Introduction to

Support Vector Machines

Shivani Agarwal

Support Vector Machines (SVMs)

- Algorithm for learning linear classifiers
- Motivated by idea of maximizing margin
- Efficient extension to non-linear SVMs through use of kernels

Problem Setting

Instances:
$\mathrm{x} \in X$
Class labels:
$y \in Y=\{+1,-1\}$
Target function:
$g: X \rightarrow Y$
Unknown distribution: \mathcal{D} (on X)
Training data:

$$
S=\left\{\left(\mathrm{x}_{1}, y_{1}\right), \ldots,\left(\mathrm{x}_{m}, y_{m}\right)\right\}, \quad y_{i}=g\left(\mathrm{x}_{i}\right)
$$

Objective: Given new \mathbf{x}, predict y so that probability of error is minimal

Problem Setting (continued)

Hypothesis space:

$$
\mathcal{H}=\{h: X \rightarrow Y\}
$$

Error of h on training set $S: \quad \operatorname{err}_{S}(h)=\frac{1}{m} \sum_{i=1}^{m} \mathbf{I}_{\left\{h\left(\mathbf{x}_{i}\right) \neq y_{i}\right\}}$
Probability of error on new $\mathbf{x}: \quad \operatorname{err}(h)=E_{\mathcal{D}}\left[\mathbf{I}_{h(x)} \neq g(\mathrm{x})\right]$

More precise objective: Find $h \in \mathcal{H}$ such that $\operatorname{err}(h)$ is minimal

Linear Classifiers

Instance space: $\quad X=\mathbb{R}^{n}$
Set of class labels: $\quad Y=\{+1,-1\}$
Training data: $\quad S=\left\{\left(\mathrm{x}_{1}, y_{1}\right), \ldots,\left(\mathrm{x}_{m}, y_{m}\right)\right\}$
Hypothesis space: $\quad \mathcal{H}_{\operatorname{lin}(n)}=\left\{h: \mathbb{R}^{n} \rightarrow Y \mid h(\mathrm{x})=\operatorname{sign}(\mathrm{w} \cdot \mathrm{x}+b)\right.$, $\left.\mathrm{w} \in \mathbb{R}^{n}, b \in \mathbb{R}\right\}$

$$
\operatorname{sign}(\mathrm{w} \cdot \mathrm{x}+b)= \begin{cases}+1 & \text { if }(\mathrm{w} \cdot \mathrm{x}+b)>0 \\ -1 & \text { otherwise }\end{cases}
$$

Thus the goal of a learning algorithm that learns a linear classifier is to find a hypothesis $h \in \mathcal{H}_{\operatorname{lin}(n)}$ with minimal $\operatorname{err}(h)$.

Example 1

$$
\begin{aligned}
& X=\mathbb{R}^{2} \\
& Y=\{+1(\bullet),-1(\mathbf{x})\}
\end{aligned}
$$

Which classifier would you expect to generalize better?

Remember: want to minimize probability of error on future instances!

Intuitive Justification

- We expect the error on the training set, $\operatorname{err}_{S}(h)$, to give some indication of the probability of error on a new instance, $\operatorname{err}(h)$.
- We expect "simple" hypotheses to generalize better than more "complex" hypotheses.

Can we quantify the above ideas?

Complexity of a Hypothesis Space

A hypothesis space \mathcal{H} over instances in X is said to shatter a set $A \subseteq X$ if all possible dichotomies of A (all +/- labelings of elements of A) can be represented by some hypothesis in \mathcal{H}.

$$
X=\mathbb{R}^{2}, \quad \mathcal{H}=\mathcal{H}_{\operatorname{lin}(2)}
$$

A is shattered by \mathcal{H}, but B is not.

Complexity of a Hypothesis Space (continued)

The VC dimension of a hypothesis space \mathcal{H}, denoted by $\operatorname{VC}(\mathcal{H})$, is defined as the size of the largest subset of X that can be shattered by \mathcal{H}.

The VC dimension of \mathcal{H} is a measure of the complexity of \mathcal{H}.

