_v1vH & minimizing w'w

[wll

SVM regularization: find the linear line that maximizes the margin

Learning theory: Link to SVM theory notes
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Balance between regularization and empirical loss

(a) Training data and an over- (b) Testing data and an over-
fitting classifier fitting classifier

The maximal margin line with O training error

Best?

guest lecturer: Ming-Wei Chang CS 446 () 17/25 Fall, 2009

17 / 25



Balance between regularization and empirical loss

(c) Training data and a better (d) Testing data and a better
classifier classifier

If we allow some training error, we can find a better line
We need to balance the regularization term and the empirically loss term

Problem of model selection. Select balance parameter with cross validation
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Primal and Dual Formulations

Explaining the primal-dual relationship
@ Link to the lecture notes: 07-LecSvm-opt.pdf

Why primal-dual relationship is useful

o Link to a talk by Professor Chih-Jen Lin in 2005.

Optimization, Support Vector Machines, and Machine Learning. Talk
in DIS, University of Rome and IASI, CNR, Italy. September 1-2, 2005.

@ We will only use the slides from page 11-20.

@ Link to notes
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http://www.csie.ntu.edu.tw/~cjlin/talks/rome.pdf

Nonlinear SVM

@ SVM tries to find a linear line that maximizes the margin.
@ Why people mention about non-linear SVM?
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Nonlinear SVM

@ SVM tries to find a linear line that maximizes the margin.
@ Why people mention about non-linear SVM?
> Usually this means: x — ¢(x)

* Find a linear function of ¢(x)
* This can be a non linear function for x
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Nonlinear SVM

@ SVM tries to find a linear line that maximizes the margin.

@ Why people mention about non-linear SVM?
> Usually this means: x — ¢(x)

* Find a linear function of ¢(x)
* This can be a non linear function for x

Primal
1 I
miny ¢ EWTW + CZ@-
i=1

sit. 1—yw o(x); <&
&E>0Vi=1...1
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Nonlinear SVM

@ SVM tries to find a linear line that maximizes the margin.

@ Why people mention about non-linear SVM?
> Usually this means: x — ¢(x)

* Find a linear function of ¢(x)
* This can be a non linear function for x

Primal
rima Dual
1 ' 1
miny, ¢, EWTW-FCZ& ming, EaTQa—eTa
i=1
.t Vi,0<a; <C
s.t. 1-— y;WT¢(X); < £,‘ ° LU= ai>
&E>0vVi=1...1 where Q is a [-by-/ matrix

with QU = y,-yjK(x,-, XJ)
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Nonlinear SVM

@ SVM tries to find a linear line that maximizes the margin.
@ Why people mention about non-linear SVM?

> Usually this means: x — ¢(x)

* Find a linear function of ¢(x)
* This can be a non linear function for x

Primal
rima Dual
1 ! 1
miny, ¢, EWTW+CZ§i ming, EaTQa—eTa
i=1
t. ViL0<a; < C
s.t. 1-— y;WT¢(X); < 5,‘ ° LU= ai>
&E>0Vi=1...1 where Q is a [-by-/ matrix

with Q,’j = y,-yjK(x,-, XJ)
Same for Kernel perceptron: find a linear function on ¢(x)
Demo
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Solving SVM

@ Both primal and dual problems have constraints
» We can not use the gradient descent algorithm

@ For linear dual SVM, there is a simple optimization algorithm
» Coordinate descent method!
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Solving SVM

@ Both primal and dual problems have constraints
» We can not use the gradient descent algorithm

@ For linear dual SVM, there is a simple optimization algorithm
» Coordinate descent method!

1
ming EaTQa —eTaw

s.it. Vi,0<a;<C

» # of a; = # of training example
» The idea: pick one example i. Optimize «; only
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Coordinate Descent Algorithm

Algorithm
@ Run through the training data multiple times
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Coordinate Descent Algorithm

Algorithm

@ Run through the training data multiple times
Pick a random example (/) among the training data.
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Coordinate Descent Algorithm

Algorithm

@ Run through the training data multiple times

Pick a random example (/) among the training data.
Fix a1, a9, ..., i1, @41, ...,q only change «;

ai=a;+s
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Coordinate Descent Algorithm

Algorithm

@ Run through the training data multiple times

Pick a random example (/) among the training data.
Fix a1, a9, ..., i1, @41, ...,q only change «;

ai=a;+s

Solve the problem

ming %(a +5d)T Q(a + sd) — eT (a + sd)

s.t. 0<a;+s < C < only one constraint,

where d is a vector of /| — 1 zeros. The i-th component of d is 1.
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Coordinate Descent Algorithm

Algorithm

@ Run through the training data multiple times

Pick a random example (/) among the training data.
Fix a1, a9, ..., i1, @41, ...,q only change «;

ai=a;+s

Solve the problem

. %(a + 5d)TQ(ar + sd) — eT(a + sd)

s.t. 0<aj+s < C < only one constraint,

where d is a vector of /| — 1 zeros. The i-th component of d is 1.

It is a single variable problem. We know how to solve this.
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Coordinate Descent Algorithm

@ Assume that the optimal s is s*. We can update «; using:
of = aj+s*
o Given that w = Zﬁa,-y,—x,-, this is equivalent to is equivalent to
w— w+ (o — o;)yixi

@ Isn’t this familiar?
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Coordinate Descent Algorithm

@ Assume that the optimal s is s*. We can update «; using:
ot = a; + s* < Similar to dual perceptron
o Given that w = Zﬁa,-y,—x,-, this is equivalent to is equivalent to
w— w+ (o — o;)yixi

@ Isn’t this familiar?
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Coordinate Descent Algorithm

@ Assume that the optimal s is s*. We can update «; using:
ot = a; + s* < Similar to dual perceptron
o Given that w = Zﬁa,-y,—x,-, this is equivalent to is equivalent to
w — w ~+ (o — o)yixi <= Similar to primal perceptron

@ Isn’t this familiar?
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Relationships between linear classifiers

NB, LR, Perceptron and SVM are all linear classifiers

@ NB and LR have the same interpretation for conditional probability
Plybe,w) = - @)
yix,w)= 1 + e—y(WTX)

The difference between LR and SVM are their loss functions
» But they are quite similar!

Perceptron algorithm and the coordinate descent algorithm for SVM
are very similar
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Summary

Logistic regression
e Maximizes P(Y|X) while Naive Bayes maximizes the joint probability
P(Y,X)
@ Model the conditional probability using a linear line. Drop the
conditional independence assumption

@ Many available methods of optimizing the objective function
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Summary

Logistic regression
e Maximizes P(Y|X) while Naive Bayes maximizes the joint probability
P(Y,X)
@ Model the conditional probability using a linear line. Drop the
conditional independence assumption

@ Many available methods of optimizing the objective function

Support Vector Machine
@ Similar to Logistic Regression; Different Loss function
@ Maximizes Margin; Has many nice theoretical properties
@ Interesting Primal-Dual relationship
Allows us to choose the easier one to solve
@ Many available methods of optimizing the objective function

The linear dual coordinate descent method turns out to be similar to
Perceptron

v
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