Introduction to Support Vector Machines

Shivani Agarwal

Support Vector Machines (SVMs)

- Algorithm for learning linear classifiers
- Motivated by idea of maximizing margin
- Efficient extension to non-linear SVMs through use of kernels

Problem Setting

- Instances: $\mathbf{x} \in X$ Class labels: $y \in Y = \{+1, -1\}$ Target function: $g : X \to Y$ Unknown distribution: \mathcal{D} (on X)
- Training data: $S = \{(x_1, y_1), ..., (x_m, y_m)\}, y_i = g(x_i)$

Objective: Given new x, predict y so that probability of error is minimal

Problem Setting (continued)

Hypothesis space: $\mathcal{H} = \{h : X \to Y\}$

Error of *h* on training set *S*: $err_{S}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbf{I}_{\{h(\mathbf{x}_{i}) \neq y_{i}\}}$ Probability of error on new x: $err(h) = E_{\mathcal{D}}[\mathbf{I}_{h(\mathbf{x}) \neq g(\mathbf{x})}]$

More precise objective: Find $h \in \mathcal{H}$ such that err(h) is minimal

Linear Classifiers

Instance space: $X = \mathbb{R}^n$ Set of class labels: $Y = \{+1, -1\}$ Training data: $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$ Hypothesis space: $\mathcal{H}_{lin(n)} = \{h : \mathbb{R}^n \to Y \mid h(\mathbf{x}) = \underset{\mathbf{w} \in \mathbb{R}^n, b \in \mathbb{R}\}}{\sup(\mathbf{w} \cdot \mathbf{x} + b)} = \begin{cases} +1 & \text{if } (\mathbf{w} \cdot \mathbf{x} + b) > 0 \\ -1 & \text{otherwise} \end{cases}$

Thus the goal of a learning algorithm that learns a linear classifier is to find a hypothesis $h \in \mathcal{H}_{lin(n)}$ with minimal err(h).

Example 1

 $X = \mathbb{R}^2$ $Y = \{+1(\bullet), -1(\mathbf{X})\}$

Which classifier would you expect to generalize better?

Remember: want to minimize probability of error on future instances!

Intuitive Justification

- We expect the error on the training set, $err_S(h)$, to give some indication of the probability of error on a new instance, err(h).
- We expect "simple" hypotheses to generalize better than more "complex" hypotheses.

Can we quantify the above ideas?

Complexity of a Hypothesis Space

A hypothesis space \mathcal{H} over instances in X is said to **shatter** a set $A \subseteq X$ if *all possible dichotomies of* A (all +/- labelings of elements of A) can be represented by some hypothesis in \mathcal{H} .

Complexity of a Hypothesis Space (continued)

The VC dimension of a hypothesis space \mathcal{H} , denoted by VC(\mathcal{H}), is defined as the size of the *largest* subset of X that can be shattered by \mathcal{H} .

We saw that there exists a set of 3 points in \mathbb{R}^2 that can be shattered by $\mathcal{H}_{lin(2)}$. No set of 4 points in \mathbb{R}^2 can be shattered by $\mathcal{H}_{lin(2)}$:

Thus, $VC(\mathcal{H}_{lin(2)}) = 3$. In general, $VC(\mathcal{H}_{lin(n)}) = n + 1$.

The VC dimension of \mathcal{H} is a measure of the complexity of \mathcal{H} .

Generalization Bound from Learning Theory

Let $0 < \delta < 1$.

Given a training set *S* of size *m* and a classifier $h \in \mathcal{H}$, with probability $1 - \delta$ (over the choice of *S*) the following holds:

$$err(h) \leq err_{S}(h) + \sqrt{\frac{\operatorname{VC}(\mathcal{H})\left(\log(\frac{2m}{\operatorname{VC}(\mathcal{H})}) + 1\right) + \log(4/\delta)}{m}}$$

Example 2

 $X = \mathbb{R}^2$ $Y = \{+1(\bullet), -1(\mathbf{X})\}$

Which of these classifiers would be likely to generalize better?

