Kernels

• A kernel K is a function of two objects,

 $K((x_1, y_1), (x_2, y_2))$

for example, two sentence/tree pairs (x_1, y_1) and (x_2, y_2)

- Intuition: $K((x_1, y_1), (x_2, y_2))$ is a measure of the similarity between (x_1, y_1) and (x_2, y_2)
- Formally: $K((x_1, y_1), (x_2, y_2))$ is a kernel if it can be shown that there is some feature vector mapping $\Phi(x, y)$ such that

$$K((x_1, y_1), (x_2, y_2)) = \mathbf{\Phi}(x_1, y_1) \cdot \mathbf{\Phi}(x_2, y_2)$$

for all x_1, y_1, x_2, y_2

A (Trivial) Example of a Kernel

• Given an existing feature vector representation Φ , define

$$K((x_1, y_1), (x_2, y_2)) = \Phi(x_1, y_1) \cdot \Phi(x_2, y_2)$$

A More Interesting Kernel

• Given an existing feature vector representation Φ , define

$$K((x_1, y_1), (x_2, y_2)) = (1 + \mathbf{\Phi}(x_1, y_1) \cdot \mathbf{\Phi}(x_2, y_2))^2$$

This can be shown to be an inner product in a new space Φ' , where Φ' contains all quadratic terms of Φ

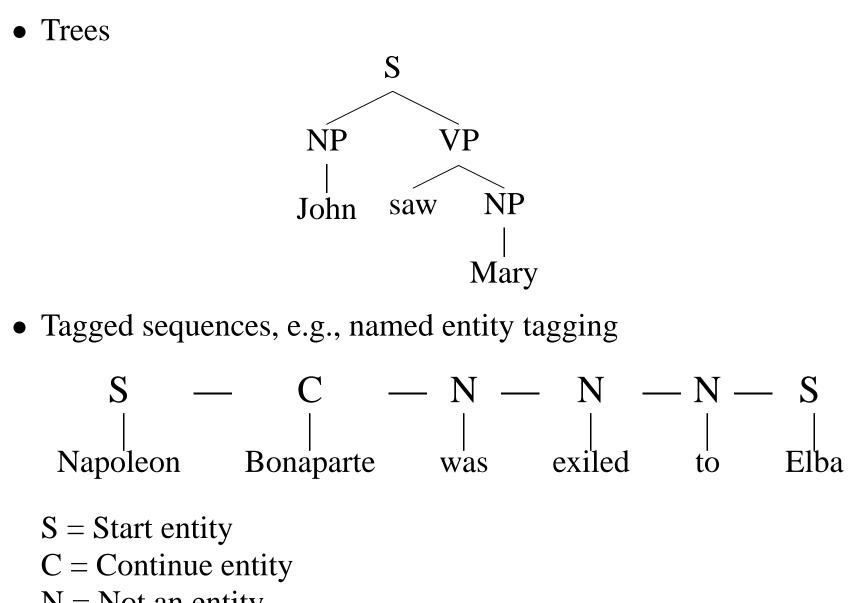
• More generally,

$$K((x_1, y_1), (x_2, y_2)) = (1 + \mathbf{\Phi}(x_1, y_1) \cdot \mathbf{\Phi}(x_2, y_2))^p$$

can be shown to be an inner product in a new space Φ' , where Φ' contains all polynomial terms of Φ up to degree p

Question: can we come up with "specialized" kernels for NLP structures?

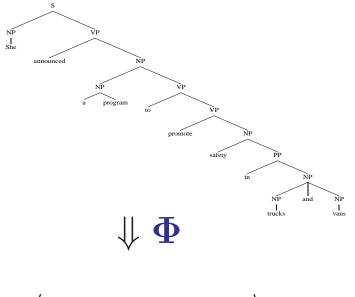
NLP Structures



N = Not an entity

Feature Vectors: Φ

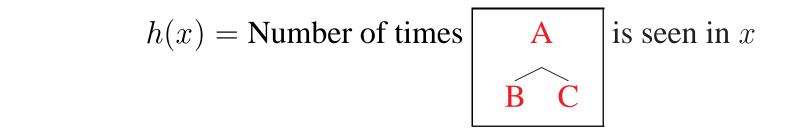
- Φ defines the **representation** of a structure
- Φ maps a structure to a **feature vector** $\in \mathbb{R}^d$

