
CS446: Machine Learning Fall 2016

October 25th, 2016

• This is a closed book exam. Everything you need in order to solve the problems is
supplied in the body of this exam.

• This exam booklet contains four problems. You need to solve all problems to get
100%.

• Please check that the exam booklet contains 14 pages, with the appendix at the end.

• The exam ends at 1:45 PM. You have 75 minutes to earn a total of 100 points.

• Answer each question in the space provided. If you need more room, write on the
reverse side of the paper and indicate that you have done so.

• A list of potentially useful functions has been provided in the appendix at the end.

• Besides having the correct answer, being concise and clear is very impor-
tant. For full credit, you must show your work and explain your answers.

Good Luck!

Name (NetID): (1 Point)

Decision Trees /20
PAC Learning /29
Neural Networks /25
Short Questions /25

Total /100
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Decision Trees [20 points]

You work in a weather forecasting company and your job as a machine learning expert
is to design a decision tree which would predict whether it is going to rain today
(‘WillRain?’ = 1) or not (‘WillRain?’ = 0). You are given a dataset D with the
following attributes: IsHumid ∈ {0, 1}, IsCloudy ∈ {0, 1}, RainedYesterday ∈ {0, 1}
and Temp>20 ∈ {0, 1}.

IsHumid IsCloudy RainedYesterday Temp>20 WillRain?

1 1 1 0 1
0 1 0 0 0
1 0 0 0 0
1 0 0 1 0
1 0 1 1 0
1 1 0 1 1
0 1 0 0 0
1 0 1 1 0

To simplify your computations please use: log2(3) ≈ 3
2
.

(a) (4 points) What is the entropy of the label ‘WillRain?’?

(b) (4 points) What should the proportion of the examples labeled ‘WillRain?’=1
be, in order to get the maximum entropy value for the label?
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(c) (4 points) Compute the Gain(D, IsCloudy).

(d) (4 points) You are given that:

• Gain(D, IsHumid) = 0.25,

• Gain(D, RainedYesterday) = 0.11,

• Gain(D, Temp>20) = 0

• Gain(D, IsCloudy) is as computed in part c.

i. Which node should be the root node?

ii. Without any additional computation, draw a decision tree that is consistent
with the given dataset and uses the root chosen in (i).

if(IsHumid):
else:
else:

(e) (4 points) Express the function ‘WillRain?’ as a simple Boolean function over
the features defining the data set D. That is, define a Boolean function that
returns true if an only if ‘WillRain?’=1.
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PAC Learning [29 points]

We define a set of functions

T = {f(x) = 1[x > a] : a ∈ R},

where 1[x > a] is the indicator function returning 1 if x > a and returning 0 otherwise.
For input domain X = R, and a fixed positive number k, consider a concept class DTk

consisting of all decision trees of depth at most k where the function at each non-leaf
node is an element of T . Note that if the tree has only one decision node (the root)
and two leaves, then k = 1.

(a) (4 points) We want to learn a function in DTk. Define

i. The Instance Space X

ii. The Label Space Y

iii. Give an example of f ∈ DT2.

iv. Give 3 examples that are consistent with your function f and one that is not
consistent with it.
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(b) (7 points) Determine the VC dimension of DTk, and prove that your answer is
correct.

(c) (5 points) Now consider a concept class DT∞ consisting of all decision trees of
unbounded depth where the function at each node is an element of T . Give the
VC dimension of DT∞, and prove that your answer is correct.
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(d) (7 points) Assume that you are given a set S of m examples that are consistent
with a concept in DTk. Give an efficient learning algorithm that produces a
hypothesis h that is consistent with S.

Note: The hypothesis you learn, h, does not need to be in DTk. You can
represent it any way you want.

(e) (6 points) Is the concept class DTk PAC learnable? Explain your answer.
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Neural Networks [25 points]

Consider the following set S of examples over the feature space X = {X1, X2}. These
examples were labeled based on the XNOR (NOT XOR) function.

X1 X2 y∗ (Label)

0 0 1
0 1 0
1 0 0
1 1 1

(a) (4 points) The set of 4 examples given above is not linearly separable in the
X = {X1, X2} space. Explain this statement in one sentence.

(b) (6 points) Propose a new set of features Z = {Z1, . . . Zk} such that in the Z
space, this set of examples is linearly separable.

i. Define each Zi as a function of the Xis.

ii. Write down the set of 4 examples given above in the new Z space.

iii. Show that the data set is linearly separable. (Show, don’t just say that it is
separable.)
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(c) (5 points) Now consider running the set S of examples presented above in the
space X through a neural network with a single hidden layer, as shown in the
figure below.

Note that numbers on the edges correspond to weights and the arrows into the
units indicate the bias term. Recall that the output of a node (denoted by the
terms inside the nodes in the graph e.g. a1, a2, y) in the neural network is given
by f(wTx+ b), where x is the input to the unit, w are the weights on the input,
b is the bias in the unit, and f is the activation function.

For the sake of simplicity, assume that the function sgn(x) (sgn(x) = 1 if x ≥ 0,
0 otherwise) is used as the activation function at all the nodes of the network.

