Introduction to
 Syntactic Parsing

Roxana Girju

November 18, 2004

Some slides were provided by Michael Collins (MIT) and Dan Moldovan (UT Dallas)

Overview

- An introduction to the parsing problem
- Context free grammars
- A brief(!) sketch of the syntax of English
- Examples of ambiguous structures
- PCFGs, their formal properties
- Weaknesses of PCFGs
- Heads in CFGs
- Chart parsing - algorithm and an example

Syntactic Parsing

- Syntax: provides rules to put together words to form components of sentence and to put together these components to form sentences.
- Knowledge of syntax is useful for:
- Parsing
- QA
- IE
- Generation
- Translation, etc.
- Grammar is the formal specification of rules of a language.
- Parsing is a method to perform syntactic analysis of a sentence.

Parsing (Syntactic Structure)

INPUT:
Boeing is located in Seattle.
OUTPUT:

Data for Parsing Experiments

- Penn WSJ Treebank $=50,000$ sentences with associated trees
- Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

Canadian Utilities had 1988 revenue of C $\$ 1.16$ billion, mainly from its natural gas and electric utility businesses in Alberta, where the company serves about 800,000 customers .

The Information Conveyed by Parse Trees

1) Part of speech for each word

$$
(\mathrm{N}=\text { noun, } \mathrm{V}=\text { verb, } \mathrm{D}=\text { determiner })
$$

2) Phrases

Noun Phrases (NP): "the burglar", "the apartment"
Verb Phrases (VP): "robbed the apartment"
Sentences (S): "the burglar robbed the apartment"
3) Useful Relationships

\Rightarrow "the burglar" is the subject of "robbed"

An Example Application: Machine Translation

- English word order is
subject - verb - object
- Japanese word order is subject-object-verb
$\begin{array}{ll}\text { English: } & \text { IBM bought Lotus } \\ \text { Japanese: } & \text { IBM Lotus bought }\end{array}$
English: \quad Sources said that IBM bought Lotus yesterday Japanese:

Sources yesterday IBM Lotus bought that said

Context-Free Grammars

[Hopcroft and Ullman 1979]
A context free grammar $G=(N, \Sigma, R, S)$ where:

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules of the form $X \rightarrow Y_{1} Y_{2} \ldots Y_{n}$ for $n \geq 0, X \in N, Y_{i} \in(N \cup \Sigma)$
- $S \in N$ is a distinguished start symbol

A Context-Free Grammar for English

$N=\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{PP}, \mathrm{DT}, \mathrm{Vi}, \mathrm{Vt}, \mathrm{NN}, \mathrm{IN}\}$
$S=\mathrm{S}$
$\Sigma=\{$ sleeps, saw, man, woman, telescope, the, with, in $\}$

$R=$| S | \Rightarrow | NP | VP |
| :--- | :--- | :--- | :--- |
| VP | \Rightarrow | Vi | |
| VP | \Rightarrow | Vt | NP |
| VP | \Rightarrow | VP | PP |
| NP | \Rightarrow | DT | NN |
| NP | \Rightarrow | NP | PP |
| PP | \Rightarrow | IN | NP |

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

Note: $\mathrm{S}=$ sentence, $\mathrm{VP}=$ verb phrase, $\mathrm{NP}=$ noun phrase, $\mathrm{PP}=$ prepositional phrase, $\mathrm{DT}=$ determiner, $\mathrm{Vi}=$ intransitive verb, $\mathrm{Vt}=$ transitive verb, $\mathrm{NN}=$ noun, $\mathrm{IN}=$ preposition

Left-Most Derivations

A left-most derivation is a sequence of strings $s_{1} \ldots s_{n}$, where

- $s_{1}=S$, the start symbol
- $s_{n} \in \Sigma^{*}$, i.e. s_{n} is made up of terminal symbols only
- Each s_{i} for $i=2 \ldots n$ is derived from s_{i-1} by picking the leftmost non-terminal X in s_{i-1} and replacing it by some β where $X \rightarrow \beta$ is a rule in R

For example: [S], [NP VP], [D N VP], [the N VP], [the man VP], [the man Vi], [the man sleeps]

Representation of a derivation as a tree:

DERIVATION

RULES USED

S

DERIVATION
S

RULES USED
 $\mathrm{S} \rightarrow \mathrm{NP}$ VP

NP VP

DERIVATION
 S
 NP VP
 DT N VP

DERIVATION
S
NP VP
DT N VP the N VP

DERIVATION
S
NP VP
DT N VP
the N VP
the dog VP

RULES USED
$\mathrm{S} \rightarrow$ NP VP
NP \rightarrow DT N
DT \rightarrow the
$\mathrm{N} \rightarrow \operatorname{dog}$

DERIVATION
S
NP VP
DT N VP
the N VP
the dog VP the dog VB

RULES USED
$\mathrm{S} \rightarrow \mathrm{NP}$ VP
$\mathrm{NP} \rightarrow$ DT N
DT \rightarrow the
$\mathrm{N} \rightarrow \operatorname{dog}$
$\mathrm{VP} \rightarrow \mathrm{VB}$

DERIVATION

S
NP VP
DT N VP
the N VP
the dog VP
the dog VB
the dog laughs

RULES USED
$\mathrm{S} \rightarrow \mathrm{NP}$ VP
NP \rightarrow DT N
DT \rightarrow the
$\mathrm{N} \rightarrow \operatorname{dog}$
$\mathrm{VP} \rightarrow \mathrm{VB}$
VB \rightarrow laughs

Properties of CFGs

- A CFG defines a set of possible derivations
- A string $s \in \Sigma^{*}$ is in the language defined by the CFG if there is at least one derivation which yields s
- Each string in the language generated by the CFG may have more than one derivation ("ambiguity")

DERIVATION S
NP VP

RULES USED
$S \rightarrow$ NP VP

DERIVATION S
NP VP
he VP

RULES USED
S \rightarrow NP VP
$\mathrm{NP} \rightarrow$ he

DERIVATION
S
NP VP
he VP
he VP PP

RULES USED
$\mathrm{S} \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ he
VP \rightarrow VP PP

DERIVATION

S
NP VP
he VP
he VP PP
he VB PP PP

RULES USED
$\mathrm{S} \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ he
VP \rightarrow VP PP
$\mathrm{VP} \rightarrow \mathrm{VB}$ PP

DERIVATION

S
NP VP
he VP
he VP PP
he VB PP PP
he drove PP PP

RULES USED
$\mathrm{S} \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ he
$\mathrm{VP} \rightarrow \mathrm{VP}$ PP
$\mathrm{VP} \rightarrow \mathrm{VB}$ PP
$\mathrm{VB} \rightarrow$ drove

DERIVATION

S
NP VP
he VP
he VP PP
he VB PP PP
he drove PP PP

RULES USED
$S \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ he
VP \rightarrow VP PP
$\mathrm{VP} \rightarrow \mathrm{VB}$ PP
$\mathrm{VB} \rightarrow$ drove
$\mathrm{PP} \rightarrow$ down the street
he drove down the street PP

DERIVATION

S
NP VP
he VP
he VP PP
he VB PP PP
he drove PP PP
he drove down the street PP

RULES USED
$S \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ he
VP \rightarrow VP PP
VP \rightarrow VB PP
$\mathrm{VB} \rightarrow$ drove
$\mathrm{PP} \rightarrow$ down the street
$\mathrm{PP} \rightarrow$ in the car
he drove down the street in the car

DERIVATION
S
NP VP

RULES USED
$\mathrm{S} \rightarrow \mathrm{NP}$ VP

DERIVATION
S
NP VP
he VP

RULES USED
$\mathrm{S} \rightarrow \mathrm{NP}$ VP
$\mathrm{NP} \rightarrow$ he

DERIVATION
 S
 NP VP
 he VP
 he VB PP

RULES USED
$\mathrm{S} \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ he
VP \rightarrow VB PP

DERIVATION

S
NP VP
he VP
he VB PP
he drove PP

RULES USED
$\mathrm{S} \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ he
VP \rightarrow VB PP
$\mathrm{VB} \rightarrow$ drove

DERIVATION

S
NP VP
he VP
he VB PP
he drove PP
he drove down NP

RULES USED
$\mathrm{S} \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ he
VP \rightarrow VB PP
$\mathrm{VB} \rightarrow$ drove
PP \rightarrow down NP

DERIVATION

S
NP VP
he VP
he VB PP
he drove PP
he drove down NP
he drove down NP PP

RULES USED
$S \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ he
VP \rightarrow VB PP
$\mathrm{VB} \rightarrow$ drove
PP \rightarrow down NP
$\mathrm{NP} \rightarrow \mathrm{NP}$ PP