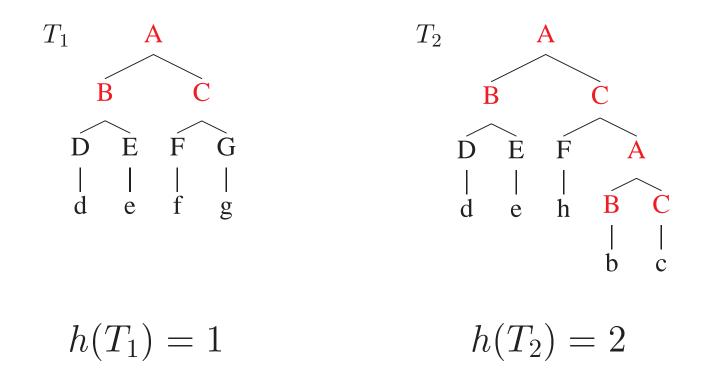


 $\langle 1, 0, 2, 0, 0, 15, 5 \rangle$

Features

• A "feature" is a function on a structure, e.g.,

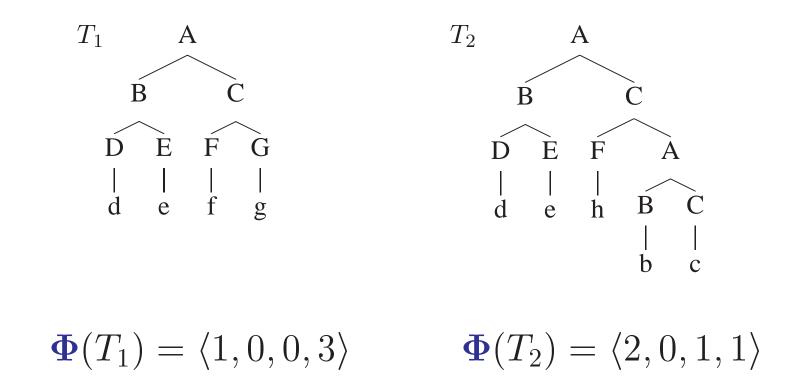




Feature Vectors

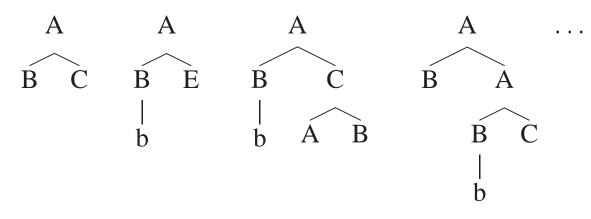
• A set of functions $h_1 \dots h_d$ define a **feature vector**

 $\Phi(x) = \langle h_1(x), h_2(x) \dots h_d(x) \rangle$

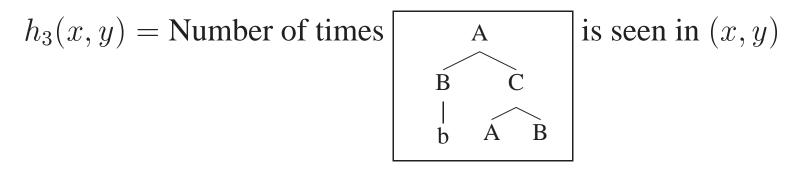


"All Subtrees" Representation [Bod, 1998]

- Given: Non-Terminal symbols $\{A, B, \ldots\}$ Terminal symbols $\{a, b, c \ldots\}$
- An infinite set of subtrees



• An infinite set of features, e.g.,



All Sub-fragments for Tagged Sequences

- Given: State symbols $\{S, C, N\}$ Terminal symbols $\{a, b, c, ...\}$
- An infinite set of sub-fragments

