
Sept. 27 & 29 2005 1

CS497:Learning and NLP Lec 5: Statistical Estimation: Ngrams and Backoff Fall 2005

In this lecture we present issues underlying statistical decisions in NLP, mostly in the context of parameter
estimation (and not so much hypothesis testing, which also need to be discussed).

1 Road Map

In order to place this step in the context of the future lectures:

We start by discussing how to estimate the probability of events. We will later discuss a bit of how to use
these in decision making.

We will observe that there are several problems with making decisions based on these counts, even when
we can handle the how questions.

One aspect of these problems is related to the what question: we want to count more important events.
Beyond the important issue of deciding what to count, we will need to develop ways to abstract away from
the observed data. This is where we will look a bit as the notion of similarity.

A second aspect of these problems is related to the way we make decisions: counting does not give rise to
estimators that are expressive enough, so we will move to more expressive models, and start talking about
classifications.

Sept. 27 & 29 2005 2

2 Introduction

In the context of NLP, the word statistics sometimes stands more generally for probability theory, infor-
mation theory, learning theory and statistics in the sense of statistical inference.

Statistics is really about “how to capture regularities in observed data” and also about “what can be said
in cases of sparse data”.

Th_r_ _s _nly _n_ w_y t_ f_ll _n Th_ v_w_ls _n
th_s s_nt_nc_

Sept. 27 & 29 2005 3

At a basic level most of low level decisions in NLP are of the form

Is A more likely than B?

Illinois bored of education {bored; board}

...Nissan Car and truck plant is divide life into plant and
animal kingdom

{industry; life}

(This Art) (can N) (will MD) (rust V) V,N,N

The dog bit the kid. He was taken to a veterinarian
a hospital

{dog, kid}

Tiger was in Washington for the PGA Tour
{Person, Location, Animal}

How do we make these decisions?

In the statistical approach, the notion is that we want to figure out which of A or B occurs more often.

This is really just a shallow description of what is really going on. The real decision is done via Bayesian
decision theory:

• We assume a family of models, one of which governs the generation of the data.

• We observe data

• We estimate the probability of the specific model that generates the data. This is done by estimating
the most likely parameters given the observed data.

• We use the chosen model to estimate the likelihood of the newly observed data. If there is a need to
choose between two hypotheses, we choose the once that is more likely given the model we have.

Sept. 27 & 29 2005 4

Today we will be concerned with the problem of parameter estimation. This is the counting problem.

Of course, there is also the issue of What to count? which, based on the above description is really the
problem of what is the assumed model?

The question of What to count? has two parts. What pieces of information to count? What structures
to count?

By pieces of information we mean that you can count in terms of

• words

• pos tags (paper presented today)

• relations in the sentence (to be presented later)

There are also other subtle issues here: counting words as they appear in the text wordform? or counting
the lemma? What about capitalization?

This also has something to do with generalization. You want to make sure that you count something
that will allow you to make decisions that are relevant for your specific case.

You can count whether bored occurs more often than board.

You can also count whether

Illinois bored of education

occurs more often than

Illinois board of education

And, a few things in between.

Which is better?

In some intuitive way, we feel that the larger the structure you can count, the more informative it is.
However, it is harder to can good counts for larger structures. So there is some tradeoff between the what
and the how.

This tradeoff exists not only with respect to the size of the structure but also it’s quality.

Sept. 27 & 29 2005 5

3 Parameter Estimation: Ngram Models

The Ngram models is essentially an attempt to count structures (estimate the probability of a structure),
by counting its substructure. N stands for the size of the substructure.

The process involves two stages: (1) a decomposition stage and (2) an estimation stage.

The decomposition stage really involves an independence assumption on the underlying probabilistic model,
but this understanding came later. The estimation stage involves another assumption and, typically, a hack
(smoothing).

