
Neural Networks
CS 446 Machine Learning

1

Dan is traveling

2

Administrative

Midterms were shown yesterday, and will be
shown tomorrow

Once you leave with your midterms, we don’t
take any regrade requests

Gradient
What is gradient of a function f(x)

Of(x) = df

dx

What is gradient of multiple variable function
f(x1, x2, x3, . . . , xn)

rf(x1, x2, . . . , xn) =

�f

�x1
,

�f

�x2
,

�f

�x3
, . . . ,

�f

�xn

�

Rate of change of function
with respect to input

f(x)

This is a vector. What is the magnitude ? What is the direction ?
Direction : direction of steepest increase

Magnitude : rate of change in that direction
4

Gradient Descent
Since gradient vector gives me direction of steepest increase, we should

go in the reverse direction to get lower function value

Works well when you have convex functions, guaranteed to reach global
minima

Update : x x�Rrf(x) x = [x1, x2, . . . , xn]where

xi xi �R

�f

�xi
For each element, we have

5

Gradient Descent
What happens when function is non-convex ?

Ohh no ! Algorithm gets stuck in local minima

Till now, you have applied gradient descent on convex functions,
today we will apply it on non-convex problem

6

A different view of LMS

Err(w) =
X

d

(od � td)
2

w = w �RrErr(w)

For dth example

Define error

Perform gradient
descent updates

x1

xn

x2

od

w2

w1

wn

X

od =
X

i

wixi � T

Each input xi is connected to
a unit (blue circle) by weight wi

Think of the input to unit from ith
connection to be wi xi

The unit (blue circle) is summing
all these inputs and outputting the

sum
7

Expressivity by Depth

However linear threshold units like last slide can only
deal with linear functions of input x

We now want to learn non-linear functions of the input. You
already know some methods to learn non-linear functions of

the input. Can you name them ?

Decision trees, kernels

Neural networks another way of doing that, stack several
layers of threshold elements, each layer using the output

of the previous layer as input

8

Basic Unit : Neuron

�(x) =
1

1 + e

�x

Lets define a variable called net

x1

xn

x2

o

� �
X

w2

w1

wn

net =
X

i

wixi

Then we have

o = �(
X

i

wixi � T)

o = �(net� T)
9

Stack them up

Input Layer Hidden Layer

Feedforward Neural Network

Output Layer

x1

xn

x2

� �
X

� �
X

o1

ok

10

Feedforward Neural Network

x1

xn

x2

� �
X

Input Layer Hidden Layer Lets number all circles / nodes
with number ids.

Connection between node i and node j is denoted as wij , net input to node j is netj ,
output from node j is xj or oj

3

7

Connection (yellow arrow) between node 3 and node 7 is denoted by w37
Output of node 7 is x7 or o7
Net Input to node 7 is net7

� �
X

o1

Output Layer
ok

11

Feedforward Neural Network

x1

xn

x2

� �
X

Input Layer Hidden Layer

3

7

For kth output node
ok = �(

X

j2hidden

wjk �(
X

i2input

wijxi � Tj)� Tk)

o1

Output Layer
ok

� �
X

12

Alternatives
x1

xn

x2

What if we use identity function (like LMS example) instead of sigmoid
function for activation ?

Becomes a Linear Model

What if we use step function (like Perceptron) then ?

Non-differentiable, not suitable for
gradient descent

o1

ok

13

Alternatives
x1

xn

x2

However there are other non-linear differentiable functions you can use

tanh relu

o1

ok

14

Error

We will use squared error Err(w) =
1

2

X

d2D

X

k2K

(tkd � okd)
2

Here D is the set of training examples, and K is the set of output units

15

Remember Gradient Descent

w = w �RrErr(w)

Whats w here ? What are the parameters of the model you want to train ?

You need to compute partial derivatives w.r.t each element in w above
In order to compute

Connection weights wij Thresholds at each unit Ti

rErr(w)

16

Do you remember derivatives ?

