Administration

- Midterm exam on Tuesday 10/25
 - Closed books; in class; ~4 questions

Questions?

- All the material covered before the midterm
- Go over practice midterms

Midterm Review

- Today:
- Quick run-through of the material we've covered so far
- The selection of slides in today's lecture doesn't mean that you don't need to look at the rest when prepping for the exam!
- Slides are from previous lectures
 - I'll not go in to the details
 - Slides chosen might be not completely coherent
 - The goal is to remind you what we did and solicit questions

Midterm

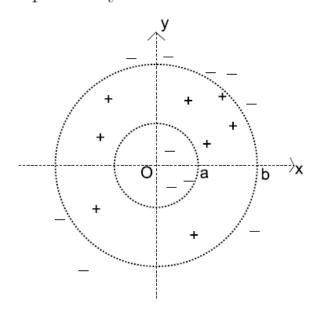
- Closed book exam
- All lectures until today
- Intro. to ML / Decision Trees / Online learning / COLT /NN/ Boosting/SVM
 - Lectures / Problem sets
- Cheating?
 - No.

Sample Questions

- Question types:
 4~5 question sets including a set of short questions
- Previous midterm exams / solutions:
- http://l2r.cs.illinois.edu/~danr/Teaching/CS446-16/handout.html

Sample of short Question

(a) [6 points] Consider a concept space **H** of two nested circles centered on the origin (see figure below). Formally, a concept $h \in \mathbf{H}$ is defined by 2 non-negative real parameters $a, b \in \mathbb{R}^+$ such that a < b. An example $(x, y) \in \mathbb{R}^2$ is labeled +1 if and only if $a^2 < x^2 + y^2 < b^2$, i.e. (x, y) is within the band of the two nested circles of radius a and b respectively.



State the VC-dimension of **H**. Prove that your answer is correct.

Sample Question set

Perceptrons [25 points]

In this question, we will be asking you about Perceptrons and their variants.

Let $D = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})\}$, where the *j*-th example $\mathbf{x}^{(j)}$ is associated with the label $y^{(j)} \in \{-1, +1\}$. Each example $\mathbf{x}^{(j)}$ is a bit-vector of length n, i.e. $\mathbf{x}^{(j)} \in \{0, 1\}^n$, with the interpretation that the *i*-th bit of the vector $(x_i^{(j)})$ is 1 if the element described by $\mathbf{x}^{(j)}$ has the *i*-th attribute on.

- (a) [7 points] Let us first consider a Perceptron where the positive example x satisfies w · x ≥ θ, where w ∈ Rⁿ, θ ∈ R and x is some example x^(j) from D.
 - [3 points] Suggest an equivalent representation of this Perceptron in the form of w'⋅x' ≥ 0 given an example x^(j), where x' ∈ {0, 1}^{n'} for some suitable integer n'.

Define $n' = \underline{\hspace{1cm}}$

Define $\mathbf{w}' = \underline{\hspace{1cm}}$

Define $\mathbf{x}' = \underline{\hspace{1cm}}$

Sample Question set

Perceptrons [25 points]

In this question, we will be asking you about Perceptrons and their variants.

Let $D = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})\}$, where the *j*-th example $\mathbf{x}^{(j)}$ is associated with the label $y^{(j)} \in \{-1, +1\}$. Each example $\mathbf{x}^{(j)}$ is a bit-vector of length n, i.e. $\mathbf{x}^{(j)} \in \{0, 1\}^n$, with the interpretation that the *i*-th bit of the vector $(x_i^{(j)})$ is 1 if the element described by $\mathbf{x}^{(j)}$ has the *i*-th attribute on.

[4 points] In the following table, we describe a specific data set S. Using an initialization of w' = 0, i.e. the zero vector, and a learning rate of R = 1, complete the columns under (a) of the table using the Perceptron learning algorithm.

	S			(a)		(b)	
j	$\mathbf{x}_1^{(j)}$	$\mathbf{x}_2^{(j)}$	$y^{(j)}$	Mistake? Y/N	Updated \mathbf{w}'	Mistake? Y/N	Updated \mathbf{w}'
Initialization					0		0
1	1	1	+1				
2	1	0	-1				
3	0	1	+1				

Sample Question set

Perceptrons [25 points]

N

In this question, we will be asking you about Perceptrons and their variants.

Let $D = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})\}$, where the *j*-th example $\mathbf{x}^{(j)}$ is associated with the label $y^{(j)} \in \{-1, +1\}$. Each example $\mathbf{x}^{(j)}$ is a bit-vector of length n, i.e. $\mathbf{x}^{(j)} \in \{0, 1\}^n$, with the interpretation that the *i*-th bit of the vector $(x_i^{(j)})$ is 1 if the element described by $\mathbf{x}^{(j)}$ has the *i*-th attribute on.

- (b) [7 points] Using the same data set used above, we now consider a Perceptron with margin γ > 0. We can also represent this with w' · x' ≥ 0 like in Perceptron but using a different update rule for the weights.
 - 1. [3 points] Let the margin $\gamma > 0$ and learning rate R > 0. For a given $(\mathbf{x}^{(j)}, y^{(j)})$, write down the update rule for the Perceptron with margin.

If _____ \leq ___ then $\mathbf{w}' =$ ____

otherwise $\mathbf{w}' = \underline{\hspace{1cm}}$

2. [4 points] We described a specific data set S in a table earlier. Using an initialization of w' = 0, that is, the zero vector, a learning rate of R = 1 and margin γ = 1.5, complete the columns under (b) of the table using the Perceptron with margin learning algorithm.

Course Overview

- Introduction: Basic problems and questions
- A detailed example: Linear threshold units
- Two Basic Paradigms:
 - □ PAC (Risk Minimization)
 - Bayesian theory
- Learning Protocols:
 - Supervised; Unsupervised; Semi-supervised
- Algorithms
 - Decision Trees (C4.5)
 - [Rules and ILP (Ripper, Foil)]
 - Linear Threshold Units (Winnow; Perceptron; Boosting; SVMs; Kernels)
 - Gradient Descent
 - Neural Networks (Backpropagation)
 - Probabilistic Representations (naïve Bayes; Bayesian trees; Densities)
 - Unsupervised /Semi supervised: EM
- Clustering; Dimensionality Reduction

Key Issues in Machine Learning

Modeling

- □ How to formulate application problems as machine learning problems? How to represent the data?
- Learning Protocols (where is the data & labels coming from?)