We would like to estimate the probability of a complete string

wn
1 = (w1w2....wn)

We use the chain rule

P (w1w2 . . . wn) = P (wn|w1w2 . . . wn−1)P (w1 . . . wn−1)
= P (wn|w1w2 . . . wn−1)P (wn−1|w1 . . . wn−2)P (w1 . . . wn−2)
= P (w1)P (w2|w1)P (w3|w1w2) . . . P (wn−1|hn−1)P (wn|hn)

How to compute the probability of a word w given its history? Markov assumptions. Independence given
(far enough) past.

• Unigram:
P (wi|history) = p(wi)

• Bigram:
P (wi|history) = p(wi|wi−1)

• trigram
P (wi|history) = p(wi|wi−1wi−2)

• quadgram

What is the model we assumed? (Specify completely).

Consequence: How do we estimate these?

Sept. 27 & 29 2005 6

We take a training corpus. For a given bigram (say), we count the number of times it occurs, and divide
by the number of all bigrams with the same history (same first word).

P (wi|wi−1) =
C(wi−1wi)∑
w C(wi−1w)

.

Notice that:
∑

w C(wi−1w) = C(wi−1), which gives:

P (wi|wi−1) =
C(wi−1wi)
C(wi−1)

.

And, in the general case of Ngrams:

P (wi|wi−1 . . . wi−N+1) =
C(wi−N+1 . . . wi−1wi)
C(wi−N+1 . . . wi−1)

=
C(wi

i−N+1)

C(wi−1
i−N+1)

.

3.1 Estimation

Parameter estimation is always done as a maximum likelihood estimate of a Bernoulli distribution.

Assume n independent trials, each with success probability p. The maximum likelihood estimate of p is

k

m

where k is the number of observed successes.

There are two issues:

• The sensitivity of the estimate to the corpus.
Generalization issue; related to the type of structures that we count.

• Robustness of the estimate

The estimate above seems unreasonable when n is small. For example if you flip the coin only once
and get a tail should you believe that it is impossible to get a head on the next toss?

Sept. 27 & 29 2005 7

4 Smoothing

A key issue in parameter estimation is the sparseness of the data; clearly, this become more severe as the
structures one wants to count become more interesting. Either larger, or just more discriminative.

An extreme case is that of zero counts. We have never seen the word of after the word peace. Does it mean
it can never happen?

We have never seen the word can as a noun (almost true in the Penn treebank). Does it mean it can never
happen?

Smoothing techniques are supposed to “correct” observed counts and replace them by better, more repre-
sentative counts.

4.1 Add-One Smoothing

Example 4.1 We want to estimate p(a|bc)
Our training data includes

...bcX....bcY......bcY....

but never
bcZ

Should we conclude that
p(X|bc) = 1/3; p(Y |bc) = 2/3?

NO! Absence of cbZ might just be bad luck.

We want to discount the positive counts somewhat and

reallocate that probability to the zeroes.

This is especially true if the denominator is small (small sample) and the numerator is small (not enough
observations).

Sept. 27 & 29 2005 8

String #observed estimate +1-numerator new estimate
bcA 1 1/3 2 2/29

bcB 0 0/3 1 1/29

bcC 0 0/3 1 1/29

bcD 2 2/3 3 3/29

bcE 0 0/3 1 1/29

....

bcZ 0 0/3 1 1/29

Total bc 3 3/3 29 29/29

By adding 1 to the numerator we are forced to add to the denominators V - the size of the vocabulary, to
maintain that we have a distribution over the character that follows bc.

Recall that by type we mean a distinct vocabulary item and by token, the occurrence of that type. For
example, a dictionary is a list of types (once each), and a corpus is a list of tokens (each type has many
tokens).

Let V be the size of the Vocabulary: the total number of types possible (not the number of types in the
corpus). The smoothed bigram estimate is now:

P ∗(wi|wi−1) =
C(wi−1wi) + 1
C(wi−1) + V

.

This is called Laplace Estimate and, in general, V here is going to stand for the number of possible types
of structures that we care about in the denominator.