Example 2 (continued)

Recall the VC-based generalization bound:

$$\operatorname{err}(h) \leq \operatorname{err}_{S}(h) + \sqrt{\frac{\operatorname{VC}(\mathcal{H})\left(\log(\frac{2m}{\operatorname{VC}(\mathcal{H})}) + 1\right) + \log(4/\delta)}{m}}$$

In this case, we get the same bound for both classifiers:

 $err_S(h_1) = err_S(h_2) = 0$

$$h_1, h_2 \in \mathcal{H}_{lin(2)}, \ \operatorname{VC}(\mathcal{H}_{lin(2)}) = 3$$

How, then, can we explain our intuition that h_2 should give better generalization than h_1 ?

Example 2 (continued)

Although both classifiers separate the data, the distance with which the separation is achieved is different:

Concept of Margin

The margin γ_i of a point $\mathbf{x}_i \in \mathbb{R}^n$ with respect to a linear classifier $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x} + b)$ is defined as the distance of \mathbf{x}_i from the hyperplane $\mathbf{w} \cdot \mathbf{x} + b = 0$:

$$\gamma_i = \left| \frac{\mathbf{w} \cdot \mathbf{x}_i + b}{\|\mathbf{w}\|} \right|$$

The margin of a set of points $\{x_1, \ldots, x_m\}$ is defined as the margin of the point closest to the hyperplane:

$$\gamma = \min_{1 \le i \le m} \gamma_i = \min_{1 \le i \le m} \left| \frac{\mathbf{w} \cdot \mathbf{x}_i + b}{\|\mathbf{w}\|} \right|$$

$$\gamma_i$$

$$\gamma_i$$

Margin-Based Generalization Bound

If \mathcal{H} is the space of all linear classifiers in \mathbb{R}^n that separate the training data with margin at least γ , then

$$\operatorname{VC}(\mathcal{H}) \leq \min\left(\left\lceil \frac{R^2}{\gamma^2} \right\rceil, n\right) + 1,$$

where R is the radius of the smallest sphere (in \mathbb{R}^n) that contains the data.

Thus for such classifiers, we get a bound of the form

$$\operatorname{err}(h) \leq \operatorname{err}_{S}(h) + \sqrt{\frac{\mathcal{O}\left(\frac{R^{2}}{\gamma^{2}}\right) + \log(4/\delta)}{m}}$$

The SVM Algorithm (Linearly Separable Case)

Given training data $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$, where $\mathbf{x}_i \in \mathbb{R}^n$, the SVM algorithm finds a linear classifier that separates the data with maximal margin.

Without loss of generality, we can represent any linear classifier in \mathbb{R}^n by some $\mathbf{w} \in \mathbb{R}^n$, $b \in \mathbb{R}$ such that

$$\min_{1 \le i \le m} |\mathbf{w} \cdot \mathbf{x}_i + b| = 1.$$
 (1)

The margin of the data with respect to the classifier is then given by

$$\gamma = \min_{1 \le i \le m} \left| \frac{\mathbf{w} \cdot \mathbf{x}_i + b}{\|\mathbf{w}\|} \right| = \frac{1}{\|\mathbf{w}\|}.$$

Maximizing the margin is therefore equivalent to minimizing the norm ||w|| of the classifier, subject to the constraint in Eq. (1) above.

Optimization Problem

 $\begin{array}{ll} \text{Minimize} & f(\mathbf{w}, b) \equiv \frac{1}{2} \|\mathbf{w}\|^2 \\ \text{subject to} & y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1, \quad i = 1, \dots, m \end{array}$

This is an optimization problem in (n + 1) variables, with m linear inequality constraints.

Introducing Lagrange multipliers α_i , i = 1, ..., m for the inequality constraints above gives the primal Lagrangian:

$$\begin{array}{ll} \text{Minimize} & L_P(\mathbf{w}, b, \alpha) \equiv \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^m \alpha_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1] \\ \text{subject to} & \alpha_i \geq 0, \quad i = 1, \dots, m \end{array}$$

Optimization Problem (continued)

Setting the gradients of L_P with respect to w, b equal to zero gives:

$$\frac{\partial L_P}{\partial \mathbf{w}} = \mathbf{0} \Rightarrow \mathbf{w} = \sum_{i=1}^m \alpha_i y_i \mathbf{x}_i, \quad \frac{\partial L_P}{\partial b} = \mathbf{0} \Rightarrow \sum_{i=1}^m \alpha_i y_i = \mathbf{0}$$

Substituting the above in the primal gives the following dual problem:

Maximize
$$L_D(\alpha) \equiv \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

subject to $\sum_{i=1}^m \alpha_i y_i = 0; \quad \alpha_i \ge 0, \ i = 1, \dots, m$

This is a convex quadratic programming problem in α .

