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Support Vector Machines (SVMSs)

e Algorithm for learning linear classifiers
e Motivated by idea of maximizing margin

e Efficient extension to non-linear SVMs
through use of kernels




Problem Setting

Instances: X € X
Class labels: yeY ={+1,-1}
Target function: g:. X —>Y

Unknown distribution: D (on X)
Training data: S={(x1,91)s-- -, Em,ym)}, ¥ = 9(x;)

Objective: Given new x, predict y so that probability of error is minimal




Problem Setting (continued)

Hypothesis space: H={h: X —>Y}

. 1
Error of A on training set S:  errg(h) = —
m

Z: {h(x;)7#yi}

Probability of error on new x:  err(h) = Ep[I;x)£4(x)]

More precise objective: Find h € H such that err(h) is minimal




Linear Classifiers

Instance space: X =R"
Set of class labels: Y = {41,—-1}
Training data: S={(x1,91),---, Xm,ym)}

Hypothesis space:  Hy;, ) = {h 1 R" — Y [ h(x) = sign(w - x + 1),
w e R" b e R}

. 1 if - b 0
sgn(e - x+) = { 1 I XD >

Thus the goal of a learning algorithm that learns a linear classifier is to
find a hypothesis h € H, (,,) with minimal err(h).




Example 1

X =R2
Y = {+1(e),-1(x)}

Which classifier would you expect to generalize better?

Remember: want to minimize probability of error on future instances!
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Intuitive Justification

e We expect the error on the training set, errg(h), to give some
indication of the probability of error on a new instance, err(h).

e We expect “simple” hypotheses to generalize better than more
“‘complex” hypotheses.

Can we guantify the above ideas?




Complexity of a Hypothesis Space

A hypothesis space H over instances in X is said to shatter aset A C X
if all possible dichotomies of A (all +/- labelings of elements of A) can be
represented by some hypothesis in H.
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A is shattered by H, but B is not.




Complexity of a Hypothesis Space (continued)

The VC dimension of a hypothesis space H, denoted by VC(H), is
defined as the size of the largest subset of X that can be shattered by H.

We saw that there exists a set of 3 points in R? that can be shattered by Hiin(2)-
No set of 4 points in R? can be shattered by Hiin(2):

© . o ©: ©
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Thus, VC(H;,(2)) = 3. Ingeneral, VC(H;,(n)) = n + 1.

The VC dimension of 'H is a measure of the complexity of H.




Generalization Bound from Learning Theory

LetO < 90 < 1.

Given a training set S of size m and a classifier h € 'H, with probability

1 — 6 (over the choice of S) the following holds:

err(h) <errg(h) +

Jvam (log(2725) + 1) + log(4/5)

m
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Example 2

X =R?
Y = {+1(e),-1(x)}

Which of these classifiers would be likely to generalize better?
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Example 2 (continued)

Recall the VC-based generalization bound:

VC(H) (log(y@) + 1) +109(4/5)

m

err(h) <errg(h) + J

In this case, we get the same bound for both classifiers:
errg(h1) = errg(hy) =0
hi,ho € Hypeoy, VC(Hjpn(2)) =3

How, then, can we explain our intuition that A, should give better
generalization than h?
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Example 2 (continued)

Although both classifiers separate the data, the distance with which the
separation is achieved is different:
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Concept of Margin

The margin ~; of a point x; € R™ with respect to a linear classifier
h(x) = sign(w - x 4+ b) is defined as the distance of x; from the
hyperplane w - x 4+ b = O:

'W X; + b‘
Vi —
[[w]
The margin of a set of points {x1,...,Xm} is defined as the margin of the
point closest to the hyperplane:
= min = min WX +b
7T 1<i<m T 1<i<m |w|
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Margin-Based Generalization Bound

If H is the space of all linear classifiers in R that separate the training

data with margin at least ~, then

VC(H) < min ({Jj—i ,n) + 1,

where R is the radius of the smallest sphere (in R™) that contains the data.

Thus for such classifiers, we get a bound of the form

err(h) <errg(h) + \

0 (fj—i) + log(4/5)

m
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The SVM Algorithm (Linearly Separable Case)

Given training data S = {(x;,y;) }:~1, Where x; € R", the SVM algorithm
finds a linear classifier that separates the data with maximal margin.

Without loss of generality, we can represent any linear classifier in R™ by
some w € R™ b € R such that

[ C X = 1. 1
1ggmlw X; + b (1)

The margin of the data with respect to the classifier is then given by

w-X;+ b
[[w]

1

Iwll

= min
v 1<i<m

Maximizing the margin is therefore equivalent to minimizing the norm ||w/||
of the classifier, subject to the constraint in Eq. (1) above.
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Optimization Problem

Minimize  f(w,b) = 5||w||?
subjectto y;(w-x;+b)>1, i=1,...,m

This is an optimization problem in (n 4+ 1) variables, with m linear
Inequality constraints.

Introducing Lagrange multipliers «;, ¢ = 1, ..., m for the inequality
constraints above gives the primal Lagrangian:

m
Minimize  Lp(w,b,a) = 3[|w||? — Y a;ly;(w - x; + b) — 1]
1=1

subjectto «; >0, ¢ =1,...,m
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Optimization Problem (continued)

Setting the gradients of L p with respect to w, b equal to zero gives:
OLp OLp

m m
— — =0=w = Y X, — — =0= ;. = 0
Iw Z':§1: O Yi X4 b Z':§1: Yy

Substituting the above in the primal gives the following dual problem:

1 m
Maximize Lp(a) = ZO‘@ — 5 > ooy (X - X5)
i=1 1,j=1

m
subjectto > oy; =0; «; >0, i=1,...,m

This is a convex quadratic programming problem in c.
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Solution

The parameters w, b of the maximal margin classifier are determined by
the solution « to the dual problem:

m
W = Z QY Xy
1=1

1(
=3 (?Jirgl‘pl(w )+ e (v Xz})
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Support Vectors

Due to certain properties of the solution (known as the
Karush-Kuhn-Tucker conditions), the solution a« must satisfy

Ozi[yi(W-Xi—l-b)—l]:O, i=1,...,m.