DERIVATION

S
NP VP
he VP
he VB PP
he drove PP
he drove down NP
he drove down NP PP
he drove down the street PP

RULES USED
$S \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ he
VP \rightarrow VB PP
$\mathrm{VB} \rightarrow$ drove
PP \rightarrow down NP
$\mathrm{NP} \rightarrow$ NP PP
$\mathrm{NP} \rightarrow$ the street

DERIVATION

S
NP VP
he VP
he VB PP
he drove PP
he drove down NP
he drove down NP PP
he drove down the street PP

RULES USED
$\mathrm{S} \rightarrow$ NP VP
$\mathrm{NP} \rightarrow$ he
VP \rightarrow VB PP
VB \rightarrow drove
PP \rightarrow down NP
$\mathrm{NP} \rightarrow \mathrm{NP}$ PP
$\mathrm{NP} \rightarrow$ the street
PP \rightarrow in the car
he drove down the street in the car

The Problem with Parsing: Ambiguity

INPUT:

She announced a program to promote safety in trucks and vans

$$
\Downarrow
$$

POSSIBLE OUTPUTS:

And there are more...

A Brief Overview of English Syntax

Parts of Speech:

- Nouns
(Tags from the Brown corpus)
NN = singular noun e.g., man, dog, park
NNS = plural noun e.g., telescopes, houses, buildings
NNP = proper noun e.g., Smith, Gates, IBM
- Determiners

DT = determiner e.g., the, a, some, every

- Adjectives
$\mathrm{JJ}=$ adjective e.g., red, green, large, idealistic

A Fragment of a Noun Phrase Grammar

$$
\begin{array}{ll}
\text { NN } & \Rightarrow \text { box } \\
\text { NN } & \Rightarrow \text { car } \\
\text { NN } & \Rightarrow \\
\text { mechanic } \\
\text { NN } & \Rightarrow \text { pigeon } \\
& \\
\text { DT } & \Rightarrow \text { the } \\
\text { DT } & \Rightarrow \text { a } \\
& \\
\text { JJ } & \Rightarrow \text { fast } \\
\text { JJ } & \Rightarrow \\
\text { metal } \\
\text { JJ } & \Rightarrow \text { idealistic } \\
\text { JJ } & \Rightarrow \text { clay }
\end{array}
$$

Generates:
a box, the box, the metal box, the fast car mechanic, ...

Prepositions, and Prepositional Phrases

- Prepositions

$$
\mathrm{IN}=\text { preposition e.g., of, in, out, beside, as }
$$

An Extended Grammar

Generates:

in a box, under the box, the fast car mechanic under the pigeon in the box, ...

Verbs, Verb Phrases, and Sentences

- Basic Verb Types

$$
\begin{array}{ll}
\mathrm{Vi}=\text { Intransitive verb } & \text { e.g., sleeps, walks, laughs } \\
\mathrm{Vt}=\text { Transitive verb } & \text { e.g., sees, saw, likes } \\
\mathrm{Vd}=\text { Ditransitive verb } & \text { e.g., gave }
\end{array}
$$

- Basic VP Rules

VP \rightarrow Vi
$\mathrm{VP} \rightarrow$ Vt NP
$\mathrm{VP} \rightarrow \mathrm{Vd} \mathrm{NP} \mathrm{NP}$

- Basic S Rule
$\mathrm{S} \rightarrow \mathrm{NP}$ VP

Examples of VP:

sleeps, walks, likes the mechanic, gave the mechanic the fast car, gave the fast car mechanic the pigeon in the box, ...

Examples of S:

the man sleeps, the dog walks, the dog likes the mechanic, the dog in the box gave the mechanic the fast car,. . .

$\underline{\text { PPs Modifying Verb Phrases }}$

A new rule: $\mathrm{VP} \rightarrow$ VP PP

New examples of VP:
sleeps in the car, walks like the mechanic, gave the mechanic the fast car on Tuesday, ...