Representation

- What are good hypothesis spaces ?
- Any rigorous way to find these? Any general approach?

Algorithms

- What are good algorithms?
- How do we define success?
- Generalization Vs. over fitting
- The computational problem

Using supervised learning

- What is our instance space?
 - □ Gloss: What kind of features are we using?
- What is our label space?
 - Gloss: What kind of learning task are we dealing with?
- What is our hypothesis space?
 - □ Gloss: What kind of model are we learning?
- What learning algorithm do we use?
 - □ Gloss: How do we learn the model from the labeled data?

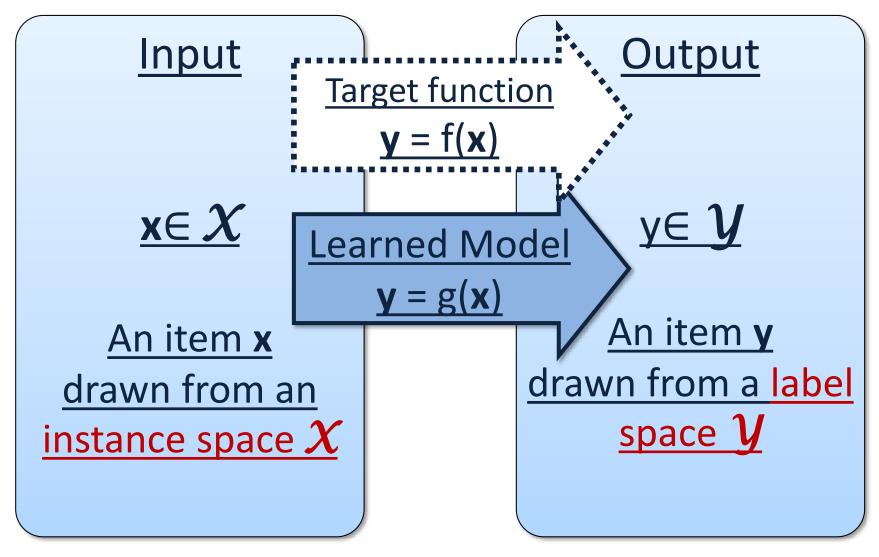
(What is our loss function/evaluation metric?)

☐ Gloss: How do we measure success?

Terminology

- Target function (concept): The true function $f : X \rightarrow \{...Labels...\}$
- Concept: Boolean function. Example for which f(x)=1 are positive examples; those for which f(x)=0 are negative examples (instances)
- Hypothesis: A proposed function h, believed to be similar to f. The output of our learning algorithm.
- Hypothesis space: The space of all hypotheses that can, in principle, be output by the learning algorithm.
- Classifier: A discrete valued function produced by the learning algorithm. The possible value of f: {1,2,...K} are the classes or class labels. (In most algorithms the classifier will actually return a real valued function that we'll have to interpret).
- Training examples: A set of examples of the form $\{(x, f(x))\}$

Protocol: Supervised learning

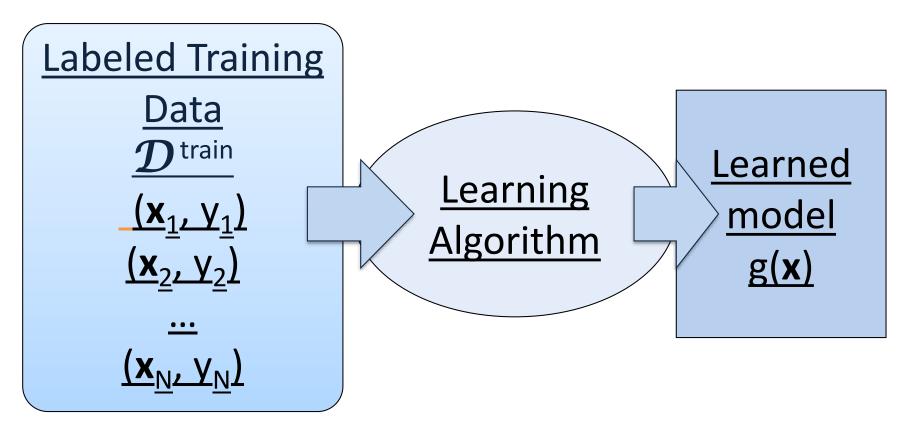


Midterm Review CS446 Fall '16 13

The i.i.d. assumption

- Training and test items are independently and identically distributed (i.i.d.):
 - □ There is a distribution P(X, Y) from which the data $\mathcal{D} = \{(x, y)\}$ is generated.
 - Sometimes it's useful to rewrite P(X, Y) as P(X)P(Y|X) Usually P(X, Y) is unknown to us (we just know it exists)
 - \square Training and test data are samples drawn from the same P(X, Y): they are identically distributed
 - \square Each (x, y) is drawn independently from P(X, Y)

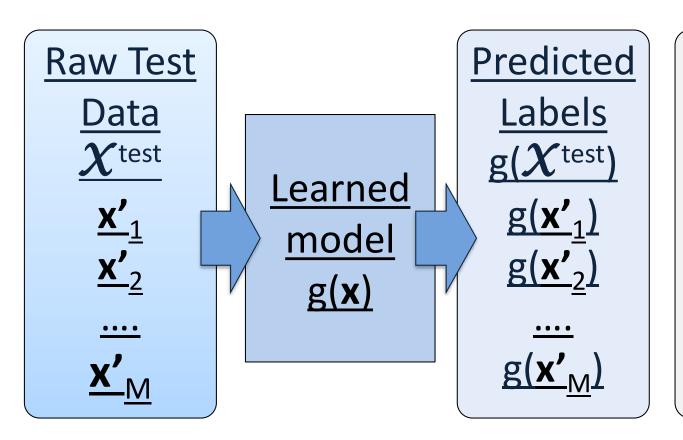
Supervised learning: Training



- lacksquare Give the learner examples in $\mathcal{D}^{\mathsf{train}}$
- The learner returns a model g(x)