• An infinite set of features, e.g.,

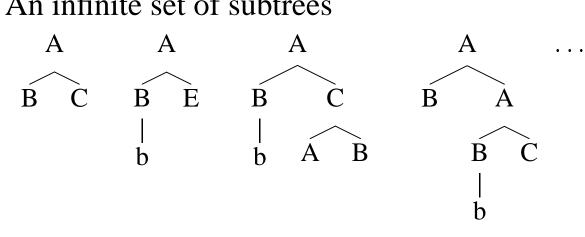
$$h_3(x) =$$
 Number of times $\begin{vmatrix} \mathbf{s} & -\mathbf{C} \\ & \mathbf{b} \end{vmatrix}$ is seen in x

Inner Products

- $\Phi(x) = \langle h_1(x), h_2(x) \dots h_d(x) \rangle$
- Inner product ("Kernel") between two structures T_1 and T_2 :

"All Subtrees" Representation

- Given: Non-Terminal symbols $\{A, B, \ldots\}$ Terminal symbols $\{a, b, c \dots\}$
- An infinite set of subtrees



• Step 1:

Choose an (arbitrary) mapping from subtrees to integers

 $h_i(x) =$ Number of times subtree *i* is seen in x

$$\Phi(x) = \langle h_1(x), h_2(x), h_3(x) \dots \rangle$$

All Subtrees Representation

- Φ is now huge
- But inner product $\Phi(T_1) \cdot \Phi(T_2)$ can be computed efficiently using dynamic programming.

Computing the Inner Product

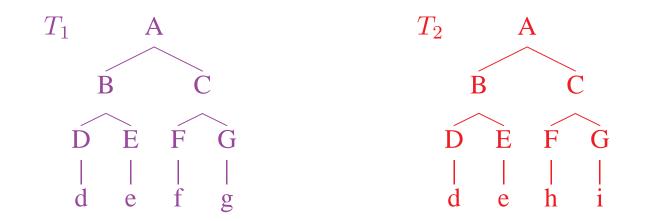
Define $-N_1$ and N_2 are sets of nodes in T_1 and T_2 respectively.

 $-I_i(x) = \begin{cases} 1 \text{ if } i \text{ 'th subtree is rooted at } x. \\ 0 \text{ otherwise.} \end{cases}$

Follows that: $h_i(T_1) = \sum_{n_1 \in N_1} I_i(n_1) \text{ and } h_i(T_2) = \sum_{n_2 \in N_2} I_i(n_2)$ $\Phi(T_1) \cdot \Phi(T_2) = \sum_i h_i(T_1)h_i(T_2) = \sum_i (\sum_{n_1 \in N_1} I_i(n_1)) (\sum_{n_2 \in N_2} I_i(n_2))$ $= \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} \sum_i I_i(n_1)I_i(n_2)$ $= \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} \Delta(n_1, n_2)$

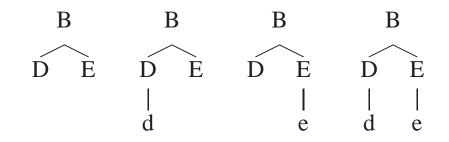
where $\Delta(n_1, n_2) = \sum_i I_i(n_1)I_i(n_2)$ is the number of common subtrees at n_1, n_2

An Example



 $\Phi(T_1) \cdot \Phi(T_2) = \Delta(A, A) + \Delta(A, B) \dots + \Delta(B, A) + \Delta(B, B) \dots + \Delta(G, G)$

- Most of these terms are 0 (e.g. $\Delta(A, B)$).
- Some are non-zero, e.g. $\Delta(B, B) = 4$