Complementizers, and SBARs

- Complementizers
COMP = complementizer
e.g., that
- SBAR

SBAR \rightarrow COMP S
Examples:
that the man sleeps, that the mechanic saw the $\operatorname{dog} \ldots$

More Verbs

- New Verb Types

V[5] e.g., said, reported
V[6] e.g., told, informed
V[7] e.g., bet

- New VP Rules

VP	\rightarrow	V[5]	SBAR		
VP	\rightarrow	V[6]	NP	SBAR	
VP	\rightarrow	V[7]	NP	NP	SBAR

Examples of New VPs:
said that the man sleeps
told the dog that the mechanic likes the pigeon
bet the pigeon $\$ 50$ that the mechanic owns a fast car

Coordination

- A New Part-of-Speech:

CC $=$ Coordinator e.g., and, or, but

- New Rules

NP	\rightarrow	NP	CC	NP
$\overline{\mathrm{N}}$	\rightarrow	$\overline{\mathrm{N}}$	CC	$\overline{\mathrm{N}}$
VP	\rightarrow	VP	CC	VP
S	\rightarrow	S	CC	S
SBAR	\rightarrow	SBAR	CC	SBAR

Sources of Ambiguity

- Part-of-Speech ambiguity

NNS \rightarrow walks
$\mathrm{Vi} \quad \rightarrow$ walks

- Prepositional Phrase Attachment the fast car mechanic under the pigeon in the box

Sources of Ambiguity: Noun Premodifiers

- Noun premodifiers:

A Funny Thing about the Penn Treebank

Leaves NP premodifier structure flat, or underspecified:

A Probabilistic Context-Free Grammar

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

- Probability of a tree with rules $\alpha_{i} \rightarrow \beta_{i}$ is $\prod_{i} P\left(\alpha_{i} \rightarrow \beta_{i} \mid \alpha_{i}\right)$

DERIVATION
 RULES USED
 PROBABILITY

DERIVATION	RULES USED	PROBABILITY
S	$\mathrm{S} \rightarrow \mathrm{NP}$ VP	1.0
NP VP		

DERIVATION
 S
 NP VP
 DT N VP

RULES USED
PROBABILITY
$S \rightarrow$ NP VP
1.0
$\mathrm{NP} \rightarrow$ DT N
0.3

```
DERIVATION
S
NP VP
DT N VP
the N VP
```

RULES USED
PROBABILITY
$S \rightarrow$ NP VP
1.0

NP \rightarrow DT N
0.3

DT \rightarrow the
1.0

```
DERIVATION
S
NP VP
DT N VP
the N VP
the dog VP
```

RULES USED
$\mathrm{S} \rightarrow$ NP VP
NP \rightarrow DT N
DT \rightarrow the
$\mathrm{N} \rightarrow \operatorname{dog}$
1.0
0.1

```
DERIVATION
S
NP VP
DT N VP
the N VP
the dog VP
the dog VB
```

DERIVATION	RULES USED	PROBABILITY
S	$\mathrm{S} \rightarrow \mathrm{NP}$ VP	1.0
NP VP	$\mathrm{NP} \rightarrow$ DT N	0.3
DT N VP	$\mathrm{DT} \rightarrow$ the	1.0
the N VP	$\mathrm{N} \rightarrow \operatorname{dog}$	0.1
the dog VP	$\mathrm{VP} \rightarrow$ VB	0.4
the dog VB	$\mathrm{VB} \rightarrow$ laughs	0.5
the dog laughs		

TOTAL PROBABILITY $=1.0 \times 0.3 \times 1.0 \times 0.1 \times 0.4 \times 0.5$

Properties of PCFGs

- Assigns a probability to each left-most derivation, or parsetree, allowed by the underlying CFG
- Say we have a sentence S, set of derivations for that sentence is $\mathcal{T}(S)$. Then a PCFG assigns a probability to each member of $\mathcal{T}(S)$. i.e., we now have a ranking in order of probability.
- The probability of a string S is

$$
\sum_{T \in \mathcal{T}(S)} P(T, S)
$$

Deriving a PCFG from a Corpus

- Given a set of example trees, the underlying CFG can simply be all rules seen in the corpus
- Maximum Likelihood estimates:

$$
P_{M L}(\alpha \rightarrow \beta \mid \alpha)=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\operatorname{Count}(\alpha)}
$$

where the counts are taken from a training set of example trees.

- If the training data is generated by a PCFG, then as the training data size goes to infinity, the maximum-likelihood PCFG will converge to the same distribution as the "true" PCFG.