Supervised learning: Testing

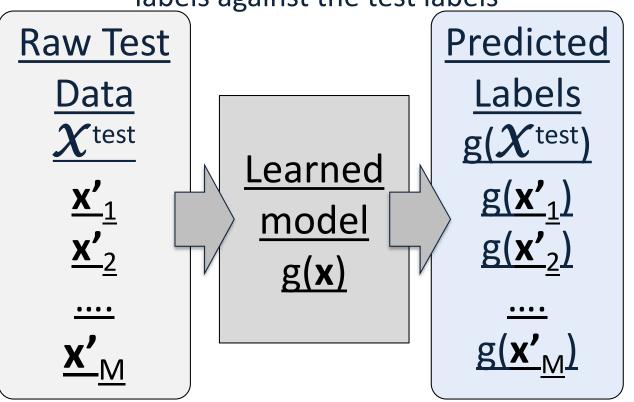
Apply the model to the raw test data



Test Labels

Supervised learning: Testing

Evaluate the model by comparing the predicted labels against the test labels



Test Labels

Experimental Machine Learning

- Machine Learning is an Experimental Field and we will spend some time (in Problem sets) learning how to run experiments and evaluate results
 - ☐ First hint: be organized; write scripts
- Basics:
 - Split your data into two (or three) sets:
 - Training data (often 70-90%)
 - Test data (often 10-20%)
 - Development data (10-20%)
- You need to report performance on test data, but you are not allowed to look at it.
 - You are allowed to look at the development data (and use it to tweak parameters)

N-fold cross validation

Instead of a single test-training split:

train

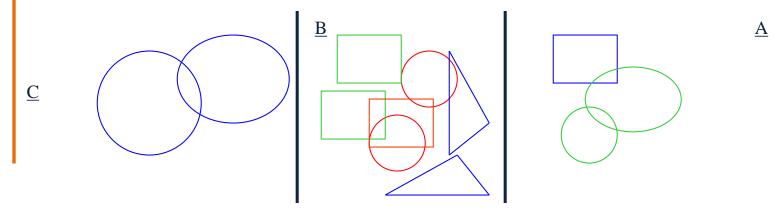
<u>test</u>

Split data into N equal-sized parts

- Train and test N different classifiers
- Report average accuracy and standard deviation of the accuracy

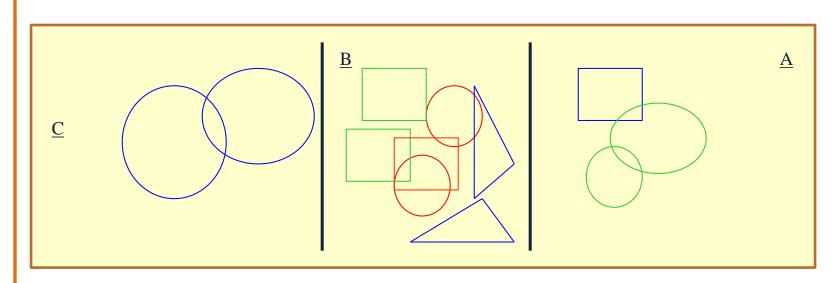
Decision Trees

- A hierarchical data structure that represents data by implementing a divide and conquer strategy
- Can be used as a non-parametric classification and regression method
- Given a collection of examples, learn a decision tree that represents it.
- Use this representation to classify new examples

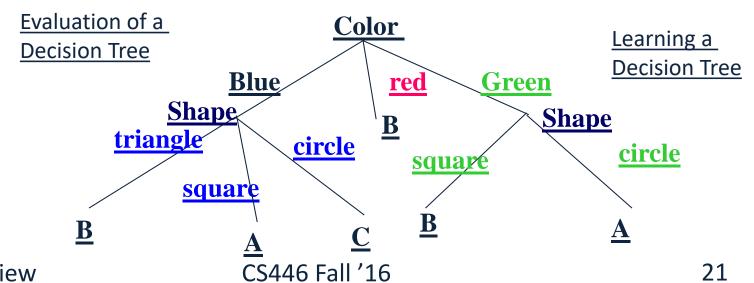


Midterm Review CS446 Fall '16 20

The Representation



Decision trees



Midterm Review

Information Gain

Outlook

The information gain of an attribute a is the expected

The information gain of an attribute a is the expected reduction in entropy caused by partitioning on this attribute

Gain(S, a) = Entropy(S)
$$-\sum_{v \in values(a)} \frac{|S_v|}{|S|} Entropy(S_v)$$

- where S_v is the subset of S for which attribute a has value v, and the entropy of partitioning the data is calculated by weighing the entropy of each partition by its size relative to the original set
 - Partitions of low entropy (imbalanced splits) lead to high gain
- Go back to check which of the A, B splits is better

On-Line Learning

- Not the most general setting for on-line learning.
- Note: online learning protocol v.s. online learning algorithm

Model:protocol

- Instance space: X (dimensionality n)
- □ Target: f: $X \rightarrow \{0,1\}$, f ∈ C, concept class (parameterized by n)

Protocol:

- \square learner is given $x \in X$
- \square learner predicts h(x), and is then given f(x) (feedback)
- Performance: learner makes a mistake when $h(x) \neq f(x)$
 - number of mistakes algorithm A makes on sequence S of examples, for the target function f.

$$M_A(C) = \max_{f \in C, S} M_A(f, S)$$

Quantifying Performance

- We want to be able to say something rigorous about the performance of our learning algorithm.
- Evaluating a learning algorithm:
 - Experiments
 - COLT
 - E.g, PAC theory, VC theory, Mistake bound

Mistake Driven Learning Algorithm

- learn a linear function over the feature space
 - Perceptron (+ many variations)
 - Winnow
 - General Gradient Descent view

Issues:

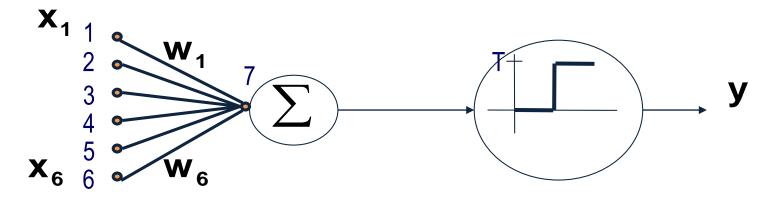
- Importance of Representation
- Complexity of Learning
- Idea of Kernel Based Methods
- More about features

The Halving Algorithm

- Let C be a concept class. Learn f ϵ C
- Halving:
- In the ith stage of the algorithm:
 - $lue{C}_i$ all concepts in C consistent with all i-1 previously seen examples
- Given an example e_i consider the value $f_j(e_i)$ for all $f_j \in C_i$ and predict by majority.
- Predict 1 if $|\{f_j \in C_i; f_j(e_i) = 0\}| < |\{f_j \in C_i; f_j(e_i) = 1\}|$
- Clearly $C_{i+1} \subseteq C_i$ and if a mistake is made in the ith example, then $|C_{i+1}| < \frac{1}{2} |C_i|$
- The Halving algorithm makes at most log(|C|) mistakes