Solution

The parameters w, b of the maximal margin classifier are determined by the solution α to the dual problem:

$$\mathbf{w} = \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i$$
$$b = -\frac{1}{2} \left(\min_{y_i = +1} (\mathbf{w} \cdot \mathbf{x}_i) + \max_{y_i = -1} (\mathbf{w} \cdot \mathbf{x}_i) \right)$$

Support Vectors

Due to certain properties of the solution (known as the Karush-Kuhn-Tucker conditions), the solution α must satisfy

$$\alpha_i[y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1] = 0, \quad i = 1, \dots, m.$$

Thus, $\alpha_i > 0$ only for those points x_i that are closest to the classifying hyperplane. These points are called the **support vectors**.

Non-Separable Case

Want to relax the constraints

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1.$$

Can introduce slack variables ξ_i :

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i,$$

where $\xi_i \ge 0 \ \forall i$. An error occurs when $\xi_i > 1$.

Thus we can assign an extra cost for errors as follows:

Minimize
$$f(\mathbf{w}, b, \boldsymbol{\xi}) \equiv \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \xi_i$$

subject to $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i; \quad \xi_i \ge 0, \quad i = 1, \dots, m$

Non-Separable Case (continued)

Dual problem:

Maximize
$$L_D(\boldsymbol{\alpha}) \equiv \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

subject to $\sum_{i=1}^m \alpha_i y_i = 0; \quad 0 \le \alpha_i \le C, \quad i = 1, \dots, m$

Solution:

The solution for \mathbf{w} is again given by

$$\mathbf{w} = \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i.$$

The solution for b is similar to that in the linear case.

Visualizing the Solution in the Non-Separable Case

- Margin support vectors $\xi_i = 0$ Correct 1.
- Non-margin support vectors $\xi_i < 1$ Correct (in margin) 2.
- 3. Non-margin support vectors $\xi_i > 1$ Error

Non-Linear SVMs

Basic idea:

Map the given data to some (high-dimensional) feature space \mathbb{R}^D , using a non-linear mapping ψ :

$$oldsymbol{\psi}:\mathbb{R}^n
ightarrow\mathbb{R}^D.$$

Learn a linear classifier in the new space.

Dot Products and Kernels

Training phase:

Maximize
$$L_D(\alpha) \equiv \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j (\psi(\mathbf{x}_i) \cdot \psi(\mathbf{x}_j))$$

subject to $\sum_{i=1}^m \alpha_i y_i = 0; \quad 0 \le \alpha_i \le C, \ i = 1, \dots, m$

Test phase:

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w} \cdot \boldsymbol{\psi}(\mathbf{x}) + b), \ \mathbf{w} \in \mathbb{R}^{D}, b \in \mathbb{R}.$$

Dot Products and Kernels (continued)

Recall the form of the solution:

$$\mathbf{w} = \sum_{i \in \mathbf{SV}} \alpha_i y_i \psi(\mathbf{x}_i).$$

Therefore, the test phase can be written as

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w} \cdot \boldsymbol{\psi}(\mathbf{x}) + b)$$

= sign $\left(\sum_{i \in SV} \alpha_i y_i(\boldsymbol{\psi}(\mathbf{x}_i) \cdot \boldsymbol{\psi}(\mathbf{x})) + b\right)$

Thus both training and test phases use only dot products between images $\psi(\mathbf{x})$ of points \mathbf{x} in \mathbb{R}^n .

Dot Products and Kernels (continued)

A kernel function is a symmetric function $K : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$.