Overview

- An introduction to the parsing problem
- Context free grammars
- A brief(!) sketch of the syntax of English
- Examples of ambiguous structures
- PCFGs, their formal properties, and useful algorithms
- Weaknesses of PCFGs

Weaknesses of PCFGs

- Lack of sensitivity to lexical information
- Lack of sensitivity to structural frequencies

$$
\begin{aligned}
\mathrm{PROB}= & P(\mathrm{~S} \rightarrow \mathrm{NP} \mathrm{VP} \mid \mathrm{S}) & & \times P(\mathrm{NNP} \rightarrow I B M \mid \mathrm{NNP}) \\
& \times P(\mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \mid \mathrm{VP}) & & \times P(\mathrm{Vt} \rightarrow \text { bought } \mid \mathrm{Vt}) \\
& \times P(\mathrm{NP} \rightarrow \mathrm{NNP} \mid \mathrm{NP}) & & \times P(\mathrm{NNP} \rightarrow \text { Lotus } \mid \mathrm{NNP}) \\
& \times P(\mathrm{NP} \rightarrow \mathrm{NNP} \mid \mathrm{NP}) & &
\end{aligned}
$$

Another Case of PP Attachment Ambiguity

(a)

(b)

If $P(\mathrm{NP} \rightarrow \mathrm{NP} \mathrm{PP} \mid \mathrm{NP})>P(\mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \mid \mathrm{VP})$ then (b) is more probable, else (a) is more probable.

Attachment decision is completely independent of the words

A Case of Coordination Ambiguity

(a)

(b)

Rules		Rules
(a)	(b)	$\begin{aligned} & \mathrm{NP} \rightarrow \text { NP CC NP } \\ & \mathrm{NP} \rightarrow \text { NP PP } \\ & \mathrm{NP} \rightarrow \text { NNS } \\ & \mathrm{PP} \rightarrow \mathrm{IN} \text { NP } \\ & \mathrm{NP} \rightarrow \text { NNS } \\ & \text { NP } \rightarrow \text { NNS } \\ & \mathrm{NNS} \rightarrow \text { dogs } \\ & \mathrm{IN} \rightarrow \text { in } \\ & \mathrm{NNS} \rightarrow \text { houses } \\ & \mathrm{CC} \rightarrow \text { and } \\ & \mathrm{NNS} \rightarrow \text { cats } \end{aligned}$

Here the two parses have identical rules, and therefore have identical probability under any assignment of PCFG rule probabilities

Structural Preferences: Close Attachment

(a)

(b)

- Example: president of a company in Africa
- Both parses have the same rules, therefore receive same probability under a PCFG
- "Close attachment" (structure (a)) is twice as likely in Wall Street Journal text.

Heads in Context-Free Rules

Add annotations specifying the "head" of each rule:

S	\Rightarrow	NP	VP
VP	\Rightarrow	Vi	
VP	\Rightarrow	Vt	NP
VP	\Rightarrow	VP	PP
NP	\Rightarrow	DT	NN
NP	\Rightarrow	NP	PP
PP	\Rightarrow	IN	NP

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

Note: $\mathrm{S}=$ sentence, $\mathrm{VP}=$ verb phrase, $\mathrm{NP}=$ noun phrase, $\mathrm{PP}=$ prepositional phrase, $\mathrm{DT}=$ determiner, Vi=intransitive verb, Vt=transitive verb, $\mathrm{NN}=$ noun, IN=preposition

More about Heads

- Each context-free rule has one "special" child that is the head of the rule. e.g.,

S	\Rightarrow	NP	VP	(VP is the head)
VP	\Rightarrow	Vt	NP	
NP	\Rightarrow	DT	NN	NN

- A core idea in linguistics (X-bar Theory, Head-Driven Phrase Structure Grammar)
- Some intuitions:
- The central sub-constituent of each rule.
- The semantic predicate in each rule.