Generalization Bound from Learning Theory

Let $0<\delta<1$.
Given a training set S of size m and a classifier $h \in \mathcal{H}$, with probability $1-\delta$ (over the choice of S) the following holds:

$$
\operatorname{err}(h) \leq \operatorname{err}_{S}(h)+\sqrt{\frac{\operatorname{VC}(\mathcal{H})\left(\log \left(\frac{2 m}{\mathrm{VC}(\mathcal{H})}\right)+1\right)+\log (4 / \delta)}{m}}
$$

Example 2

$$
\begin{aligned}
& X=\mathbb{R}^{2} \\
& Y=\{+1(\bullet),-1(\mathbf{x})\}
\end{aligned}
$$

Which of these classifiers would be likely to generalize better?

Example 2 (continued)

Recall the VC-based generalization bound:

$$
\operatorname{err}(h) \leq \operatorname{err}_{S}(h)+\sqrt{\frac{\operatorname{VC}(\mathcal{H})\left(\log \left(\frac{2 m}{\operatorname{VC}(\mathcal{H})}\right)+1\right)+\log (4 / \delta)}{m}}
$$

In this case, we get the same bound for both classifiers:

$$
\begin{gathered}
\operatorname{err}_{S}\left(h_{1}\right)=\operatorname{err}_{S}\left(h_{2}\right)=0 \\
h_{1}, h_{2} \in \mathcal{H}_{\operatorname{lin}(2)}, \quad \operatorname{VC}\left(\mathcal{H}_{\operatorname{lin}(2)}\right)=3
\end{gathered}
$$

How, then, can we explain our intuition that h_{2} should give better generalization than h_{1} ?

Example 2 (continued)

Although both classifiers separate the data, the distance with which the separation is achieved is different:

Concept of Margin

The margin γ_{i} of a point $\mathbf{x}_{i} \in \mathbb{R}^{n}$ with respect to a linear classifier $h(\mathrm{x})=\operatorname{sign}(\mathrm{w} \cdot \mathrm{x}+b)$ is defined as the distance of x_{i} from the hyperplane $\mathbf{w} \cdot \mathbf{x}+b=0$:

$$
\gamma_{i}=\left|\frac{\mathbf{w} \cdot \mathbf{x}_{i}+b}{\|\mathbf{w}\|}\right|
$$

The margin of a set of points $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{m}\right\}$ is defined as the margin of the point closest to the hyperplane:

$$
\gamma=\min _{1 \leq i \leq m} \gamma_{i}=\min _{1 \leq i \leq m}\left|\frac{\mathbf{w} \cdot \mathbf{x}_{i}+b}{\|\mathbf{w}\|}\right|
$$

Margin-Based Generalization Bound

If \mathcal{H} is the space of all linear classifiers in \mathbb{R}^{n} that separate the training data with margin at least γ, then

$$
\mathrm{VC}(\mathcal{H}) \leq \min \left(\left\lceil\frac{R^{2}}{\gamma^{2}}\right\rceil, n\right)+1,
$$

where R is the radius of the smallest sphere (in \mathbb{R}^{n}) that contains the data.

Thus for such classifiers, we get a bound of the form

$$
\operatorname{err}(h) \leq e \operatorname{er}_{S}(h)+\sqrt{\frac{\mathcal{O}\left(\frac{R^{2}}{\gamma^{2}}\right)+\log (4 / \delta)}{m}}
$$

The SVM Algorithm (Linearly Separable Case)

Given training data $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{m}$, where $\mathbf{x}_{i} \in \mathbb{R}^{n}$, the SVM algorithm finds a linear classifier that separates the data with maximal margin.

Without loss of generality, we can represent any linear classifier in \mathbb{R}^{n} by some $\mathbf{w} \in \mathbb{R}^{n}, b \in \mathbb{R}$ such that

$$
\begin{equation*}
\min _{1 \leq i \leq m}\left|\mathbf{w} \cdot \mathbf{x}_{i}+b\right|=1 \tag{1}
\end{equation*}
$$

The margin of the data with respect to the classifier is then given by

$$
\gamma=\min _{1 \leq i \leq m}\left|\frac{\mathbf{w} \cdot \mathbf{x}_{i}+b}{\|\mathbf{w}\|}\right|=\frac{1}{\|\mathbf{w}\|}
$$

Maximizing the margin is therefore equivalent to minimizing the norm \|w\| of the classifier, subject to the constraint in Eq. (1) above.

Optimization Problem

Minimize	$f(\mathbf{w}, b) \equiv \frac{1}{2}\\|\mathbf{w}\\|^{2}$
subject to	$y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq 1, \quad i=1, \ldots, m$

This is an optimization problem in $(n+1)$ variables, with m linear inequality constraints.

