
Kernels
� A kernelK is a function of two objects,

K((x1; y1); (x2; y2))

for example, two sentence/tree pairs(x1; y1) and(x2; y2)

� Intuition: K((x1; y1); (x2; y2)) is a measure of the similarity
between(x1; y1) and(x2; y2)

� Formally: K((x1; y1); (x2; y2)) is a kernel if it can be shown
that there is some feature vector mapping�(x; y) such that

K((x1; y1); (x2; y2)) = �(x1; y1) ��(x2; y2)

for all x1; y1; x2; y2



A (Trivial) Example of a Kernel
� Given an existing feature vector representation�, define

K((x1; y1); (x2; y2)) = �(x1; y1) ��(x2; y2)

danr
Inserted Text


Key Issue: The right side is what we want to represent.
But, these are huge vectors.

Since all we need is to compute their dot product, maybe there is a way to 
do it w/o actually writing down the huge vectors.



A More Interesting Kernel
� Given an existing feature vector representation�, define

K((x1; y1); (x2; y2)) = (1 +�(x1; y1) ��(x2; y2))2

This can be shown to be an inner product in a new space�
0, where�0

contains all quadratic terms of�

� More generally,

K((x1; y1); (x2; y2)) = (1 +�(x1; y1) ��(x2; y2))p

can be shown to be an inner product in a new space�
0, where�0 contains

all polynomial terms of� up to degreep
Question: can we come up with “specialized” kernels for NLP
structures?



NLP Structures
� Trees

S

NP

John

VP

saw NP

Mary

� Tagged sequences, e.g., named entity tagging

S — C — N — N — N — S

j j j j j j

Napoleon Bonaparte was exiled to Elba

S = Start entity
C = Continue entity
N = Not an entity



Feature Vectors:�

� � defines therepresentationof a structure

� � maps a structure to afeature vector2 R
d

S

NP

She

VP

announced NP

NP

a program

VP

to VP

promote NP

safety PP

in NP

NP

trucks

and NP

vans

+ �

h1; 0; 2; 0; 0; 15; 5i



Features
� A “feature” is a function on a structure, e.g.,

h(x) = Number of times A

B C

is seen inx

T1 A

B

D

d

E

e

C

F

f

G

g
T2 A

B

D

d

E

e

C

F

h

A

B

b

C

c

h(T1) = 1 h(T2) = 2



Feature Vectors
� A set of functionsh1 : : : hd define afeature vector

�(x) = hh1(x); h2(x) : : : hd(x)i

T1 A

B

D

d

E

e

C

F

f

G

g

T2 A

B

D

d

E

e

C

F

h

A

B

b

C

c

�(T1) = h1; 0; 0; 3i �(T2) = h2; 0; 1; 1i



“All Subtrees” Representation [Bod, 1998]
� Given: Non-Terminal symbolsfA;B; : : :g

Terminal symbols fa; b; c : : :g

� An infinite set of subtrees
A

B C

A

B

b

E

A

B

b

C

A B

A

B A

B

b

C

: : :

� An infinite set of features, e.g.,

h3(x; y) = Number of times A

B

b

C

A B

is seen in(x; y)



All Sub-fragments for Tagged Sequences
� Given: State symbols fS;C;Ng

Terminal symbols fa; b; c; : : :g

� An infinite set of sub-fragments

S S
j

a

S — C S — C

j

b

: : :

� An infinite set of features, e.g.,

h3(x) = Number of times
S — C

j

b
is seen inx



Inner Products

� �(x) = hh1(x); h2(x) : : : hd(x)i

� Inner product (“Kernel”) between two structuresT1 andT2:

�(T1) ��(T2) =
dX

i=1
hi(T1)hi(T2)

T1 A

B

D

d

E

e

C

F

f

G

g

T2 A

B

D

d

E

e

C

F

h

A

B

b

C

c

�(T1) = h1; 0; 0; 3i �(T2) = h2; 0; 1; 1i

�(T1) ��(T2) = 1� 2 + 0� 0 + 0� 1 + 3� 1 = 5



“All Subtrees” Representation
� Given: Non-Terminal symbolsfA;B; : : :g

Terminal symbols fa; b; c : : :g

� An infinite set of subtrees
A

B C

A

B

b

E

A

B

b

C

A B

A

B A

B

b

C

: : :

� Step 1:
Choose an (arbitrary) mapping from subtrees to integers

hi(x) = Number of times subtreei is seen inx

�(x) = hh1(x); h2(x); h3(x) : : :i



All Subtrees Representation
� � is now huge

� But inner product�(T1) � �(T2) can be computed
efficiently using dynamic programming.



Computing the Inner Product

Define –N1 andN2 are sets of nodes inT1 andT2 respectively.

– Ii(x) =
(

1 if i’th subtree is rooted atx.

0 otherwise:

Follows that:

hi(T1) =
P

n12N1

Ii(n1) and hi(T2) =
P

n22N2

Ii(n2)

�(T1) ��(T2) = Pi hi(T1)hi(T2) =
P

i (
P

n12N1

Ii(n1)) (
P

n22N2

Ii(n2))

=
P

n12N1

P
n22N2

P
i Ii(n1)Ii(n2)

=
P

n12N1

P
n22N2

�(n1; n2)

where�(n1; n2) =

P
i Ii(n1)Ii(n2) is the number of common

subtrees atn1; n2



An Example

T1 A

B

D

d

E

e

C

F

f

G

g

T2 A

B

D

d

E

e

C

F

h

G

i

�(T1) ��(T2) = �(A;A)+�(A;B) : : :+�(B;A)+�(B;B) : : :+�(G;G)

� Most of these terms are0 (e.g.�(A;B)).