Perceptron learning rule

- On-line, mistake driven algorithm.
- Rosenblatt (1959) suggested that when a target output value is provided for a single neuron with fixed input, it can incrementally change weights and learn to produce the output using the <u>Perceptron</u> <u>learning rule</u>
- (Perceptron == Linear Threshold Unit)



erceptrof

Perceptron learning rule

- We learn $f:X \rightarrow \{-1,+1\}$ represented as $f = sgn\{w \cdot x\}$
- Where $X = \{0,1\}^n$ or $X = R^n$ and $w \in R^n$
- Given Labeled examples: $\{(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)\}$
 - 1. Initialize $w=0 \in \mathbb{R}^n$
 - 2. Cycle through all examples
 - a. Predict the label of instance x to be $y' = sgn\{w \cdot x\}$
 - b. If $y' \neq y$, update the weight vector:

w = w + r y x (r - a constant, learning rate)

Otherwise, if y'=y, leave weights unchanged.

arceptic

Perceptron Convergence

- Perceptron Convergence Theorem:
- If there exist a set of weights that are consistent with the data (i.e., the data is linearly separable), the perceptron learning algorithm will converge
 - How long would it take to converge ?
- Perceptron Cycling Theorem:
- If the training data is not linearly separable the perceptron learning algorithm will eventually repeat the same set of weights and therefore enter an infinite loop.
 - How to provide robustness, more expressivity?

serceptro

Perceptron: Mistake Bound Theorem

- Maintains a weight vector $\mathbf{w} \in \mathbb{R}^{N}$, $\mathbf{w}_0 = (0, ..., 0)$.
- Upon receiving an example $x \in \mathbb{R}^N$
- Predicts according to the linear threshold function $w \cdot x \ge 0$.
- **Theorem [Novikoff,1963]** Let $(x_1; y_1),...,: (x_t; y_t)$, be a sequence of labeled examples with $x_i \in \mathbb{R}^N$, $||x_i|| \le \mathbb{R}$ and $y_i \in \{-1,1\}$ for all i. Let $u \in \mathbb{R}^N$, $\gamma > 0$ be such that, ||u|| = 1 and $y_i u \cdot x_i \ge \gamma$ for all i. Complexity Parameter

Then Perceptron makes at most R^2 / γ^2 mistakes on this example sequence.

(see additional notes)

Analysis

Winnow Algorithm

```
Initialize: \theta = n; w_i = 1
Prediction is 1 iff w \cdot x \geq \theta
If no mistake: do nothing
If f(x) = 1 but w \cdot x < \theta, w_i \leftarrow 2w_i (if x_i = 1) (promotion)
If f(x) = 0 but w \cdot x \geq \theta, w_i \leftarrow w_i/2 (if x_i = 1) (demotion)
```

The Winnow Algorithm learns Linear Threshold Functions.

- For the class of disjunctions:
 - □ instead of demotion we can use elimination.

Ninnovi

Winnow – Mistake Bound

Claim: Winnow makes O(k log n) mistakes on kdisjunctions

```
Initialize: \theta = n; w_i = 1

Prediction is 1 iff w \cdot x \geq \theta

If no mistake: do nothing

If f(x) = 1 but w \cdot x < \theta, w_i \leftarrow 2w_i (if x_i = 1) (promotion)

If f(x) = 0 but w \cdot x \geq \theta, w_i \leftarrow w_i/2 (if x_i = 1) (demotion)
```

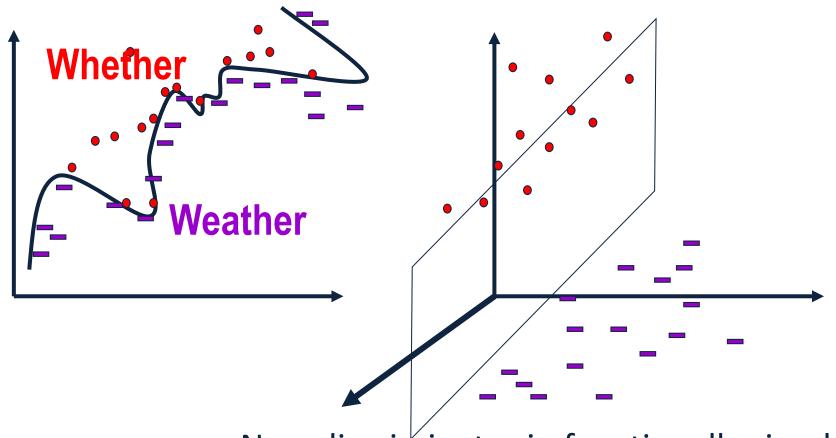
- u # of mistakes on positive examples (promotions)
- v # of mistakes on negative examples (demotions)

32

of mistakes: $u + v < 3u + 2 = O(k \log n)$

Minno

Transforming Feature Spaces



New discriminator in functionally simpler

$$\mathbf{X_1X_2}\overline{\mathbf{X}_3} \vee \overline{\mathbf{X}_1}\mathbf{X_4}\overline{\mathbf{X}_3} \vee \mathbf{X_3}\overline{\mathbf{X}_2}\mathbf{X_5} \qquad \qquad \mathbf{y_1} \vee \mathbf{y_4} \vee \mathbf{y_5}$$

Midterm Review CS446 Fall '16 33

General Stochastic Gradient Algorithms

Given examples {z=(x,y)}_{1, m} from a distribution over XxY, we are trying to learn a linear function, parameterized by a weight vector w, so that expected risk function

$$J(w) = E_z Q(z,w) \simeq 1/m \sum_{i,m} Q(z_i, w_i)$$

In Stochastic Gradient Descent Algorithms we approximate this minimization by incrementally updating the weight vector w as follows:

$$W_{t+1} = W_t - r_t g_w Q(z_t, W_t) = W_t - r_t g_t$$

- Where $g_t = g_w Q(z_t, w_t)$ is the gradient with respect to w at time t.
- The difference between algorithms now amounts to choosing a different loss function Q(z, w)