Introducing Lagrange multipliers $\alpha_{i}, i=1, \ldots, m$ for the inequality constraints above gives the primal Lagrangian:

$$
\begin{array}{ll}
\text { Minimize } & L_{P}(\mathbf{w}, b, \boldsymbol{\alpha}) \equiv \frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{m} \alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right] \\
\text { subject to } & \alpha_{i} \geq 0, \quad i=1, \ldots, m
\end{array}
$$

Optimization Problem (continued)

Setting the gradients of L_{P} with respect to \mathbf{w}, b equal to zero gives:

$$
\frac{\partial L_{P}}{\partial \mathbf{w}}=0 \Rightarrow \mathrm{w}=\sum_{i=1}^{m} \alpha_{i} y_{i} \mathbf{x}_{i}, \quad \frac{\partial L_{P}}{\partial b}=0 \Rightarrow \sum_{i=1}^{m} \alpha_{i} y_{i}=0
$$

Substituting the above in the primal gives the following dual problem:

$$
\begin{array}{ll}
\text { Maximize } & L_{D}(\boldsymbol{\alpha}) \equiv \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right) \\
\text { subject to } & \sum_{i=1}^{m} \alpha_{i} y_{i}=0 ; \quad \alpha_{i} \geq 0, \quad i=1, \ldots, m
\end{array}
$$

This is a convex quadratic programming problem in $\boldsymbol{\alpha}$.

Solution

The parameters w, b of the maximal margin classifier are determined by the solution α to the dual problem:

$$
\begin{gathered}
\mathrm{w}=\sum_{i=1}^{m} \alpha_{i} y_{i} \mathbf{x}_{i} \\
b=-\frac{1}{2}\left(\min _{y_{i}=+1}\left(\mathbf{w} \cdot \mathbf{x}_{i}\right)+\max _{y_{i}=-1}\left(\mathbf{w} \cdot \mathbf{x}_{i}\right)\right)
\end{gathered}
$$

Support Vectors

Due to certain properties of the solution (known as the Karush-Kuhn-Tucker conditions), the solution α must satisfy

$$
\alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right]=0, \quad i=1, \ldots, m
$$

Thus, $\alpha_{i}>0$ only for those points x_{i} that are closest to the classifying hyperplane. These points are called the support vectors.

Non-Separable Case

Want to relax the constraints

$$
y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq 1
$$

Can introduce slack variables ξ_{i} :

$$
y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq 1-\xi_{i},
$$

where $\xi_{i} \geq 0 \forall i$. An error occurs when $\xi_{i}>1$.
Thus we can assign an extra cost for errors as follows:

$$
\begin{array}{ll}
\text { Minimize } & f(\mathbf{w}, b, \boldsymbol{\xi}) \equiv \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{m} \xi_{i} \\
\text { subject to } & y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} ; \quad \xi_{i} \geq 0, \quad i=1, \ldots, m
\end{array}
$$

Non-Separable Case (continued)

Dual problem:

$$
\begin{array}{ll}
\text { Maximize } & L_{D}(\boldsymbol{\alpha}) \equiv \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right) \\
\text { subject to } & \sum_{i=1}^{m} \alpha_{i} y_{i}=0 ; \quad 0 \leq \alpha_{i} \leq C, \quad i=1, \ldots, m
\end{array}
$$

Solution:
The solution for w is again given by

$$
\mathbf{w}=\sum_{i=1}^{m} \alpha_{i} y_{i} \mathbf{x}_{i}
$$

The solution for b is similar to that in the linear case.

Visualizing the Solution in the Non-Separable Case

1. Margin support vectors
2. Non-margin support vectors
3. Non-margin support vectors
$\xi_{i}=0 \quad$ Correct
$\xi_{i}<1 \quad$ Correct (in margin)
$\xi_{i}>1$ Error

Non-Linear SVMs

Basic idea:
Map the given data to some (high-dimensional) feature space \mathbb{R}^{D}, using a non-linear mapping ψ :

$$
\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{D}
$$

Learn a linear classifier in the new space.

