Kernels

e A kernel K is a function of two objects,

K((71,91), (22, 12))

for example, two sentence/tree paits, y1) and(xzs, y-)

e Intuition: K ((z1,y1), (x2,y2)) IS @ measure of the similarity
betweenzy,y,) and(xs, y2)

e Formally: K((x1,y1),(z2,y2)) is a kernel if it can be shown
that there is some feature vector mappiage, y) such that

K((z1,91), (v2,92)) = P(x1,y1) - P(w2,92)

for all z1,y1, 2, Yo

A (Trivial) Example of a Kernel

e Given an existing feature vector representatiprdefine

K((z1,91), (22,92)) = ®(21,91) - P(22,92) |

danr
Inserted Text

Key Issue: The right side is what we want to represent.
But, these are huge vectors.

Since all we need is to compute their dot product, maybe there is a way to
do it w/o actually writing down the huge vectors.

A More Interesting Kernel

e Given an existing feature vector representatinrdefine

K((xlvyl)v (vayQ)) — (1 + (I)(:Clvyl)) (I)(:C27y2))2

This can be shown to be an inner product in a new sggcevhere ®’
contains all quadratic terms df

e More generally,

K((w1,y1), (w2,2)) = (1 4+ @(z1,91) - ®(22,92))"

can be shown to be an inner product in a new s@gevhere®’ contains
all polynomial terms ofP up to degree

Question: can we come up with “specialized” kernels for NLP
structures?

NLP Structures

e [rees
S
/\
NP VP
| N

John saw NP

|
Mary

e Tagged sequences, e.g., named entity tagging

S — C —N— N —N—

Napoleon Bonaparte was exiled

S = Start entity
C = Continue entity
N = Not an entity

to

Feature Vectors: @

e & defines theepresentationof a structure

e & maps a structure tofaature vector € r?

nnnnnnnnn

ooooooo

ssssss

tttttt

| ®

(1,0,2,0,0,15, 5)

Features

e A “feature” is a function on a structure, e.g.,

h(x) = Numberoftimes A |isseenin

PN
B C
7 A 15 A
N /\
B C B C
e U e P Y
D E F G D E F A
I [I B
d e f ¢ d e h B C
|
b ¢

Feature Vectors

e A set of functionsh, ... h; define afeature vector

®(z) = (hi(x),ho(x) ... hq(x))

TlA T2 A
N /\
B C B C
e e e U
D E F G D E F A
I I I B
d e f ¢ d e h B C
|
b ¢

&(T)) = (1,0,0,3) B(Ty) = (2,0,1,1)

“All Subtrees” Representation [Bod, 1998]

e Given: Non-Terminal symbol§A, B, ...}

Terminal symbols

e An infinite set of subtrees

A A A

e U N
B C B E B C

> b A B

{a,b,c...}

e An infinite set of features, e.qg.,

hs(x,y) = Number of times

D

N

>
o

IS seen inz, y)

All Sub-fragments for Tagged Sequences

e Given: State symbols {S,C,N}
Terminal symbols {a,b,c,...}

e An infinite set of sub-fragments
S S S—C S—C
| |

a b

e An infinite set of features, e.qg.,

hs(x) = Number of times$ | |isseenine

Inner Products

o &(z) = (h(z), ho(). .. ha(z))

e Inner product (Kernel”) between two structures; and’s:

B(TY) - B(Ty) = ;hi(Tl)hi(Tz)

T A T5 A
Py /\
B C B C
PN N Pl N
D E F G D E F A
[. I N
d e f g d e h B C
| |
b ¢
&(T)) = (1,0,0,3) B(T) = (2,0,1,1)

®(Ty)-P(T5) =1x240x0+0x1+3x1=5

“All Subtrees” Representation

e Given: Non-Terminal symbol§A, B, .. .}
Terminal symbols {a,b,c...}

e An Infinite set of subtrees

A A A A
Pl PN N N
B C B E B C B A

| | P
b b A B B C
|
b
o Step 1:

Choose an (arbitrary) mapping from subtrees to integers
h;(x) = Number of times subtress seen inc

®(z) = (hy(x), ho(z), hs(x)...)

All Subtrees Representation

e ® is now huge

e But inner product®(7}) - ®(73) can be computed
efficiently using dynamic programming.

Computing the Inner Product

Define —N; and N, are sets of nodes [y, and; respectively.