� Some are non-zero, e.g.�(B;B) = 4

B

D E

B

D

d

E

B

D E

e

B

D

d

E

e



Recursive Definition of�(n1; n2)

� If the productions atn1 andn2 are different

�(n1; n2) = 0

� Else ifn1; n2 are pre-terminals,

�(n1; n2) = 1

� Else

�(n1; n2) =
nc(n1)Y

j=1

(1 + �(ch(n1; j); ch(n2; j)))

nc(n1) is number of children of noden1;

ch(n1; j) is thej’th child of n1.



Illustration of the Recursion

A

B

D

d

E

e

C

F

f

G

g

A

B

D

d

E

e

C

F

h

G

i

How many subtrees do nodesA andA have in common? i.e., What is�(A;A)?

�(B;B) = 4 �(C;C) = 1

B

D E

B

D

d

E

B

D E

e

B

D

d

E

e

C

F G

�(A;A) = (�(B;B) + 1)� (�(C;C) + 1) = 10



A

B C

A

B

D E

C

A

B

D

d

E

C

A

B

D E

e

C

A

B

D

d

E

e

C

A

B C

F G

A

B

D E

C

F G

A

B

D

d

E

C

F G

A

B

D E

e

C

F G

A

B

D

d

E

e

C

F G



The Inner Product for Tagged Sequences
� DefineN1 andN2 to be sets of states inT1 andT2 respectively.

� By a similar argument,
�(T1) ��(T2) = Pn12N1

P
n22N2

�(n1; n2)

where�(n1; n2) is number of common sub-fragments atn1; n2

e.g.,T1 =
A — B — C — D

j j j j
a b c d

T2 =
A — B — C — E

j j j j

a b e e

�(T1) ��(T2) = �(A;A)+�(A;B) : : :+�(B;A)+�(B;B) : : :+�(D;E)

e.g.,�(B;B) = 4,

B B

j

b

B — C B — C

j

b



The Recursive Definition for Tagged Sequences
� DefineN(n) = state followingn, W (n) = word at staten

� Define�[W (n1);W (n2)] = 1 iff W (n1) = W (n2)

� Then if labels atn1 andn2 are the same,

�(n1; n2) = (1+�[W (n1);W (n2)])�(1+�(N(n1); N(n2))

e.g.,T1 =
A — B — C — D

j j j j
a b c d

T2 =
A — B — C — E

j j j j

a b e e

�(A;A) = (1 + �[a; a])� (1 + �(B;B))

= (1 + 1)� (1 + 4) = 10



Refinements of the Kernels
� Include log probability from the baseline model:

�(T1) is representation under all sub-fragments kernel

L(T1) is log probability under baseline model

New representation�0 where

�
0(T1) ��0(T2) = �L(T1)L(T2) +�(T1) ��(T2)

(includesL(T1) as an additional component with weight

p
�)

� Allows the perceptron to use original ranking as default



Refinements of the Kernels
� Downweighting larger sub-fragments

dX
i=1
�SIZEihi(T1)hi(T2)

where0 < � � 1,

SIZEi is number of states/rules ini’th fragment

� Simple modification to recursive definitions, e.g.,

�(n1; n2) = (1+�[W (n1);W (n2)])�(1+��(N(n1); N(n2))



Refinement of the Tagging Kernel
� Sub-fragments sensitive to spelling features

(e.g.,Capitalization)
� Define�[x; y] = 1 if x andy are identical,

�[x; y] = 0:5 if x andy share same capitalization features

�(n1; n2) = (1+�[W (n1);W (n2)])�(1+��(N(n1); N(n2))

� Sub-fragments now include capitalization features

N — N — S

j j j

exiled to Elba
N — N — S

j j j

exiled to Cap

N — N — S

j j j

No cap to Cap
N — N — S

j j j

No cap No cap Cap



Experimental Results

Parsing Wall Street Journal

MODEL � 100 Words (2416 sentences)
LR LP CBs 0 CBs 2 CBs

CO99 88.1% 88.3% 1.06 64.0% 85.1%
VP 88.6% 88.9% 0.99 66.5% 86.3%

VP gives 5.1% relative reduction in error (CO99 = my thesis parser)

Named Entity Tagging on Web Data

P R F
Max-Ent 84.4% 86.3% 85.3%
Perc. 86.1% 89.1% 87.6%
Improvement 10.9% 20.4% 15.6%

VP gives 15.6% relative reduction in error

danr
Inserted Text
Note: the improvement is not necessarily due to the different algorithm. The perceptron here makes use of more features.
It is possible to blow up the feature space and run Max-Ent to get a fair comparison. (But, possibly Max-Ent will be very slow...)



Summary
� For any representation�(x),

Efficient computation of�(x) ��(y))

Efficient learning through kernel form of the perceptron

� Dynamic programming can be used to calculate�(x) � �(y)

under “all sub-fragments” representations

� Several refinements of the inner products:

– Including probabilities from baseline model

– Downweighting larger sub-fragments

– Sensitivity to spelling features




