Kernels

- A kernel K is a function of two objects,

$$
K\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)
$$

for example, two sentence/tree pairs $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

- Intuition: $K\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)$ is a measure of the similarity between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$
- Formally: $K\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)$ is a kernel if it can be shown that there is some feature vector mapping $\Phi(x, y)$ such that

$$
K\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\boldsymbol{\Phi}\left(x_{1}, y_{1}\right) \cdot \boldsymbol{\Phi}\left(x_{2}, y_{2}\right)
$$

for all $x_{1}, y_{1}, x_{2}, y_{2}$

A (Trivial) Example of a Kernel

- Given an existing feature vector representation Φ, define

$$
K\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\boldsymbol{\Phi}\left(x_{1}, y_{1}\right) \cdot \boldsymbol{\Phi}\left(x_{2}, y_{2}\right)_{\wedge}
$$

A More Interesting Kernel

- Given an existing feature vector representation Φ, define

$$
K\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(1+\boldsymbol{\Phi}\left(x_{1}, y_{1}\right) \cdot \boldsymbol{\Phi}\left(x_{2}, y_{2}\right)\right)^{2}
$$

This can be shown to be an inner product in a new space Φ^{\prime}, where Φ^{\prime} contains all quadratic terms of Φ

- More generally,

$$
K\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(1+\boldsymbol{\Phi}\left(x_{1}, y_{1}\right) \cdot \boldsymbol{\Phi}\left(x_{2}, y_{2}\right)\right)^{p}
$$

can be shown to be an inner product in a new space Φ^{\prime}, where Φ^{\prime} contains all polynomial terms of $\boldsymbol{\Phi}$ up to degree p

Question: can we come up with "specialized" kernels for NLP structures?

NLP Structures

- Trees

- Tagged sequences, e.g., named entity tagging

S = Start entity
C $=$ Continue entity
$\mathrm{N}=$ Not an entity

Feature Vectors: Φ

- Φ defines the representation of a structure
- Φ maps a structure to a feature vector $\in \mathbb{R}^{d}$

$\langle 1,0,2,0,0,15,5\rangle$

Features

- A "feature" is a function on a structure, e.g.,

$$
h(x)=\text { Number of times } \widehat{\mathrm{B} C}_{\mathrm{A}}^{\text {C }} \text { is seen in } x
$$

T_{1}

$h\left(T_{1}\right)=1$
T_{2}

$h\left(T_{2}\right)=2$

Feature Vectors

- A set of functions $h_{1} \ldots h_{d}$ define a feature vector

$$
\Phi(x)=\left\langle h_{1}(x), h_{2}(x) \ldots h_{d}(x)\right\rangle
$$

$\boldsymbol{\Phi}\left(T_{1}\right)=\langle 1,0,0,3\rangle$
$\boldsymbol{\Phi}\left(T_{2}\right)=\langle 2,0,1,1\rangle$

"All Subtrees" Representation [Bod, 1998]

- Given: Non-Terminal symbols $\{A, B, \ldots\}$

Terminal symbols $\quad\{a, b, c \ldots\}$

- An infinite set of subtrees

- An infinite set of features, e.g.,

All Sub-fragments for Tagged Sequences

- Given: State symbols
$\{S, C, N\}$
Terminal symbols $\quad\{a, b, c, \ldots\}$
- An infinite set of sub-fragments

- An infinite set of features, e.g.,

Inner Products

- $\Phi(x)=\left\langle h_{1}(x), h_{2}(x) \ldots h_{d}(x)\right\rangle$
- Inner product ("Kernel") between two structures T_{1} and T_{2} :

$$
\Phi\left(T_{1}\right) \cdot \Phi\left(T_{2}\right)=\sum_{i=1}^{d} h_{i}\left(T_{1}\right) h_{i}\left(T_{2}\right)
$$

$$
\begin{gathered}
\Phi\left(T_{1}\right)=\langle 1,0,0,3\rangle \quad \Phi\left(T_{2}\right)=\langle 2,0,1,1\rangle \\
\Phi\left(T_{1}\right) \cdot \boldsymbol{\Phi}\left(T_{2}\right)=1 \times 2+0 \times 0+0 \times 1+3 \times 1=5
\end{gathered}
$$

"All Subtrees" Representation

- Given: Non-Terminal symbols $\{A, B, \ldots\}$

Terminal symbols $\quad\{a, b, c \ldots\}$

- An infinite set of subtrees

- Step 1:

Choose an (arbitrary) mapping from subtrees to integers

$$
\begin{aligned}
& h_{i}(x)=\text { Number of times subtree } i \text { is seen in } x \\
& \Phi(x)=\left\langle h_{1}(x), h_{2}(x), h_{3}(x) \ldots\right\rangle
\end{aligned}
$$

All Subtrees Representation

- Φ is now huge
- But inner product $\Phi\left(T_{1}\right) \cdot \Phi\left(T_{2}\right)$ can be computed efficiently using dynamic programming.