_I(x) = 1 if 7'th subtree Is rooted at.
7\ 0 otherwise

Follows that:
hi(Ti) = Xnieny Lilny) and hi(Tz) = 32, en, Li(n2)

P(T1) - P(12) = > hi(T1)hi(T2) = 32 (Cnen, Li(na)) Cn,en, Li(n2))
— aneNl Z’I’LQENQ Zz [’&(nl)ll(nQ)

— anENl Z’I’LQENQ A<n]—7 n2)

where A(ny,ne) = >, I;(n1);(ng) is the number of common
subtrees at;, o

An Example

Tl A T2 A
/\ /\
B C B C
N PN N PN
D E F G D E F G
I I B
d e f ¢ d e h |
B(T1)-B(T) = AA, A)+A(A,B) ...+ A(B,A)+A(B,B)...+ A(G,G)

e Most of these terms afe(e.g. A(A, B)).
e Some are non-zero, e.0\(B, B) =4
B B B B
N N N N
D E D E D E D E
| | |
d e d e

Recursive Definition of A(nq, ns)

e |f the productions at; andn, are different

A(nl, nz) =0

e Else ifn;, ny are pre-terminals,

A(nl,ng) =1
e Else
ne(ny)
A(nlanQ) — H (1 T A(Ch(nlaj)v Ch(”%])))
j=1

nc(ny) IS number of children of node;;
ch(ny, 7) is the;’th child of n;.

lllustration of the Recursion

A A
/\ /\

B C B C
e U e U
D E F G D E F G
I o
d e f ¢ d e h i

How many subtrees do noddsand A have in common? i.e., Whati8(A, A)?

A(B, B) = 4 A(C,C) =1
B B B B C
N N PN N P
D E D E D E D E F G
é A

A(A, A) = (A(B, B) + 1) x (A(C,C) +1) = 10

W — o

A —T

W — o

The Inner Product for Tagged Sequences

e Define N; and N, to be sets of states ifi and’, respectively.

e By a similar argument,

®(11) - ®(12) = Xpien Lnsen, Alna, 1)

whereA(nq,ns) is number of common sub-fragmentsat n,

A—B —C—D A—B —C—E
eg. 1= | | | | Ty= | | |

a b C d a b e =
(1)) - ®(Th) = A(A, A)+A(A,B) ...+ A(B,A)+A(B,B) ...+ A(D, E)

e.0.,.A(B, B) =4,

The Recursive Definition for Tagged Sequences

e Define N(n) = state followingn, W (n) = word at state:
® Definew[W(nl), W(nz)] = 1 Iff W(nl) — W(nz)
e Then If labels at,; andn, are the same,

A(ny,ng) = (1+m[W(n1), W(ng)]) x (1+A(N(n1), N(n2))

A—B —C—D A—B —C—E
eg.]t = | | | | Ty= | | | |
a b C d a b = =

A(AA) = (1+7wla,a]) x (1+A(B, B))
— (141) % (1+4) =10

Refinements of the Kernels

¢ Include log probability from the baseline model:
®(T7) is representation under all sub-fragments kernel
L('T) is log probability under baseline model

New representatio®’ where
(1) - ®'(Tz) = BL(T1) L(T3) + ®(T1) - (T2

(includesL(T;) as an additional component with weigli)

e Allows the perceptron to use original ranking as default

Refinements of the Kernels

e Downweighting larger sub-fragments

d
> NI (T) hi(T)

1=1

where0 < A\ < 1,
S1Z E; 1s number of states/rules tfth fragment

e Simple modification to recursive definitions, e.g.,

A(ny,ng) = (1+7[W(ny), W(ng)]) X (1+AXA(N(nq), N(nsg))

Refinement of the Tagging Kernel

e Sub-fragments sensitive to spelling features
(e.g.,Capitalization)

e Definer|z,y| = 1 if x andy are identical,
m|x,y] = 0.5 if x andy share same capitalization features

A(ny,ng) = (147 W (ny), Wi(ng)|) X (1+AXA(N(ny), N(ns))

e Sub-fragments now include capitalization features

N — N — S N — N — S
exi'led {o E'Iba exi'led ﬂo C%\p

N — N N —

— S N S
No'cap {o éap No'cap NA cap tap

Experimental Results

Parsing Wall Street Journal

MODEL < 100 Words (2416 sentences)
LR LP | CBs| 0CBs| 2CBs
C0O99 | 88.1%| 88.3%| 1.06| 64.0%| 85.1%
VP 88.6% | 88.9%| 0.99| 66.5% | 86.3%

VP gives 5.1% relative reduction in error (CO99 = my thesis parser)

Named Entity Tagging on Web Data

P R F
Max-Ent 84.4% | 86.3% | 85.3%
Perc. 86.1%| 89.1%| 87.6%
Improvement| 10.9%| 20.4% | 15.6%

VP gives 15.6% relative reduction in error

danr
Inserted Text
Note: the improvement is not necessarily due to the different algorithm. The perceptron here makes use of more features.
It is possible to blow up the feature space and run Max-Ent to get a fair comparison. (But, possibly Max-Ent will be very slow...)

Summary

e For any representatio®(x),
Efficient computation ofb(x) - ®(y) =
Efficient learning through kernel form of the perceptron

e Dynamic programming can be used to calcukbte) - &(y)
under “all sub-fragments” representations

e Several refinements of the inner products:

— Including probabillities from baseline model
— Downweighting larger sub-fragments
— Sensitivity to spelling features