Thus, «; > 0 only for those points x; that are closest to the classifying
hyperplane. These points are called the support vectors
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Non-Separable Case

Want to relax the constraints
yi(w-x; +b) > 1.

Can introduce slack variables &;:

yi(w-x; +b) >1-¢,
where &; > 0 Vi. An error occurs when &; > 1.

Thus we can assign an extra cost for errors as follows:

Minimize — f(w,b,€) = 3|w|[?+C > ¢
i=1

subjectto y,(w-x;+b)>1-¢&; & >0, 1=1,...
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Non-Separable Case (continued)

Dual problem:

1 m
5 > ojoyy (X - X;)

1,7=1

m
Maximize Lp(a)= ) o;—
i=1

m
subjectto > o;y; =0; 0< o <C, i=1,...,m
i=1

Solution:
The solution for w is again given by
m
W — Z OGY: X

i=1
The solution for b is similar to that in the linear case.
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Visualizing the Solution in the Non-Separable Case

N

Margin support vectors & = 0 Correct
Non-margin support vectors &, < 1 Correct (in margin)
Non-margin support vectors &; > 1 Error
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Non-Linear SVMs

Basic idea:

Map the given data to some (high-dimensional) feature space R?, using a
non-linear mapping .

P R" — RP.

Learn a linear classifier in the new space.

D
8 Rﬂ 8 R 8 Rﬂ
¢ ® * ¢ ®
. W Ny .
X X
. > o / x .
X o [/ x x X
. o / .

24




Dot Products and Kernels

Training phase:

Maximize Lp(a) =3 ai—> 3" ey ($(x) - (x))
i=1 ij=1

m
subjectto ) a;y; =0; 0<a;<C, i=1,....m
i=1

Test phase:

h(x) = sign(w - (x) +b), weR” beR.
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Dot Products and Kernels (continued)

Recall the form of the solution:

W= )  oyp(x;).
eSSV

Therefore, the test phase can be written as
h(x) = sign(w-¥(x) +b)

sign( > oy ((xg) - (%)) + b) -
ieSV

Thus both training and test phases use only dot products between images
1 (x) of points x in R™,
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Dot Products and Kernels (continued)

A kernel function is a symmetric function K : R™ x R™ — R.

A Mercer kernel , in addition, computes a dot product in some
(high-dimensional) space:

K(X7Z) — ¢(X) ) ¢(Z),
for some v, D such that ¢ : R® — RP.

Thus if we can find a Mercer kernel that computes a dot product in the
feature space we are interested in, we can use the kernel to replace the
dot products in the SVM.
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SVMs with Kernels

Training phase:

m
. 1
Maximize Lp(a)= ) o;— =
i=1 2,5=1

m
subjectto > ay; =0; 0< o <C, i=1,...
i=1

m
> ooyy K (x4, %)

, TN

Test phase:

h(X) = Sign( Z aiyiK(Xz'a X) -+ b) .
ieSV
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Example: Quadratic Kernel

Let X = R2, and consider learning a quadratic classifier in this space:

h(x) = sign(wyz7 + wrr5 + w3z122 + wazy + wszo + b)

This is equivalent to learning a linear classifier in the feature space
¥ (R?), where

swer sf(z)-|
: ; = | T17o

L2

Without the use of a kernel, learning such a classifier using an SVM
would require computing dot products in R>.
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Example: Quadratic Kernel (continued)

Consider the kernel
K :R? x R? > R, K(x,z) = (x-z 4+ 1)?
It can be verified that

K(x,z) = ¢'(x) - ¢'(2),

where - 5 7

Thus, an SVM with the above kernel can be used to learn a quadratic
classifier in R2 using only dot products in R2.
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Some Commonly Used Kernels

x,z € X =R"

Polynomial kernels of degree d:

K(x,z) = (x-z+ 1)¢

Gaussian kernels:

Ix — 2|

K(x,z) = exp(— )

o

Such kernels are used to efficiently learn a linear classifier in a
high-dimensional space using computations in only the original,
lower-dimensional space. The Gaussian kernel corresponds to a dot
product in an infinite dimensional space.
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Kernels over Structured Data

Kernels can also be defined for non-vectorial data, i.e.

K: X xX—R

where X is a space other than R".

A kernel K(x,z) over R" that computes dot products in some space can
be viewed as computing some sort of similarity measure between data
elements x,z € R"™. Therefore an appropriate similarity measure between
elements in any space X can be used to define a kernel over X.

Such kernels have been defined, for example, for data represented as
trees or strings; SVMs can therefore be used to learn classifiers for such
types of data.
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Summary

e The SVM algorithm learns a linear classifier that maximizes the
margin of the training data.

e Training an SVM consists of solving a quadratic programming
problem in m variables, where m is the size of the training set.

e An SVM can learn a non-linear classifier in the original space through
the use of a kernel function, which simulates dot products in a
(high-dimensional) feature space.
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Current Research

e Much work on efficient methods for finding approximate solutions to
the quadratic programming problem, especially for large datasets.

e Multitude of new kernels for different types of structured data.

e Work on trying to optimize the margin distribution over all training
points, rather than optimizing the margin of only the points closest to
the separating hyperplane.
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