Rules which Recover Heads: An Example of rules for NPs

If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP
Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ
Else If the rule contains a CD: Choose the rightmost CD
Else Choose the rightmost child
e.g.,
$\mathrm{NP} \Rightarrow \mathrm{DT}$ NNP NN
NP \Rightarrow DT NN NNP
$\mathrm{NP} \Rightarrow \mathrm{NP} \quad \mathrm{PP}$
$\mathrm{NP} \Rightarrow \mathrm{DT} \quad \mathrm{JJ}$
$\mathrm{NP} \Rightarrow \mathrm{DT}$

Rules which Recover Heads: An Example of rules for VPs

If the rule contains Vi or Vt: Choose the leftmost Vi or Vt
Else If the rule contains an VP: Choose the leftmost VP
Else Choose the leftmost child

$$
\begin{array}{llll}
\text { e.g., } & & & \\
\text { VP } & \Rightarrow & \text { Vt } & \text { NP } \\
\text { VP } & \Rightarrow & \text { VP } & \text { PP }
\end{array}
$$

Adding Headwords to Trees

Adding Headwords to Trees

- A constituent receives its headword from its head child.

S	\Rightarrow	NP	VP		(S receives headword from VP)
VP	\Rightarrow	Vt	NP		(VP receives headword from Vt)
NP	\Rightarrow	DT		NN	

Adding Headtags to Trees

- Also propogate part-of-speech tags up the trees (We'll see soon why this is useful!)

A Bottom-Up Chart Parser

- The main difference between top-down and bottom-up parser is the way the grammar rules are used
- The basic operation in bottom-up parsing is to take a sequence of symbols and match it to the right-hand side of the rules
- rewrite a word by its possible lexical categories
- replace a sequence of symbols that matches the right-hand side of the grammar rule by its lefthand side symbol
- use a chart structure to keep track of the partial results, so that the work need not be reduplicated

A Bottom-Up Chart Parser (The Algorithm)

To add a constituent C from position p_{1} to p_{2} :

1. Insert C into the chart from position p_{1} to p_{2}.
2. For any active arc of the form $X \rightarrow X_{1} \ldots \circ C \ldots X_{n}$ from position p_{0} to p_{1}, add a new active arc $X \rightarrow X_{1} \ldots C{ }^{\circ} \ldots X_{n}$ from position p_{0} to p_{2}.
3. For any active arc of the form $X \rightarrow X_{1} \ldots X_{n}{ }^{\circ} C$ from position p_{o} to p_{1}, then add a new constituent of type X from p_{0} to p_{2} to the agenda.

Figure 3.10
The arc extension algorithm

Do until there is no input left:

1. If the agenda is empty, look up the interpretations for the next word in the input and add them to the agenda.
2. Select a constituent from the agenda (let's call it constituent \mathbf{C} from position p_{1} to p_{2}).
3. For each rule in the grammar of form $X \rightarrow C X_{1} \ldots X_{n}$, add an active arc of form $X \rightarrow \circ C X_{1} \ldots X_{n}$ from position p_{1} to p_{2}.
4. Add C to the chart using the arc extension algorithm above.

Figure 3.11 A bottom-up chart parsing algorithm

A Bottom-Up Chart Parser (An Example) 1/5

- Let's consider the sentence to be parsed:
$-{ }_{1}$ The $_{2}$ large ${ }_{3}$ can $_{4}$ can $_{5}$ hold $_{6}$ the ${ }_{7}$ water $_{8}$
- Lexicon:
- the: ART
- large: ADJ
- can: N, AUX, V
- hold: N, V
- water: N,V
- Grammar:

```
1. S }->\mathrm{ NPVP
2. NP }->\mathrm{ ART ADJ N
3. NP}->\mathrm{ ARTN
4. NP}->\textrm{ADJNN
5. VP }->\mathrm{ AUX VP
6. VP }->\textrm{VNP
```


A Bottom-Up Chart Parser (An Example) 2/5

Figure 3.9 The chart after seeing an ADJ in position 2

Figure 3.12 After parsing the large can

A Bottom-Up Chart Parser (An Example) 3/5

Figure 3.13 The chart after adding hold, omitting arcs generated for the first NP

A Bottom-Up Chart Parser (An Example) 4/5

Figure 3.14 The chart after all the NPs are found, omitting all but the crucial active arcs

A Bottom-Up Chart Parser (An Example) 5/5

S1 (rule 1 with NP1 and VP2)						
	S2 (rule 1 with NP2 and VP2)					
		VP3 (rule 5 with AUX1 and VP2)				
	NP2 (rule 4)		VP2 (rule 5)			
NP1 (rule 2)				VP1 (rule 6)		
		N1	N2		NP3 (rule 3)	
		V1	V2	V3		V4
ART1	ADJ1	AUX1	AUX2	N3	ART2	N4
the	2 large	3 can	4 can	5 hold	6 the	7 water