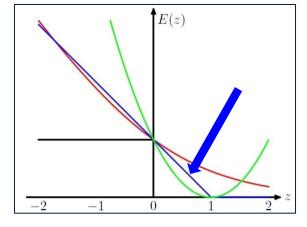
Stochastic Gradient Algorithms

$$W_{t+1} = W_t - r_t g_w Q(z_t, W_t) = W_t - r_t g_t$$

- LMS: $Q((x, y), w) = 1/2 (y w \cdot x)^2$
- leads to the update rule (Also called Widrow's Adaline):

$$W_{t+1} = W_t + r (y_t - W_t \cdot X_t) X_t$$

- Here, even though we make binary predictions based on sign $(w \cdot x)$ we do not take the sign of the dot-product into account in the loss.
- Another common loss function is:
- Hinge loss: $Q((x, y), w) = max(0, 1 - y w \cdot x)$
- This leads to the perceptron update rule:



- If $y_i w_i \cdot x_i > 1$ (No mistake, by a margin): No update
- Otherwise (Mistake, relative to margin): $w_{t+1} = w_t + r y_t x_t$

New Stochastic Gradient Algorithms

$$w_{t+1} = w_t - r_t g_w Q(z_t, w_t) = w_t - r_t g_t$$
 (notice that this is a vector, each coordinate (feature) has its own $w_{t,i}$ and $g_{t,i}$)

- So far, we used fixed learning rates $r = r_t$, but this can change.
- AdaGrad alters the update to adapt based on historical information, so that frequently occurring features in the gradients get small learning rates and infrequent features get higher ones.
- The idea is to "learn slowly" from frequent features but "pay attention" to rare but informative features.
- Define a "per feature" learning rate for the feature j, as:

$$r_{t,j} = r/(G_{t,j})^{1/2}$$

- where $G_{t,j} = \sum_{k=1, t} g_{k,j}^2$ the sum of squares of gradients at feature j until time t.
- Overall, the update rule for Adagrad is:

$$W_{t+1,j} = W_{t,j} - g_{t,j} r/(G_{t,j})^{1/2}$$

This algorithm is supposed to update weights faster than Perceptron or LMS when needed.

Regularization

The more general formalism adds a regularization term to the risk function, and attempts to minimize:

$$J(w) = \sum_{i, m} Q(z_i, w_i) + \lambda R_i(w_i)$$

- Where R is used to enforce "simplicity" of the learned functions.
- LMS case: $Q((x, y), w) = (y w \cdot x)^2$
 - $R(w) = ||w||_2^2$ gives the optimization problem called Ridge Regression.
 - $R(w) = ||w||_1$ gives the problem call the LASSO problem
- Hinge Loss case: $Q((x, y), w) = max(0, 1 y w \cdot x)$
 - $R(w) = ||w||_2^2$ gives the problem called Support Vector Machines
- Logistics Loss case: $Q((x,y),w) = log (1+exp{-y w \cdot x})$
 - $R(w) = ||w||_2^2$ gives the problem called Logistics Regression
- These are convex optimization problems and, in principle, the same gradient descent mechanism can be used in all cases.
- We will see later why it makes sense to use the "size" of w as a way to control "simplicity".

Multi-Layer Neural Networks

Multi-layer network were designed to overcome the computational (expressivity) limitation of a single threshold element.

The idea is to stack several layers of threshold elements, each layer using the output of the previous layer as input.

Multi-layer networks can represent arbitrary functions, but building effective learning methods for such network was [thought to be] difficult.

Hidden

Input

Model Neuron (Logistic)

Neuron is modeled by a unit is connected by weighted The parameters so far? The set of connective weights: w_{ij} The threshold value: T_j x_1 x_2 x_3 x_4 x_5 x_5 x_6 $x_$

- on Definition
- □ Use a non-linear, differentiable output function such as the sigmoid or logistic function
- \square Net input to a unit is defined as: $\operatorname{net}_j = \sum w_{ij} \cdot x_i$
- Output of a unit is defined as: $o_j = \frac{1}{1 + \exp(-(\text{net}_i T_i))}$

Midterm Review

Derivation of Learning Rule (3)

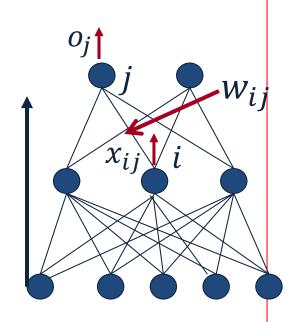
- Weights of output units:
 - \square w_{ij} is changed by:

$$\Delta w_{ij} = R(t_j - o_j)o_j(1 - o_j)x_{ij}$$

= $R\delta_j x_{ij}$

where

$$\delta_j = (t_j - o_j)o_j(1 - o_j)$$



The Backpropagation Algorithm

- Create a fully connected three layer network. Initialize weights.
- Until all examples produce the correct output within ϵ (or other criteria)

For each example in the training set do:

- 1. Compute the network output for this example
- 2. Compute the error between the output and target value

$$\delta_k = (t_k - o_k)o_k(1 - o_k)$$

1. For each output unit k, compute error term

$$\delta_j = o_j(1 - o_j). \sum_{k \in downstream(j)} -\delta_k w_{jk}$$

1. For each hidden unit, compute error term:

$$\Delta w_{ij} = R\delta_j x_{ij}$$

1. Update network weights

End epoch

Computational Learning Theory

- What general laws constrain inductive learning?
 - What learning problems can be solved?
 - When can we trust the output of a learning algorithm?
- We seek theory to relate
 - Probability of successful Learning
 - Number of training examples
 - Complexity of hypothesis space
 - Accuracy to which target concept is approximated
 - Manner in which training examples are presented

inns

Computational Issues

- Assume the data is linearly separable.
- Sample complexity:
 - Suppose we want to ensure that our LTU has an error rate (on new examples) of less than ε with high probability (at least $(1-\delta)$)
 - □ How large does m (the number of examples) must be in order to achieve this? It can be shown that for n dimensional problems

$$m = O(1/ε [ln(1/δ) + (n+1) ln(1/ε)].$$

- Computational complexity: What can be said?
 - □ It can be shown that there exists a polynomial time algorithm for finding consistent LTU (by reduction from linear programming).
 - [Contrast with the NP hardness for 0-1 loss optimization]
 - (On-line algorithms have inverse quadratic dependence on the margin)

PAC Learnability

- Consider a concept class C defined over an instance space X (containing instances of length n), and a learner L using a hypothesis space H.
- C is PAC learnable by L using H if
 - \Box for all $f \in C$,
 - \Box for all distribution D over X, and fixed 0< ε, δ < 1,
- L, given a collection of m examples sampled independently according to D produces
 - with probability at least (1- δ) a hypothesis $h \in H$ with error at most ϵ , (ErrorD = PrD[f(x) : = h(x)])
- where m is polynomial in $1/\epsilon$, $1/\delta$, n and size(H)
- C is efficiently learnable if L can produce the hypothesis in time polynomial in $1/\epsilon$, $1/\delta$, n and size(H)

Definition.