Recursive Definition of $\Delta(n_1, n_2)$

• If the productions at n_1 and n_2 are different

$$\Delta(n_1, n_2) = 0$$

• Else if n_1, n_2 are pre-terminals,

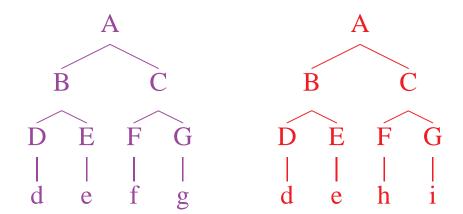
$$\Delta(n_1, n_2) = 1$$

• Else

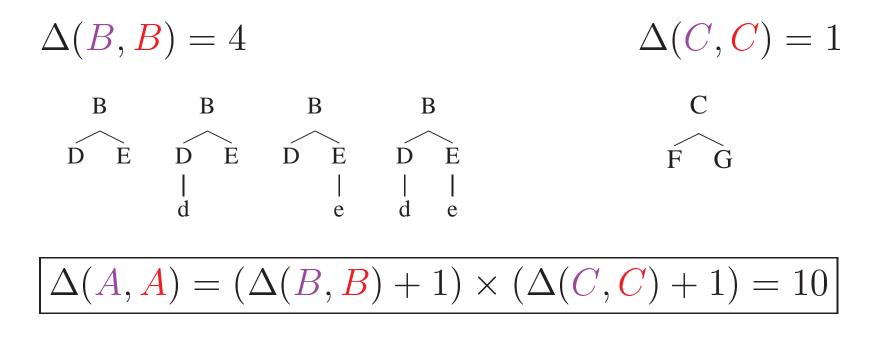
$$\Delta(n_1, n_2) = \prod_{j=1}^{nc(n_1)} \left(1 + \Delta(ch(n_1, j), ch(n_2, j))\right)$$

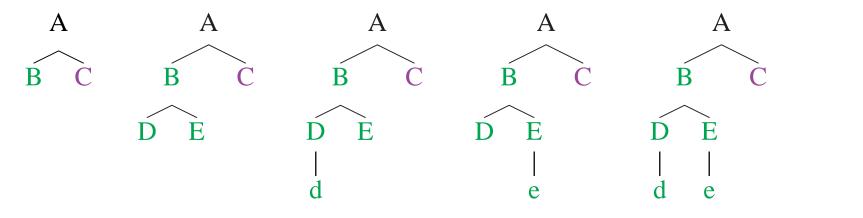
 $nc(n_1)$ is number of children of node n_1 ; $ch(n_1, j)$ is the j'th child of n_1 .

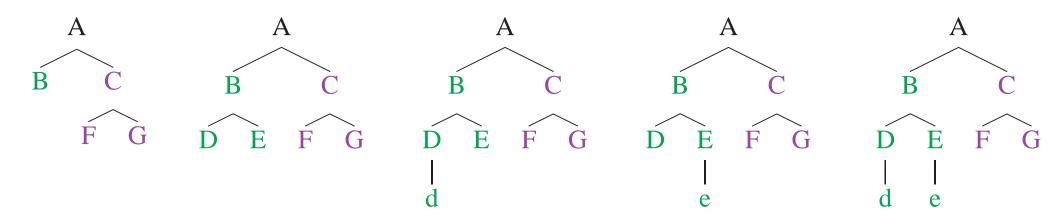
Illustration of the Recursion



How many subtrees do nodes A and A have in common? i.e., What is $\Delta(A, A)$?







The Inner Product for Tagged Sequences

- Define N_1 and N_2 to be sets of states in T_1 and T_2 respectively.
- By a similar argument,

$$\Phi(T_1) \cdot \Phi(T_2) = \sum_{n_1 \in N_1} \sum_{n_2 \in N_2} \Delta(n_1, n_2)$$

where $\Delta(n_1, n_2)$ is number of common sub-fragments at n_1, n_2

e.g.,
$$T_1 = \begin{bmatrix} A & -B & -C & -D \\ | & | & | & | \\ a & b & c & d \end{bmatrix}$$

 $T_2 = \begin{bmatrix} A & -B & -C & -E \\ | & | & | & | \\ a & b & e & e \end{bmatrix}$
 $\Phi(T_1) \cdot \Phi(T_2) = \Delta(A, A) + \Delta(A, B) \dots + \Delta(B, A) + \Delta(B, B) \dots + \Delta(D, E)$
e.g., $\Delta(B, B) = 4$,
 $B \quad B \quad B \quad -C \quad B - C$
 $b \quad b$