Figure 3.15 The final chart

References

[Altun, Tsochantaridis, and Hofmann, 2003] Altun, Y., I. Tsochantaridis, and T. Hofmann. 2003. Hidden Markov Support Vector Machines. In Proceedings of ICML 2003.
[Bartlett 1998] P. L. Bartlett. 1998. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network, IEEE Transactions on Information Theory, 44(2): 525-536, 1998.
[Bod 98] Bod, R. (1998). Beyond Grammar: An Experience-Based Theory of Language. CSLI Publications/Cambridge University Press.
[Booth and Thompson 73] Booth, T., and Thompson, R. 1973. Applying probability measures to abstract languages. IEEE Transactions on Computers, C-22(5), pages 442-450.
[Borthwick et. al 98] Borthwick, A., Sterling, J., Agichtein, E., and Grishman, R. (1998). Exploiting Diverse Knowledge Sources via Maximum Entropy in Named Entity Recognition. Proc. of the Sixth Workshop on Very Large Corpora.
[Collins and Duffy 2001] Collins, M. and Duffy, N. (2001). Convolution Kernels for Natural Language. In Proceedings of NIPS 14.
[Collins and Duffy 2002] Collins, M. and Duffy, N. (2002). New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted Perceptron. In Proceedings of ACL 2002.
[Collins 2002a] Collins, M. (2002a). Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with the Perceptron Algorithm. In Proceedings of EMNLP 2002.
[Collins 2002b] Collins, M. (2002b). Parameter Estimation for Statistical Parsing Models: Theory and Practice of Distribution-Free Methods. To appear as a book chapter.
[Crammer and Singer 2001a] Crammer, K., and Singer, Y. 2001a. On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines. In Journal of Machine Learning Research, 2(Dec):265-292.
[Crammer and Singer 2001b] Koby Crammer and Yoram Singer. 2001b. Ultraconservative Online Algorithms for Multiclass Problems In Proceedings of COLT 2001.
[Freund and Schapire 99] Freund, Y. and Schapire, R. (1999). Large Margin Classification using the Perceptron Algorithm. In Machine Learning, 37(3):277-296.
[Helmbold and Warmuth 95] Helmbold, D., and Warmuth, M. On Weak Learning. Journal of Computer and System Sciences, 50(3):551-573, June 1995.
[Hopcroft and Ullman 1979] Hopcroft, J. E., and Ullman, J. D. 1979. Introduction to automata theory, languages, and computation. Reading, Mass.: Addison-Wesley.
[Johnson et. al 1999] Johnson, M., Geman, S., Canon, S., Chi, S., \& Riezler, S. (1999). Estimators for stochastic 'unification-based" grammars. In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics. San Francisco: Morgan Kaufmann.
[Lafferty et al. 2001] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of ICML-01, pages 282-289, 2001.
[Littlestone and Warmuth, 1986] Littlestone, N., and Warmuth, M. 1986. Relating data compression and learnability. Technical report, University of California, Santa Cruz.
[MSM93] Marcus, M., Santorini, B., \& Marcinkiewicz, M. (1993). Building a large annotated corpus of english: The Penn treebank. Computational Linguistics, 19, 313-330.
[McCallum et al. 2000] McCallum, A., Freitag, D., and Pereira, F. (2000) Maximum entropy markov models for information extraction and segmentation. In Proceedings of ICML 2000.
[Miller et. al 2000] Miller, S., Fox, H., Ramshaw, L., and Weischedel, R. 2000. A Novel Use of Statistical Parsing to Extract Information from Text. In Proceedings of ANLP 2000.
[Ramshaw and Marcus 95] Ramshaw, L., and Marcus, M. P. (1995). Text Chunking Using Transformation-Based Learning. In Proceedings of the Third ACL Workshop on Very Large Corpora, Association for Computational Linguistics, 1995.
[Ratnaparkhi 96] A maximum entropy part-of-speech tagger. In Proceedings of the empirical methods in natural language processing conference.
[Schapire et al., 1998] Schapire R., Freund Y., Bartlett P. and Lee W. S. 1998. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651-1686.
[Zhang, 2002] Zhang, T. 2002. Covering Number Bounds of Certain Regularized Linear Function Classes. In Journal of Machine Learning Research, 2(Mar):527-550, 2002.

