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Semi-Supervised Learning

Consider the problem of Prepositional Phrase Attachment. 

There are several ways to generate features. Given the limited 
representation, we can assume that all possible conjunctions of 
the 4 attributes are used. (15 feature in each example). 
See other possibilities in [Krymolovsky, Roth 98]
Assume we will use naïve Bayes for learning to decise between 
[n,v]
Examples are:  (x1,x2,…xn,[n,v])
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Using naïve Bayes

To use naïve Bayes, we need to use the data to estimate:        
P(n)                      P(v)

P(x1|n)                P(x1|v)
P(x2|n)                P(x2|v)

……
P(xn|n)                P(xn|v)

Then, given an example (x1,x2,…xn,?), compare:
Pn(x)=P(n) P(x1|n) P(x2|n)… P(xn|n)

and
Pv(x)=P(v) P(x1|v) P(x2|v)… P(xn|v)
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Using naïve Bayes

After seeing 10 examples, we have:   
P(n) =0.5; P(v)=0.5

P(x1|n)=0.75;P(x2|n) =0.5; P(x3|n) =0.5; P(x4|n) =0.5 
P(x1|v)=0.25; P(x2|v) =0.25;P(x3|v) =0.75;P(x4|v) =0.5

Then, given an example (1000), we have:
Pn(x)=0.5 0.75 0.5 0.5 0.5 = 3/64
Pv(x)=0.5 0.25 0.75 0.25 0.5=3/256

Now, assume that in addition to the 10 labeled examples, we also 
have 100 unlabeled examples.
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Using naïve Bayes

For example, what can be done with (1000?)  ?
We can guess the label of the unlabeled example…

But, can we use it to improve the classifier? (that is, the 
estimation of the probabilities?)
We can assume the example x=(1000) is a 

• n example with probability  Pn(x)/(Pn(x) + Pv(x))
• v example with probability  Pv(x)/(Pn(x) + Pv(x))

Estimation of probabilities does not require work with integers!
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Using Unlabeled Data

The discussion suggests several algorithms:

1. Use a threshold. Chose examples labeled with high 
confidence. Labeled them [n,v]. Retrain.

2. Use fractional examples. Label the examples with fractional 
labels [p of n, (1-p) of v]. Retrain.
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Comments on Unlabeled Data

Both algorithms suggested can be used iteratively.

Both algorithms can be used with other classifiers, not  only naïve Bayes. 
The only requirement – a robust confidence measure in the classification.
E.g.: Brill, ACL’01: uses all three algorithms in SNoW  for studies of these 
sort. 

There are other approaches to Semi-Supervised learning: See included 
papers (co-training; Yarowksy’s Decision List algorithm)

What happens if instead of 10 labeled examples we start with 0 labeled 
examples?
Make a Guess; continue as above; a version of EM 
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EM

EM is a class of algorithms that is used to estimate a 
probability distribution in the presence of missing attributes. 
Using it, requires an assumption on the underlying 
probability distribution.
The algorithm can be very sensitive to this assumption and to 
the starting point (that is, the initial guess of parameters. 
In general, known to converge to a local maximum of the 
maximum likelihood function. 
Some more details.
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Three Coin Example

We observe a series of coin tosses generated in the 
following way: 
A person has three coins.

Coin 0: probability of Head is λ
Coin 1: probability of Head p 
Coin 2: probability of Head q

Consider the following coin-tossing scenarios:



10

Estimation Problems
Scenario I: Toss one of the coins six times.

Observing  HHHTHT
Which coin is more likely to produce this sequence ? 

Scenario II: Toss coin 0. If Head – toss coin 1; o/w -- toss coin 2
Observing the sequence  HHHHT,  THTHT, HHHHT, HHTTH
produced by Coin 0 , Coin1 and Coin2
Estimate most likely values for p, q (the probability of H in each coin) 
and the probability to use each of the coins (λ)

Scenario III: Toss coin 0. If Head – toss coin 1; o/w -- toss coin 0
Observing the sequence  HHHT,  HTHT, HHHT, HTTH
produced by Coin 1 and/or Coin 2 
Estimate most likely values for p, q and λ

There is no known analytical solution to this problem. 
That is, it is not known how to compute the values of the 

parameters so as to maximize the likelihood of the data.

Coin 0

1st toss 2nd toss nth  toss



11

Key Intuition

If we knew which of the data points (HHHT), (HTHT), (HTTH)  came
from Coin1 and which from Coin2, there was no problem.
Instead, use an iterative approach for estimating the parameters:
Guess the probability that a given data point came from Coin 1/2
Generate fictional labels, weighted according to this probability.
Now, compute the most likely value of the parameters. 
[recall NB example]
Compute the likelihood of the data given this model.
Re-estimate the initial parameter setting: set them to maximize  the 
likelihood of the data.

This process can be iterated and can be shown to converge to a local 
maximum of the likelihood function
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EM Algorithm (Coins) -I

We will assume (for a minute) that we know the parameters       
and use it to estimate which Coin it is (Problem 1)
Then, we will use the estimation for the tossed Coin, to estimate the 
most likely parameters and so on...
What is the probability that the ith data point came from Coin1 ?
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EM Algorithm (Coins) - II
At this point we would like to compute the likelihood of 
the data, and find the parameters that maximize it.
We will maximize the log likelihood of the data (n data 
points):

But, one of the variables – the coin’s name - is hidden.
Which value do we plug in for it in order to compute the 
likelihood of the data? 
We marginalize over it. Or, equivalently, we think of the 
likelihood                               as a random variable that 
depends on the value of the coin in the ith toss. Therefore, 
instead of maximizing the LL we will maximize the 
expectation of this random variable (over the coin’s name).
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EM Algorithm (Coins) - III

We maximize the expectation of this random variable (over the coin 
name).

• Due to the linearity of the expectation and the random variable:
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EM Algorithm (Coins) - IV

Explicitly, we get:

))q)log(1h-(mqlogh )-)(log(1P(1

))p)log(1h-(mplogh (logP

))q(1q )-)log((1P(1))p(1p log(P

),q,p|DP(0, )logP(1),q,p|DP(1, logP

),q,p|P(D logE(

ii
i
1

i
ii

i
1

i

hmhi
1

hmhi
1

i

ii
1

ii
1

i

i

iiii

~~~                

~~~         

~~~~~~         

~~~~~~         

~~~

−++−

+−++=

=−−+−=

=−+=

=

∑

∑

∑

∑

−−

α

α

αα

αα

α



16

EM Algorithm (Coins) - V

Finally, to find the most likely parameters, we maximize 
the derivatives with respect to             : α~~~ ,q,p
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EM Summary (so far)

EM is a general procedure for learning in the presence of  unobserved 
variables. 

We have shown how to use it in order to estimate the most likely
density function for a mixture of (Bernoulli) distributions. 
EM is an iterative algorithm that can be shown to converge to a local 

maximum of the likelihood function.

It depends on assuming a family of probability distributions.
In this sense, it is a family of algorithms. The update rules you will 
derive depend on the model assumed.
It has been shown to be quite useful in practice, when the assumption 
made on the probability distribution are correct,  but can fail 
otherwise.
We now move to a general setting and the HMM case.
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