Occam's Razor (1)

We want this probability to be smaller than δ , that is:

$$|H|(1-\varepsilon)^{m} < \delta$$

$$ln(|H|) + m ln(1-\epsilon) < ln(\delta)$$

What do we know now about the Consistent Learner scheme?

(with $e^{-x} = 1 - x + x^2/2 + ...; e^{-x} > 1 - x; In (1 - \varepsilon) < - \varepsilon; gives a safer \delta)$

$$m > \frac{1}{\varepsilon} \{ \ln(|H|) + \ln(1/\delta) \}$$

We showed that a m-consistent hypothesis generalizes well (err< ϵ) (Appropriate m is a function of |H|, ϵ , δ)

(gross over estimate)

It is called Occam's razor, because it indicates a preference towards small hypothesis spaces

What kind of hypothesis spaces do we want? Large? Small?

To guarantee consistency we need H ⊇ C. But do we want the smallest H possible?

Midterm Review CS446 Fall '16 45

Consistent Learners

- Immediately from the definition, we get the following general scheme for PAC learning:
- Given a sample D of m examples
 - \Box Find some $h \in H$ that is consistent with all m examples
 - We showed that if m is large enough, a consistent hypothesis must be close enough to f
 - Check that m is not too large (polynomial in the relevant parameters): we showed that the "closeness" guarantee requires that

$$m > 1/\epsilon$$
 (ln |H| + ln $1/\delta$)

Show that the consistent hypoth
H can be computed efficiently

In the case of conjunctions

We need to show that m is polynomial in n when |H| is a function of n. That is, showing ln|H| is polynomial in n

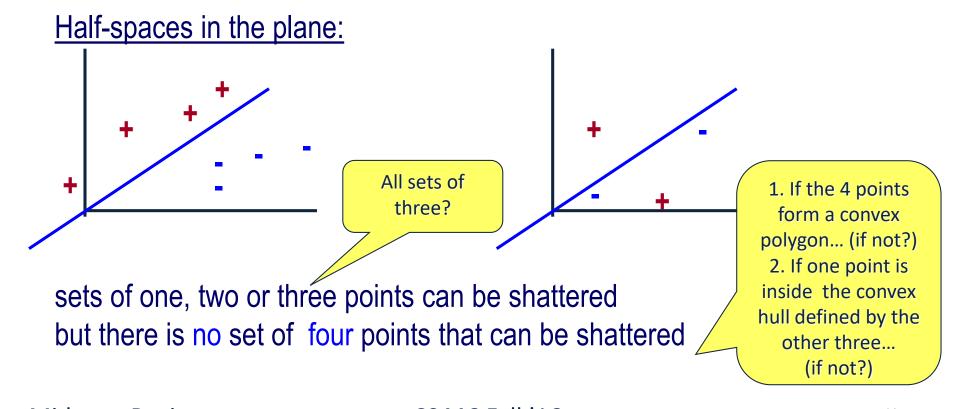
- We used the Elimination algorithm to find a hypothesis h that is consistent with the training set (easy to compute)
- We showed directly that if we have sufficiently many examples (polynomial in the parameters), than h is close to the target function.

Infinite Hypothesis Space

- The previous analysis was restricted to finite hypothesis spaces
- Some infinite hypothesis spaces are more expressive than others
 - E.g., Rectangles, vs. 17- sides convex polygons vs. general convex polygons
 - Linear threshold function vs. a conjunction of LTUs
- Need a measure of the expressiveness of an infinite hypothesis space other than its size
- The Vapnik-Chervonenkis dimension (VC dimension) provides such a measure.
- Analogous to |H|, there are bounds for sample complexity using VC(H)

Shattering

• We say that a set S of examples is shattered by a set of functions H if for every partition of the examples in S into positive and negative examples there is a function in H that gives exactly these labels to the examples



Midterm Review CS446 Fall '16 48

VC Dimension

- We say that a set S of examples is shattered by a set of functions H if
 for every partition of the examples in S into positive and negative examples
 there is a function in H that gives exactly these labels to the examples
- The VC dimension of hypothesis space H over instance space X is the size of the largest finite subset of X that is shattered by H.

Even if only one subset of this size does it!

- If there exists a subset of size d that can be shattered, then VC(H) >=d
- If no subset of size d can be shattered, then VC(H) < d

```
\frac{\text{VC(Half intervals)} = 1}{\text{VC(Intervals)} = 2} (no subset of size 2 can be shattered)

\frac{\text{VC(Half-spaces in the plane)} = 3}{\text{VC(Half-spaces in the plane)} = 3} (no subset of size 4 can be shattered)
```

Some are shattered, but some are Midterm Review not

Sample Complexity & VC Dimension

- Using VC(H) as a measure of expressiveness we have an Occam algorithm for infinite hypothesis spaces.
- Given a sample D of m examples
- Find some $h \in H$ that is consistent with all m examples
- If

$$m > \frac{1}{\varepsilon} \{8VC(H)\log\frac{13}{\varepsilon} + 4\log(\frac{2}{\delta})\}$$

• Then with probability at least $(1-\delta)$, h has error less than ε .

(that is, if m is polynomial we have a PAC learning algorithm; to be efficient, we need to produce the hypothesis h efficiently.

What if H is finite?

• Notice that to shatter m examples it must be that: $|H|>2^{m}$, so $\log(|H|)\geq VC(H)$

COLT approach to explaining Learning

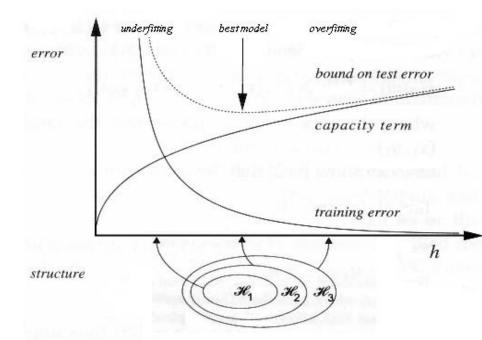
No Distributional Assumption

Training Distribution is the same as the Test

Distribution

 Generalization bounds depend on this view and affects model selection.

$$Err_D(h) < Err_{TR}(h) + P(VC(H), log(1/\delta), 1/m)$$



This is also called the

"Structural Risk Minimization" principle.