Function Derivative

17

�(ci � xi)

Some facts from real analysis

18

Reminder : Neuron

x1

xn

x2

o

�(x) =
1

1 + e

�x

� �
X

Lets define a variable called net

w2

w1

wn

net =
X

i

wixi

Then we have

o = �(
X

i

wixi � T)

o = �(net� T)

you can think of it as net input to a unit

19

20

Derivation of Learning Rule

i

j

Connection wij between hidden and output layer (influences output only through netj)

=
xi

netj =
X

wijxi

21

Derivation of Learning Rule

Connection wij between hidden and output layer is updated as

xi

xi

= � �Ed

�netj

i

j

22

Derivation of Learning Rule

i

j

Connection wij between input and hidden layer (shown in orange)

Influences the output only through those output units which are connected to node j
(shown connected by yellow arrows to j)

23

Derivation of Learning Rule

i

j

netj =
X

wijxi�j = � �Ed

�netj
24

Derivation of Learning Rule

netj =
X

wijxi

25

i

j

Derivation of Learning Rule

i

j

Connection wij between input and hidden layer is updated as

where

First determine the error for the output units. Then, back propagate this error layer by
layer through the network, changing weights appropriately in each layer

26

�w

ij

= Ro

j

(1� o

j

)

0

@
X

k2downstream(j)

�

k

w

jk

1

A
x

i

= R�

j

x

i

�

j

= o

j

(1� o

j

)

0

@
X

k2downstream(j)

�

k

w

jk

1

A

The Backpropagation Algorithm

For each example in the training set, do:

1. Compute the network output for this example
2. Compute the error term between he output and target

values
3. For each output unit j, compute error term:

4. For each hidden unit, compute error term

5. Update weights by

27

�

j

= o

j

(1� o

j

)

0

@
X

k2downstream(j)

�

k

w

jk

1

A

A few small things

We computed gradient for a single example. So, you can directly use it if
you perform stochastic gradient descent

Do you know how to convert this information to gradient descent ?

Usually, for neural networks, people use stochastic gradient descent with
mini-batches (and not with one example at a time)

28

We only showed updated for connection weights. Do you know how to
derive updates for the thresholds T ?

Alternatives
You already saw that you can use a lot of other activation functions

You can also use any loss function. The example you saw uses
squared loss

Squared loss is actually not that good for neural nets, due to training
slowdown.

A better loss function is cross entropy

Err(w) = �
X

i2K

(ti log(oi) + (1� ti) log(1� oi))

Exercise : Try to compute its back propagation terms
29

More Hidden Layers

Same algorithm holds for more hidden layers

30

Deep Learning Libraries

Tensorflow

Torch

Theano

Pytorch

Dynet

They allow automatic
differentiation. You can just
write the network, get the

gradients for free.

Lets look at Tensorflow demo

31

Comments on Training
• No guarantee of convergence, may oscillate or reach a local

minima

• In practice, many large networks can be trained on large
amounts of data for realistic problems

• Termination criteria : Number of epochs; Threshold on training
set error; No decrease in error; Increase error on a validation
set

• To avoid local minima : several trials with different random

initial weights with majority or voting techniques

32

Over-fitting Prevention
• Running too many epochs may over-train the network and

result in overfitting.

• Keep a held out validation set and test accuracy after each
epoch, maintain weights for the best performing network on
the validation set, and return it when performance decreases
significantly beyond that.

• Too few hidden units can prevent the data from adequately
fitting the data, too many hidden units lead to overfitting. You
can tune to get the best number of hidden units for your task.

• Another approach to prevent overfitting : Change error
function to include a term for the sum of squares of the
weights in the network.

33

Dropout Training
Proposed by Hinton et al 2012

Each time, decide on whether to delete a hidden unit
with some probability p

34

Dropout Training

Dropout of 50% of hidden units, and 20% of input units

35

Story Time

Some History

37

Inspired by biological systems, but don’t take this seriously

Computation : McCollough and Pitts (1943) showed how linear
threshold units can be used to compute logical functions

Learning Rules
Hebb (1949) suggested that if two units are both active (firing)
then the weights between them should increase.

Rosenblatt (1959) suggested that when a target output value is
provided for a single neuron with fixed input, it can
incrementally change weights and learn to produce the output
using the Perceptron learning rule..

Rise and Fall and Rise and Fall of Neural Nets

Rosenblatt’s Perceptron

Minsky and Papert’s book

Backpropagation work

See: http://people.idsia.ch/~juergen/who-invented-backpropagation.html

SVM’s and deep nets
not being trainable

Hinton’s deep belief
net paper

1959

1969

1986

1995

2006

http://people.idsia.ch/~juergen/who-invented-backpropagation.html

Deep Learning

39

Object Recognition Performance on Imagenet

Next Class

We will learn about some deep learning architectures