Sept. 27 & 29 2005 9

Example 4.2 (continue) Notice that when you see more observations, say, 300 instead of 3, less smooth-
ing is required, and this method gives it automatically.

String #observed estimate +1-numerator new estimate
bcA 100 1/300 101 101/326

bcB 0 0/300 1 1/326

bcC 0 0/300 1 1/326

bcD 200 2/300 201 201/326

bcE 0 0/300 1 1/326

....

bcZ 0 0/300 1 1/326

Total bc 300 300/300 326 326/326

4.1.1 Some problems

• Suppose the vocabulary size is 20000 rather than 300.

As we get more and more training data, we see more and more words that need probability the
probabilities of existing words keep dropping, instead of converging. This cant be right eventually
they drop too low.

Maybe instead of adding 1 to all counts, add alpha = 0.01, to give smaller probability to new events.
But how to pick best value for α?

• Are all 0s the same?

Is it possible to distinguish between events that do not occur in a finite sample due to the small
sample and those that do not occur due to inherent constraints?

down the road 100/20000

down the harbor 50/20000

down the report 1/20000

down the grapevine 0/20000

....

down the write 0/20000

Sept. 27 & 29 2005 10

4.1.2 Some justification

This seems like a hack; we no longer do a maximum likelihood estimate.

Let us consider that case of a coin flip. You observe n coins tosses and k of them are head.

Instead, we can assume that we have a uniform prior distribution on p, the probability that the toss is
head. That is, the prior distribution on all the possible coin biases is uniform; the density function is:

P [p ≤ θ] =
∫ θ

0
dp = θ.

The meaning of this prior is that:

∫ θ

0
P [k]dp =

∫ θ

0
P [k + 1]dp (1)

where: ∫ θ

0
P [k]dp =

∫ θ

0
P [k|p]P [p]dp

Eq. 1 can be proved by computing the integral. That means, that that posterior probability:
∫ θ

0
P [k|p]P [p]dp =

1
n + 1

From this it can be shown that the expected value of p when we observe a sequence of n coin tosses and k
heads:

E[P |(k, n)] =
k + 1
n + 2

.

Sept. 27 & 29 2005 11

4.2 Good-Turing Smoothing

As we have seen, the goal of smoothing is to hold out some probability mass for novel events. Different
methods differ by how do they split the amount of probability mass among novel events.

The key idea behind this method, attributed to Turing, but first described by Good, is to re-estimate the
amount of the probability mass to assign to Ngram with zero or low counts, by looking at the number of
Ngrams of higher counts.

Specifically, judge rate of 0-count events by rate of 1-count events.

Let nr = # of ngram types with r training tokens

(Called: the frequency of frequency r.)

n0 - the number of bigrams of count 0;

n1 - the number of bigrams of count 1, etc.

Therefore, the total number of training tokens is:

N =
∑

r

rnr.

Naive estimate: if x is an ngram that has r tokens, then p(x) =?

p(x) = r/N.

Total naive probability of all words with r tokens?

nr
r

N
.

Good-Turing estimate of this total probability is defined as:

nr+1
r + 1
N

,

so the proportion of novel words in the test data is estimated by proportion of singletons in training data.
Likewise, the proportion in test data of the n1 singletons is estimated by proportion of the n2 doubletons
in training data.

What is Good-Turing estimate of p(x)?

Sept. 27 & 29 2005 12

Good Turing estimate: if x is an ngram that has r tokens, then p(x) =?

p(x) =
nr+1

nr

r + 1
N

Another way of thinking about it:

Good-Turing states that an n-gram that occurs r times should be treated as if it had occurred r∗ times,
where

r∗ = (r + 1)
nr+1

nr

where nr is the number of n-grams that occur exactly r times in the training data.

This immediately give the probability estimate given above for p(x).

For example, the revised count of bigrams that never occurred is:

n∗0 = n1/n0,

the ratio between the number of bigrams that occurred once to those that never occurred.

What is n0?:

Let V be the size of the vocabulary. The total number of bigrams is V 2. Then

n0 = V 2 −#(Observed bigrams).