A **Mercer kernel**, in addition, computes a dot product in some (high-dimensional) space:

$$K(\mathbf{x}, \mathbf{z}) = \psi(\mathbf{x}) \cdot \psi(\mathbf{z}),$$

for some ψ , D such that ψ : $\mathbb{R}^n \to \mathbb{R}^D$.

Thus if we can find a Mercer kernel that computes a dot product in the feature space we are interested in, we can use the kernel to replace the dot products in the SVM.

SVMs with Kernels

Training phase:

$$\begin{array}{ll} \text{Maximize} \quad L_D(\boldsymbol{\alpha}) \equiv \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j) \\ \text{subject to} \quad \sum_{i=1}^m \alpha_i y_i = 0; \quad 0 \leq \alpha_i \leq C, \ i = 1, \dots, m \end{array}$$

Test phase:

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i \in \mathrm{SV}} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}) + b\right).$$

Example: Quadratic Kernel

Let $X = \mathbb{R}^2$, and consider learning a quadratic classifier in this space: $h(\mathbf{x}) = \operatorname{sign}(w_1x_1^2 + w_2x_2^2 + w_3x_1x_2 + w_4x_1 + w_5x_2 + b)$

This is equivalent to learning a linear classifier in the feature space $\psi(\mathbb{R}^2)$, where

$$\psi : \mathbb{R}^2 \to \mathbb{R}^5, \qquad \psi \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1^2 \\ x_2^2 \\ x_1 x_2 \\ x_1 \\ x_2 \end{bmatrix}$$

Without the use of a kernel, learning such a classifier using an SVM would require computing dot products in \mathbb{R}^5 .

Example: Quadratic Kernel (continued)

Consider the kernel

 $K: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, \qquad K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z} + 1)^2$

It can be verified that

$$K(\mathbf{x}, \mathbf{z}) = \psi'(\mathbf{x}) \cdot \psi'(\mathbf{z}),$$

where

$$\psi': \mathbb{R}^2 \to \mathbb{R}^6, \qquad \psi'\left(\left[\begin{array}{c} x_1\\ x_2\end{array}\right]\right) = \begin{bmatrix} x_1^2\\ x_2^2\\ \sqrt{2}x_1x_2\\ \sqrt{2}x_1\\ \sqrt{2}x_2\\ 1 \end{bmatrix}$$

Thus, an SVM with the above kernel can be used to learn a quadratic classifier in \mathbb{R}^2 using only dot products in \mathbb{R}^2 .

Some Commonly Used Kernels

 $\mathbf{x}, \mathbf{z} \in X = \mathbb{R}^n$

Polynomial kernels of degree *d*:

$$K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z} + 1)^d$$

Gaussian kernels:

$$K(\mathbf{x}, \mathbf{z}) = \exp(-\frac{\|\mathbf{x} - \mathbf{z}\|^2}{2\sigma})$$

Such kernels are used to efficiently learn a linear classifier in a high-dimensional space using computations in only the original, lower-dimensional space. The Gaussian kernel corresponds to a dot product in an infinite dimensional space.

Kernels over Structured Data

Kernels can also be defined for non-vectorial data, i.e.

 $K:X\times X\to \mathbb{R}$

where X is a space other than \mathbb{R}^n .

A kernel $K(\mathbf{x}, \mathbf{z})$ over \mathbb{R}^n that computes dot products in some space can be viewed as computing some sort of similarity measure between data elements $\mathbf{x}, \mathbf{z} \in \mathbb{R}^n$. Therefore an appropriate similarity measure between elements in any space X can be used to define a kernel over X.

Such kernels have been defined, for example, for data represented as trees or strings; SVMs can therefore be used to learn classifiers for such types of data.

Summary

- The SVM algorithm learns a linear classifier that maximizes the margin of the training data.
- Training an SVM consists of solving a quadratic programming problem in *m* variables, where *m* is the size of the training set.
- An SVM can learn a non-linear classifier in the original space through the use of a kernel function, which simulates dot products in a (high-dimensional) feature space.

Current Research

- Much work on efficient methods for finding approximate solutions to the quadratic programming problem, especially for large datasets.
- Multitude of new kernels for different types of structured data.
- Work on trying to optimize the margin distribution over all training points, rather than optimizing the margin of only the points closest to the separating hyperplane.