Theoretical Motivation of Boosting

- "Strong" PAC algorithm:
 - for any distribution
 - \Box $\forall \epsilon, \delta > 0$
 - Given polynomially many random examples
 - \square Finds hypothesis with error $\leq \epsilon$ with probability \geq (1- δ)
- "Weak" PAC algorithm
 - ullet Same, but only for $\epsilon \leq \frac{1}{2}$ γ
- [Kearns & Valiant '88]:
 - Does weak learnability imply strong learnability?
 - Anecdote: the importance of the distribution free assumption
 - It does not hold if PAC is restricted to only the uniform distribution, say

A Formal View of Boosting

- Given training set $(x_1, y_1), ... (x_m, y_m)$
- $y_i \in \{-1, +1\}$ is the correct label of instance $x_i \in X$
- For t = 1, ..., T
 - □ Construct a distribution D_t on {1,...m}
 - Find weak hypothesis ("rule of thumb")

$$h_{t}: X \to \{-1, +1\}$$

with small error ϵ_t on D_t:

$$\epsilon_{t} = Pr_{D} [h_{t} (x_{i}) \neg = y_{i}]$$

Output: final hypothesis H_{final}

Adaboost

- Constructing D_t on {1,...m}:
 - $D_1(i) = 1/m$
 - \square Given D_t and h_t :

$$D_{t+1} = D_{t}(i)/z_{t} \times e^{-\alpha t}$$
 if y
$$D_{t}(i)/z_{t} \times e^{+\alpha t}$$
 if y
$$D_{t}(i)/z_{t} \times \exp(-\alpha_{t} y_{i} h_{t} (x_{i}))$$

where z_t = normalization constant

and

$$\alpha_t$$
 = ½ ln{ (1- ϵ_t)/ ϵ_t }

Think about unwrapping it all the way to 1/m

if
$$y_i = h_t(xi)$$
 < 1; smaller weight
if $y_i = h_t(xi)$ > 1; larger weight

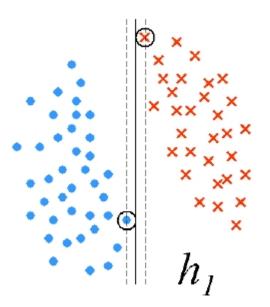
Notes about α_t :

- Positive due to the weak learning assumption
- ☐ Examples that we predicted correctly are demoted, others promoted
- Sensible weighting scheme: better
 hypothesis (smaller error) → larger weight

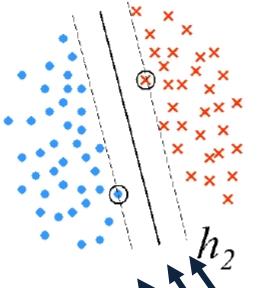
Final hypothesis: $H_{final}(x) = sign(\sum_{t} \alpha_t h_t(x))$

Margin of a Separating Hyperplane

A separating hyperplane: $w^T x+b=0$



$$\Rightarrow y_i(\mathbf{w}^T x_i + b) \ge 1$$
Midterm Review



Assumption: data is linear separable

Distance between

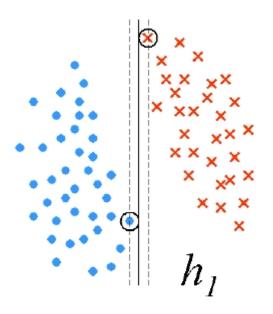
$$w^{T} x+b = +1 \text{ and } -1 \text{ is } 2 / ||w||$$
 Idea:

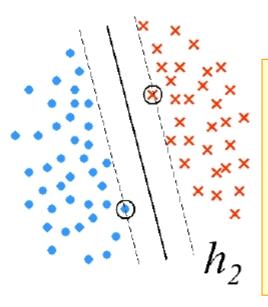
- Consider all possible w with different angles
- Scale w such that the constraints are tight
- 3. Pick the one with largest margin

$$w^{T} x+b = 1$$

 $w^{T} x+b = 0$
 $w^{T} x+b = -1$

Maximal Margin





The margin of a linear separator $w^T \ x + b = 0$ is $2 \ ||w||$

 $\max 2 / ||w|| = \min ||w||$ = $\min \frac{1}{2} w^T w$

$$\min_{w,b} \quad \frac{1}{2} w^T w$$

s.t
$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1, \forall (x_i, y_i) \in S$$

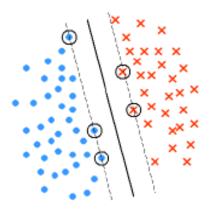
Duality

- This, and other properties of Support Vector Machines are shown by moving to the <u>dual problem</u>.
- Theorem: Let w^* be the minimizer of the SVM optimization problem (***) for $S = \{(x_i, y_i)\}.$

Let
$$I = \{i: y_i (w^{*T}x_i + b) = 1\}.$$

Then there exists coefficients $\alpha_i > 0$ such that:

$$\mathbf{w}^* = \sum_{i \in I} \alpha_i y_i x_i$$



(recap) Kernel Perceptron

Examples: $x \in \{0,1\}^n$; Nonlinear mapping: $x \to t(x)$, $t(x) \in R^{n'}$

Hypothesis: $w \in R^{n'}$; Decision function: $f(x) = sgn(\sum_{i=1}^{n'} w_i t(x)_i) = sgn(w \cdot t(x))$

If
$$f(x^{(k)}) \neq y^{(k)}$$
, $w \leftarrow w + r y^{(k)} t(x^{(k)})$

If n' is large, we cannot represent w explicitly. However, the weight vector w can be written as a linear combination of examples:

$$\mathbf{w} = \sum_{j=1}^{m} \mathbf{r} \alpha_{j} \mathbf{y}^{(j)} \mathbf{t}(\mathbf{x}^{(j)})$$