Computing the Inner Product

Define $\quad-N_{1}$ and N_{2} are sets of nodes in T_{1} and T_{2} respectively.

$$
-I_{i}(x)=\left\{\begin{array}{l}
1 \text { if } i \text { 'th subtree is rooted at } x \\
0 \text { otherwise }
\end{array}\right.
$$

Follows that:
$h_{i}\left(T_{1}\right)=\sum_{n_{1} \in N_{1}} I_{i}\left(n_{1}\right)$ and $h_{i}\left(T_{2}\right)=\sum_{n_{2} \in N_{2}} I_{i}\left(n_{2}\right)$
$\boldsymbol{\Phi}\left(T_{1}\right) \cdot \boldsymbol{\Phi}\left(T_{2}\right)=\sum_{i} h_{i}\left(T_{1}\right) h_{i}\left(T_{2}\right)=\sum_{i}\left(\sum_{n_{1} \in N_{1}} I_{i}\left(n_{1}\right)\right)\left(\sum_{n_{2} \in N_{2}} I_{i}\left(n_{2}\right)\right)$

$$
\begin{aligned}
& =\sum_{n_{1} \in N_{1}} \sum_{n_{2} \in N_{2}} \sum_{i} I_{i}\left(n_{1}\right) I_{i}\left(n_{2}\right) \\
& =\sum_{n_{1} \in N_{1}} \sum_{n_{2} \in N_{2}} \Delta\left(n_{1}, n_{2}\right)
\end{aligned}
$$

where $\Delta\left(n_{1}, n_{2}\right)=\sum_{i} I_{i}\left(n_{1}\right) I_{i}\left(n_{2}\right)$ is the number of common subtrees at n_{1}, n_{2}

An Example

$$
\boldsymbol{\Phi}\left(T_{1}\right) \cdot \boldsymbol{\Phi}\left(T_{2}\right)=\Delta(A, A)+\Delta(A, B) \ldots+\Delta(B, A)+\Delta(B, B) \ldots+\Delta(G, G)
$$

- Most of these terms are 0 (e.g. $\Delta(A, B)$).
- Some are non-zero, e.g. $\Delta(B, B)=4$

$\underline{\text { Recursive Definition of } \Delta\left(n_{1}, n_{2}\right)}$

- If the productions at n_{1} and n_{2} are different

$$
\Delta\left(n_{1}, n_{2}\right)=0
$$

- Else if n_{1}, n_{2} are pre-terminals,

$$
\Delta\left(n_{1}, n_{2}\right)=1
$$

- Else

$$
\Delta\left(n_{1}, n_{2}\right)=\prod_{j=1}^{n c\left(n_{1}\right)}\left(1+\Delta\left(\operatorname{ch}\left(n_{1}, j\right), \operatorname{ch}\left(n_{2}, j\right)\right)\right)
$$

$n c\left(n_{1}\right)$ is number of children of node n_{1};
$\operatorname{ch}\left(n_{1}, j\right)$ is the j 'th child of n_{1}.

Illustration of the Recursion

How many subtrees do nodes A and A have in common? i.e., What is $\Delta(A, A)$?
$\Delta(B, B)=4$

$$
\Delta(C, C)=1
$$

$\Delta(A, A)=(\Delta(B, B)+1) \times(\Delta(C, C)+1)=10$

$\begin{array}{lll}\mathrm{l} & \mid & \mid \\ \mathrm{e} & \mathrm{d} & \mathrm{e}\end{array}$

The Inner Product for Tagged Sequences

- Define N_{1} and N_{2} to be sets of states in T_{1} and T_{2} respectively.
- By a similar argument,

$$
\Phi\left(T_{1}\right) \cdot \Phi\left(T_{2}\right)=\sum_{n_{1} \in N_{1}} \sum_{n_{2} \in N_{2}} \Delta\left(n_{1}, n_{2}\right)
$$

where $\Delta\left(n_{1}, n_{2}\right)$ is number of common sub-fragments at n_{1}, n_{2}
e.g., $T_{1}=\underset{\mid}{\mid} \begin{gathered}\mathrm{A} \\ \mathrm{a}\end{gathered} \underset{\mathrm{b}}{\mathrm{B}}-\underset{\mathrm{c}}{\mathrm{C}}-\underset{\mathrm{d}}{\mathrm{C}}-\mathrm{D}, T_{2}=\underset{\mathrm{a}}{\mathrm{A}}-\underset{\mathrm{b}}{\mathrm{B}}-\underset{\mathrm{e}}{\mathrm{C}}-\underset{\mathrm{e}}{\mathrm{C}}$
$\boldsymbol{\Phi}\left(T_{1}\right) \cdot \boldsymbol{\Phi}\left(T_{2}\right)=\Delta(A, A)+\Delta(A, B) \ldots+\Delta(B, A)+\Delta(B, B) \ldots+\Delta(D, E)$
e.g., $\Delta(B, B)=4$,