Sept. 27 & 29 2005 13

In fact, Good-Turing is more general than this procedure. It is suggested to estimate

p(x) =
r∗

N

where r∗ is the new estimate for the true number of occurrences of an ngram that actually occurred r
times.

Clearly, we need
r∗ < r, when r > 0

since we must reduce the total probability of the objects which were seen, to free up space for those that
were not seen at all.

The general form of a Good-Turing estimate is:

r∗ = (r + 1)
E(nr)

E(nr+1)
,

where E(x) represents expectation of the random variable x.

In this way, the total probability of the unseen objects is precisely stated as

E(n1)
N

.

n1 is typically the largest and best measured of the nr. Thus it is not unreasonable to substitute n1 for
E(n1).

When the substitution of nr for E(nr) is made, we term the estimator the Turing estimator. However, the
larger r is, the less reasonable this substitution is.

Good (1953) suggested that replace the observed nr with smoothed values, S(nr).

When this approach is taken the estimator is called a Good-Turing estimator.

Thus, there can be many Good-Turing estimators depending on what smoothing process is used. Unfor-
tunately, the uncertainties in the nr vary greatly with r, and smoothing such data is difficult.

Good-Turing can also be justified, under the assumptions that the distribution of each bigram is binomial.
It’s also possible to study the rate of convergence of the estimate.

There are other methods that use similar ideas to Good-Turing, and other variations of Add-One.

Sept. 27 & 29 2005 14

r(ML) nr r∗ (GT)
0 74,671,100,000 0.000027
1 2,018,046 0.446
2 449,721 1.26
3 188,933 2.24
4 105,668 3.24
5 68,379 4.22
6 48,190 5.19
7 35,709 6.21
8 27,710 7.24
9 22,280 8.25

Table 1: Bigram “Frequencies of frequencies” from 22 million AP bigrams, and Good-Turing re-
estimates, after Church and Gale (1991)

4.3 Backoff

Notice that while both methods are better than allowing zero estimates, there is still is a problem.

The methods do not distinguish between non-zero events. E.g, “observe that” and “observe thou” will
have the same estimate.

Like previous smoothing methods we looked at, the idea is to hold out same amount of probability mass
for novel events. The key difference is that now we will divide up this amount unevenly. It will be done in
proportion to backoff prob that we will now discuss.

A hack, that has been used and is a special case of what we will discuss later is to take the unigram
estimate into account, and interpolate.

Pinterp(wi|wi−1) = λPML(wi|wi−1) + (1− λ)PML(wi).

How to estimate λ ?

Sept. 27 & 29 2005 15

The idea in a Backoff model is to build an Ngram model based on an (N-1)gram model. If we have zero
counts for Ngrams, we Back off to (N-1)grams. If there is a non-zero count there, we stop and rely on it.
You can also imagine models that will keep on going and will interpolate lower orders.

The recursive definition of the backoff model is therefore:

Pbo(wi|wi−1
i−N+1) = P̂ (wi|wi−1

i−N+1) + θ(P (wi|wi−1
i−N+1) · α · Pbo(wi|wi−1

i−N+2),

where

θ =

{
1, if x = 0
0 otherwise

.

We will have to say something about the α and the P̂ .

Specifically, for the case of trigrams:

Pbo(wi|wi−2wi−1) =





P̂ (wi|wi−2wi−1), if C(wi−2wi−1wi) > 0
α1P̂ (wi|wi−1), if C(wi−2wi−1wi) = 0 and C(wi−1wi) > 0
α2P̂ (wi), otherwise

.

Why do we need the α and P̂?

The original Ngram model, computed using the frequencies, is a probability distribution. That is:
∑

i,j

P (wn|wiwj) = 1

when the sum is over all contexts.

Sept. 27 & 29 2005 16

Therefore, when we back off to a lower order model when the count is zero we are adding extra probability
mass and the total probability of a word will be greater than 1. Back off probabilities thus need to be
discounted.