The Recursive Definition for Tagged Sequences

- Define N(n) = state following n, W(n) = word at state n
- Define $\pi[W(n_1), W(n_2)] = 1$ iff $W(n_1) = W(n_2)$
- Then if labels at n_1 and n_2 are the same,

 $\Delta(n_1, n_2) = (1 + \pi[W(n_1), W(n_2)]) \times (1 + \Delta(N(n_1), N(n_2)))$

e.g.,
$$T_1 = \begin{bmatrix} A & - & B & - & C & - & D \\ | & | & | & | & | & T_2 = \begin{bmatrix} A & - & B & - & C & - & E \\ | & | & | & | & | & | \\ a & b & c & d & a & b & e & e \end{bmatrix}$$

$$\Delta(A, \mathbf{A}) = (1 + \pi[a, \mathbf{a}]) \times (1 + \Delta(B, \mathbf{B}))$$
$$= (1 + 1) \times (1 + 4) = 10$$

Refinements of the Kernels

• Include log probability from the baseline model:

 $\Phi(T_1)$ is representation under all sub-fragments kernel $L(T_1)$ is log probability under baseline model New representation Φ' where $\Phi'(T_1) \cdot \Phi'(T_2) = \beta L(T_1)L(T_2) + \Phi(T_1) \cdot \Phi(T_2)$

(includes $L(T_1)$ as an additional component with weight $\sqrt{\beta}$)

• Allows the perceptron to use original ranking as default

Refinements of the Kernels

• Downweighting larger sub-fragments

$$\sum_{i=1}^{d} \lambda^{SIZE_i} h_i(T_1) h_i(T_2)$$

where $0 < \lambda \leq 1$, SIZE_i is number of states/rules in *i*'th fragment

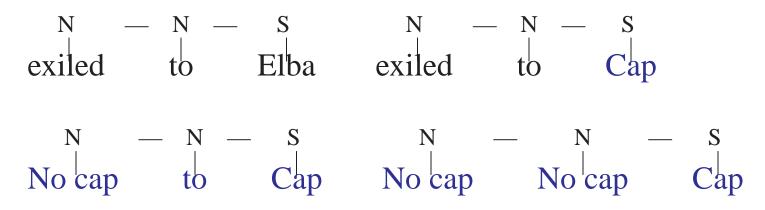
• Simple modification to recursive definitions, e.g., $\Delta(n_1, n_2) = (1 + \pi[W(n_1), W(n_2)]) \times (1 + \lambda \Delta(N(n_1), N(n_2)))$

Refinement of the Tagging Kernel

- Sub-fragments sensitive to spelling features (e.g., Capitalization)
 - Define $\pi[x, y] = 1$ if x and y are identical, $\pi[x, y] = 0.5$ if x and y share same capitalization features

 $\Delta(n_1, n_2) = (1 + \pi[W(n_1), W(n_2)]) \times (1 + \lambda \Delta(N(n_1), N(n_2)))$

• Sub-fragments now include capitalization features



Experimental Results

Parsing Wall Street Journal

MODEL	\leq 100 Words (2416 sentences)				
	LR	LP	CBs	0 CBs	2 CBs
CO99	88.1%	88.3%	1.06	64.0%	85.1%
VP	88.6%	88.9%	0.99	66.5%	86.3%

VP gives 5.1% relative reduction in error (CO99 = my thesis parser)

Named Entity Tagging on Web Data

	P	R	F
Max-Ent	84.4%	86.3%	85.3%
Perc.	86.1%	89.1%	87.6%
Improvement	10.9%	20.4%	15.6%

VP gives 15.6% relative reduction in error

Summary

- For any representation Φ(x),
 Efficient computation of Φ(x) · Φ(y) ⇒
 Efficient learning through kernel form of the perceptron
- Dynamic programming can be used to calculate $\Phi(x) \cdot \Phi(y)$ under "all sub-fragments" representations
- Several refinements of the inner products:
 - Including probabilities from baseline model
 - Downweighting larger sub-fragments
 - Sensitivity to spelling features