Which of the following sets of weights guarantees that the neural network
above is consistent with all the examples in S? (That is, the 0-1 loss is 0).

The correct set of weights is
{option (1) | option (2) | option (3)}

Options:

Options w11 w21 b1 w12 w22 b2 v1 v2 u

1 1 0 - 0.5 0 1 - 0.5 - 1 - 1 0.9
2 1 1 0.5 - 1 - 1 2.5 0 - 1 0.5
3 1 1 - 0.5 - 1 - 1 1.5 - 1 - 1 1.5
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(d) (10 points) We now want to use the data set S to learn the neural network
depicted earlier.

We will use the sigmoid function, sigmoid(x) = (1 + exp−x)−1, as the activation
function in the hidden layer, and no activation function in the output layer
(i.e. it’s just a linear unit). As the loss function we will use the Hinge Loss:

Hinge loss(w, x, b, y*) =

{
1− y∗(wTx+ b), if y∗(wTx+ b) > 1

0, otherwise

Write down the BackPropagation update rules for the weights in the output
layer (∆vi), and the hidden layer (∆wij).
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Short Questions [25 points]

(a) (10 points) In this part of the problem we consider Adaboost. Let Dt be the
probability distribution in the tth round of Adaboost, ht be the weak learning
hypothesis learned in the tth round, and εt its error.

i. Denote by Dt(i) the weight of the ith example under the distribution Dt. Use
it to write an expression for the error εt of the AdaBoost weak learner in the
tth round.

ii. Consider the following four statements with respect to the hypothesis at
time t, ht. Circle the one that is true, and provide a short explanation.

A. ∀t, ErrorDt(ht) = ErrorDt+1(ht)

B. ∀t, ErrorDt(ht) > ErrorDt+1(ht)

C. ∀t, ErrorDt(ht) < ErrorDt+1(ht)

D. The relation between ErrorDt(ht) and ErrorDt+1(ht) cannot be deter-
mined in general.

Explanation:
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(b) (10 points) We consider Boolean functions in the class L10,20,100. This is the
class of 10 out of 20 out of 100, defined over {x1, x2, . . . x100}.
Recall that a function in the class L10,20,100 is defined by a set of 20 relevant
variables. An example x ∈ {0, 1}100 is positive if and only if at least 10 out these
20 are on.

In the following discussion, for the sake of simplicity, whenever we consider a mem-
ber in L10,20,100, we will consider the function f in which the first 20 coordinates
are the relevant coordinates.

i. Show that the perceptron algorithm can be used to learn functions in the
class L10,20,100. In order to do so,

A. Show a linear threshold function h that behaves just like f ∈ L10,20,100 on
{0, 1}100.

B. Write h as a weight vector that goes through the origin and has size (as
measured by the L2 norm) equal to 1.

11



ii. Let R be the set of 20 variables defining the target function. We consider the
following two data sets, both of which have examples with 50 on bits.

D1 : In all the negative examples exactly 9 of the variables in R are on;
in all the positive examples exactly 11 of the variables in R are on.

D2 : In all the negative examples exactly 5 of the variables in R are on;
in all the positive examples exactly 15 of the variables in R are on.

Consider running perceptron on D1 and on D2. On which of these data sets
do you expect Perceptron to make less mistakes?

Perceptron will make less mistakes on the data set

{D1 | D2}

iii. Define the margin of a data set D with respect to weight vector w.
Explain your answer to (ii) using the notion of the margin.
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(c) (5 points) Let f be a concept that is defined on examples drawn from a distri-
bution D. The “true” error of the hypothesis h is defined as

ErrorD(h) = Prx∈D (h(x) 6= f(x)) .

In the class, we saw that the true error of a classifier is bounded above by two
terms that relate to the training data and the hypothesis space. That is

ErrorD(h) < A + B

What are A and B? (If you do not remember the exact functional forms of these
terms, it is sufficient to briefly describe what they mean.)
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Appendix

(a) Entropy(S) = −p+log2(p+)− p−log2(p−)

(b) Gain(S, a) = Entropy(S)−
∑

v∈values(a)

|Sv|
|S|

Entropy(Sv)

(c) sgn(x) =

{
1, if x ≥ 0

0, if x < 0

(d) sigmoid(x) =
1

1 + exp−x

(e)
∂

∂x
sigmoid(x) = sigmoid(x)

(
1− sigmoid(x)

)
(f) ReLU(x) = max(0, x)

(g)
∂

∂x
ReLU(x) =

{
1, if x > 0

0, otherwise

(h) tanh(x) =
ex − e−x

ex + e−x

(i)
∂

∂x
tanh(x) = 1− tanh2(x)

(j) Zero-One loss(y, y∗) =

{
1, if y 6= y∗

0, if y = y∗

(k) Hinge loss(w, x, b, y*) =

{
1− y∗(wTx+ b), if y∗(wTx+ b) > 1

0, otherwise

(l)
∂

∂w
Hinge loss(w, x, b, y*) =

{
−y∗(x), if y∗(wTx+ b) > 1

0, otherwise

(m) Squared loss(w, x, y∗) =
1

2
(wTx− y∗)2

(n)
∂

∂w
Squared loss(w, x, y∗) = x(wTx− y∗)
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