P̂ - discount the ML estimate to save some probability mass for lower order Ngrams.

αs - used to ensure that the probability mass from all the lower order Ngrams sums up to the amount
saved.

There are normalization parameters, and computing them is pretty messy. We will have:

P̂ (wi|wi−1
i−N+1) ==

C∗(wi
i−N+1)

C(wi−1
i−N+1)

,

where C∗(wi
i−N+1) < C(wi−1

i−N+1).

This will allow us to leave some probability mass for the lower order Ngrams, which will be done using the
αs.

The total left over probability mass for a given (N-1)gram context is:

β(wi−1
i−N+1) = 1−

∑

wi:C(wi
i−N+1)>0

P̂ (wi|wi−1
i−N+1).

This mass need to be distributed to all the (N-1)gram. Each individual (N-1)gram will get a fraction of
this mass.

α(wi−1
i−N+1) =

β(wi−1
i−N+1)∑

wi:c(wi
i−N+1)>0 P̂ (wi|wi−1

i−N+2)

This needs to continue, since now we need to estimate again the probabilities P̂ with the discount and
split the remaining mass to the lower order Ngrams again.

The important thing to notice is that the αs are a function of the preceding string. That is, the amount
by which we discount each Ngram and how we split this mass depends on the (N-1)grams that are the
substrings of the Ngram.

Notice that the estimate itself, C∗, can be computed in several ways, using any smoothing techniques you
want.

Sept. 27 & 29 2005 17

4.3.1 Deleted Interpolation

Instead of just backing off to the non-zero Ngram, it is possible to take into account all Ngrams. That is,
estimate (in the case of a trigram):

P̂ (wi|wi−2wi−1) = λ1P (wi|wi−2wi−1) + λ2P (wi|wi−1) + λ3P (wi),

where ∑

i

λi = 1.

In principle, the λ are made context dependent: λi = λi(wi
i−2).

Training the λs can be done so as to maximize the likelihood of a held-out data, separate from the main
training corpus. That is, for each set of λs, one can compute the likelihood of the given data. Find this
set of λs that gives the highest value. This is conceptually a search procedure, that can be done more
efficiently using a version of the EM algorithm, which we will discuss later in the course.

Sept. 27 & 29 2005 18

4.3.2 Application

The key issue to notice when you think in a concrete way about Ngram in an application is that the model
is actually quite large. There are many bigrams, trigrams, etc. to consider.

Spelling:

Given a sentence
W = {w1w2 . . . wn}

where the word wk has, say, two alternatives, wk′ , wk′′ , we choose the spelling that maximize P (W), where
P (W) is computed via an Ngram model.

What happens if you use Trigrams:

P (w1w2 . . . wn) = P (wn|w1w2 . . . wn−1)P (w1 . . . wn−1)
= P (wn|w1w2 . . . wn−1)P (wn−1|w1 . . . wn−2)P (w1 . . . wn−2)
= P (w1)P (w2|w1)P (w3|w1w2) . . . P (wn−1|hn−1)P (wn|hn)

You end up using only those three trigrams that contain the word.

P (w′|wi−2wi−1)P (wi+1|w′wi−1)P (wi+2|wi+1w
′) vs. P (w′′|wi−2wi−1)P (wi+1|w′′wi−1)P (wi+2|wi+1w

′′)

You can take log: P̃ ≡ logP

P̃ (w′|wi−2wi−1) + P̃ (wi+1|w′wi−1) + P̃ (wi+2|wi+1w
′)

vs.
P̃ (w′′|wi−2wi−1) + P̃ (wi+1|w′′wi−1) + P̃ (wi+2|wi+1w

′′)

And remember that it is possible that each of these numbers you compute as a function of lower degree
events.

Remember both the functional form, and the fact that you need to remember a lot of numbers...

There are two directions to go from here; one is to try to generalize; why use words? This is part of the
What question.

A second is to try to figure out a better functional form for the discriminating function.