The Recursive Definition for Tagged Sequences

- Define $N(n)=$ state following $n, W(n)=$ word at state n
- Define $\pi\left[W\left(n_{1}\right), W\left(n_{2}\right)\right]=1$ iff $W\left(n_{1}\right)=W\left(n_{2}\right)$
- Then if labels at n_{1} and n_{2} are the same,

$$
\Delta\left(n_{1}, n_{2}\right)=\left(1+\pi\left[W\left(n_{1}\right), W\left(n_{2}\right)\right]\right) \times\left(1+\Delta\left(N\left(n_{1}\right), N\left(n_{2}\right)\right)\right.
$$

$$
\begin{gathered}
\text { e.g., } T_{1}={ }_{\mathrm{a}}^{\mathrm{\mid}} \underset{\mathrm{~b}}{\mathrm{~A}}-\underset{\mathrm{c}}{\mathrm{~B}}-\underset{\mathrm{c}}{\mathrm{C}}-\underset{\mathrm{d}}{\mathrm{D}} T_{2}=\underset{\mathrm{a}}{\mathrm{~A}}-\underset{\mathrm{b}}{\mathrm{~B}}-\underset{\mathrm{e}}{\mathrm{C}}-\underset{\mathrm{e}}{\mathrm{C}} \\
\begin{aligned}
\Delta(A, A) & =(1+\pi[a, a]) \times(1+\Delta(B, B)) \\
& =(1+1) \times(1+4)=10
\end{aligned}
\end{gathered}
$$

Refinements of the Kernels

- Include log probability from the baseline model:
$\Phi\left(T_{1}\right)$ is representation under all sub-fragments kernel
$L\left(T_{1}\right)$ is \log probability under baseline model

New representation Φ^{\prime} where

$$
\Phi^{\prime}\left(T_{1}\right) \cdot \boldsymbol{\Phi}^{\prime}\left(T_{2}\right)=\beta L\left(T_{1}\right) L\left(T_{2}\right)+\boldsymbol{\Phi}\left(T_{1}\right) \cdot \boldsymbol{\Phi}\left(T_{2}\right)
$$

(includes $L\left(T_{1}\right)$ as an additional component with weight $\sqrt{\beta}$)

- Allows the perceptron to use original ranking as default

Refinements of the Kernels

- Downweighting larger sub-fragments

$$
\sum_{i=1}^{d} \lambda^{S I Z E_{i}} h_{i}\left(T_{1}\right) h_{i}\left(T_{2}\right)
$$

where $0<\lambda \leq 1$,
$S I Z E_{i}$ is number of states/rules in i 'th fragment

- Simple modification to recursive definitions, e.g.,

$$
\Delta\left(n_{1}, n_{2}\right)=\left(1+\pi\left[W\left(n_{1}\right), W\left(n_{2}\right)\right]\right) \times\left(1+\lambda \Delta\left(N\left(n_{1}\right), N\left(n_{2}\right)\right)\right.
$$

Refinement of the Tagging Kernel

- Sub-fragments sensitive to spelling features (e.g., Capitalization)
- Define $\pi[x, y]=1$ if x and y are identical, $\pi[x, y]=0.5$ if x and y share same capitalization features

$$
\Delta\left(n_{1}, n_{2}\right)=\left(1+\pi\left[W\left(n_{1}\right), W\left(n_{2}\right)\right]\right) \times\left(1+\lambda \Delta\left(N\left(n_{1}\right), N\left(n_{2}\right)\right)\right.
$$

- Sub-fragments now include capitalization features

$\underline{\text { Experimental Results }}$

Parsing Wall Street Journal

MODEL	≤ 100 Words (2416 sentences)				
	LR	LP	CBs	0 CBs	2 CBs
CO99	88.1%	88.3%	1.06	64.0%	85.1%
VP	88.6%	88.9%	0.99	66.5%	86.3%

VP gives 5.1% relative reduction in error (CO99 = my thesis parser)

Named Entity Tagging on Web Data

	P	R	F
Max-Ent	84.4%	86.3%	85.3%
Perc.	86.1%	89.1%	87.6%
Improvement	10.9%	20.4%	15.6%

VP gives 15.6% relative reduction in error

Summary

- For any representation $\Phi(x)$,

Efficient computation of $\boldsymbol{\Phi}(x) \cdot \boldsymbol{\Phi}(y) \Rightarrow$
Efficient learning through kernel form of the perceptron

- Dynamic programming can be used to calculate $\boldsymbol{\Phi}(x) \cdot \Phi(y)$ under "all sub-fragments" representations
- Several refinements of the inner products:
- Including probabilities from baseline model
- Downweighting larger sub-fragments
- Sensitivity to spelling features