- Where α_i is the number of mistakes made on $x^{(j)}$
- Then we can compute f(x) based on $\{x^{(j)}\}$ and α

$$f(\mathbf{x}) = \operatorname{sgn}(\mathbf{w} \bullet \mathbf{t}(\mathbf{x})) = \operatorname{sgn}(\sum_{j=1}^{m} r \alpha_j \mathbf{y}^{(j)} \mathbf{t}(\mathbf{x}^{(j)}) \bullet \mathbf{t}(\mathbf{x})) = \operatorname{sgn}(\sum_{j=1}^{m} r \alpha_j \mathbf{y}^{(j)} K(\mathbf{x}^{(j)}, \mathbf{x}))$$

(recap) Kernel Perceptron

Examples: $x \in \{0,1\}^n$; Nonlinear mapping: $x \to t(x)$, $t(x) \in R^{n'}$ Hypothesis: $w \in R^{n'}$; Decision function: $f(x) = sgn(w \cdot t(x))$

- In the training phase, we initialize α to be an all-zeros vector.
- For training sample $(x^{(k)}, y^{(k)})$, instead of using the original Perceptron update rule in the $R^{n'}$ space

If
$$f(x^{(k)}) \neq y^{(k)}$$
, $w \leftarrow w + r y^{(k)} t(x^{(k)})$

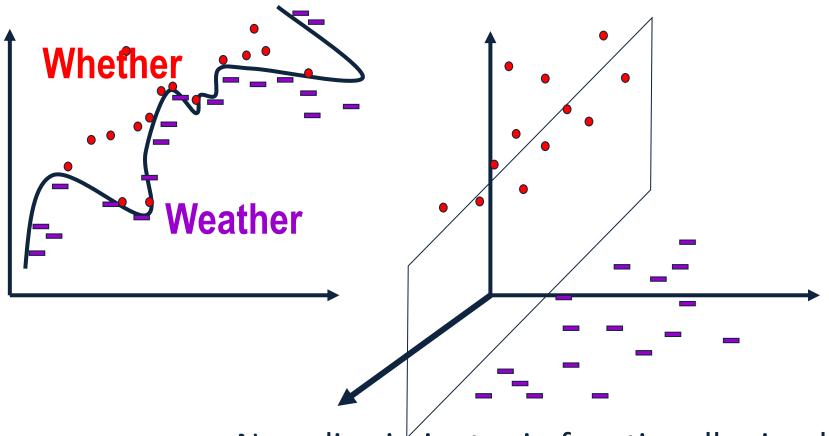
we maintain α by

if
$$f(\mathbf{x}^{(k)}) = \operatorname{sgn}(\sum_{j=1}^{m} r \alpha_j \mathbf{y}^{(j)} K(\mathbf{x}^{(j)}, \mathbf{x}^{(k)})) \neq \mathbf{y}^{(k)}$$
 then $\alpha_k \leftarrow \alpha_k + 1$

based on the relationship between w and lpha :

$$\mathbf{w} = \sum_{j=1}^{m} \mathbf{r} \alpha_{j} \mathbf{y}^{(j)} \mathbf{t}(\mathbf{x}^{(j)})$$

Embedding



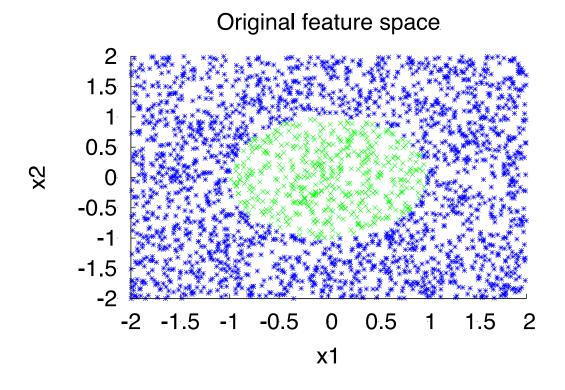
New discriminator in functionally simpler

$$X_1X_2\overline{X}_3 \vee \overline{X}_1X_4\overline{X}_3 \vee X_3\overline{X}_2X_5$$

$$\mathbf{y_1} \vee \mathbf{y_4} \vee \mathbf{y_5}$$

Midterm Review CS446 Fall '16 63

Making data linearly separable



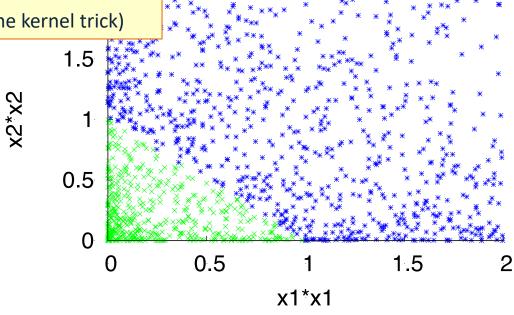
$$f(\mathbf{x}) = 1 \text{ iff } x_1^2 + x_2^2 \le 1$$

Midterm Review CS446 Fall '16 64

Making data linearly separable

- In order to deal with this, we introduce two new concepts:
 - Dual Representation
 - Kernel (& the kernel trick)

Transformed feature space



Transform data:
$$\mathbf{x} = (x_1, x_2) => \mathbf{x'} = (x_1^2, x_2^2)$$

 $f(\mathbf{x'}) = 1$ iff $x'_1 + x'_2 \le 1$

- Kernels General Conditions
- - Kernel Trick: You want to work with degree 2 polynomial features, $\phi(x)$. Then, your dot product will be in a space of dimensionality n(n+1)/2. The kernel trick allows you to save and compute dot products in an n dimensional space.
 - Can we use any K(.,.)?
 - A function K(x,z) is a valid kernel if it corresponds to an inner product in some (perhaps infinite dimensional) feature space.
 - Take the quadratic kernel: $k(x,z) = (x^Tz)^2$
 - Example: Direct construction (2 dimensional, for simplicity):
 - $K(x,z) = (x_1 z_1 + x_2 z_2)^2 = x_1^2 z_1^2 + 2x_1 z_1 x_2 z_2 + x_2^2 z_2^2$
 - = $(x_1^2, sqrt\{2\} x_1x_2, x_2^2) (z_1^2, sqrt\{2\} z_1z_2, z_2^2)$
 - $=\Phi(x)^T\Phi(z) \rightarrow A$ dot product in an expanded space.
 - It is not necessary to explicitly show the feature function ϕ .
 - General condition: construct the Gram matrix $\{k(x_i, z_i)\}$; check that it's positive semi definite.

Good Luck © !!