Dot Products and Kernels

Training phase:

$$
\begin{array}{ll}
\text { Maximize } & L_{D}(\boldsymbol{\alpha}) \equiv \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\psi\left(\mathrm{x}_{i}\right) \cdot \psi\left(\mathrm{x}_{j}\right)\right) \\
\text { subject to } & \sum_{i=1}^{m} \alpha_{i} y_{i}=0 ; \quad 0 \leq \alpha_{i} \leq C, i=1, \ldots, m
\end{array}
$$

Test phase:

$$
h(\mathbf{x})=\operatorname{sign}(\mathbf{w} \cdot \boldsymbol{\psi}(\mathbf{x})+b), \quad \mathbf{w} \in \mathbb{R}^{D}, b \in \mathbb{R}
$$

Dot Products and Kernels (continued)

Recall the form of the solution:

$$
\mathbf{w}=\sum_{i \in \mathrm{SV}} \alpha_{i} y_{i} \boldsymbol{\psi}\left(\mathbf{x}_{i}\right)
$$

Therefore, the test phase can be written as

$$
\begin{aligned}
h(\mathrm{x}) & =\operatorname{sign}(\mathbf{w} \cdot \boldsymbol{\psi}(\mathrm{x})+b) \\
& =\operatorname{sign}\left(\sum_{i \in \mathrm{SV}} \alpha_{i} y_{i}\left(\psi\left(\mathrm{x}_{i}\right) \cdot \psi(\mathrm{x})\right)+b\right) .
\end{aligned}
$$

Thus both training and test phases use only dot products between images $\psi(\mathrm{x})$ of points x in \mathbb{R}^{n}.

Dot Products and Kernels (continued)

A kernel function is a symmetric function $K: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$.

A Mercer kernel, in addition, computes a dot product in some (high-dimensional) space:

$$
K(\mathrm{x}, \mathrm{z})=\psi(\mathrm{x}) \cdot \psi(\mathrm{z}),
$$

for some ψ, D such that $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{D}$.

Thus if we can find a Mercer kernel that computes a dot product in the feature space we are interested in, we can use the kernel to replace the dot products in the SVM.

SVMs with Kernels

Training phase:

$$
\begin{array}{ll}
\text { Maximize } & L_{D}(\boldsymbol{\alpha}) \equiv \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right) \\
\text { subject to } & \sum_{i=1}^{m} \alpha_{i} y_{i}=0 ; \quad 0 \leq \alpha_{i} \leq C, i=1, \ldots, m
\end{array}
$$

Test phase:

$$
h(\mathrm{x})=\operatorname{sign}\left(\sum_{i \in \mathrm{SV}} \alpha_{i} y_{i} K\left(\mathrm{x}_{i}, \mathrm{x}\right)+b\right) .
$$

Example: Quadratic Kernel

Let $X=\mathbb{R}^{2}$, and consider learning a quadratic classifier in this space:

$$
h(\mathbf{x})=\operatorname{sign}\left(w_{1} x_{1}^{2}+w_{2} x_{2}^{2}+w_{3} x_{1} x_{2}+w_{4} x_{1}+w_{5} x_{2}+b\right)
$$

This is equivalent to learning a linear classifier in the feature space $\psi\left(\mathbb{R}^{2}\right)$, where

$$
\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{5}, \quad \psi\left(\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}^{2} \\
x_{1}^{2} \\
x_{1} x_{2} \\
x_{1} \\
x_{2}
\end{array}\right] .
$$

Without the use of a kernel, learning such a classifier using an SVM would require computing dot products in \mathbb{R}^{5}.

Example: Quadratic Kernel (continued)

Consider the kernel

$$
K: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad K(\mathrm{x}, \mathrm{z})=(\mathrm{x} \cdot \mathrm{z}+1)^{2}
$$

It can be verified that

$$
K(\mathrm{x}, \mathrm{z})=\psi^{\prime}(\mathrm{x}) \cdot \psi^{\prime}(\mathrm{z}),
$$

where

$$
\boldsymbol{\psi}^{\prime}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{6}, \quad \quad \boldsymbol{\psi}^{\prime}\left(\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
\sqrt{2} x_{1} x_{2} \\
\sqrt{2} x_{1} \\
\sqrt{2} x_{2} \\
1
\end{array}\right]
$$

Thus, an SVM with the above kernel can be used to learn a quadratic classifier in \mathbb{R}^{2} using only dot products in \mathbb{R}^{2}.

Some Commonly Used Kernels

$\mathbf{x}, \mathbf{z} \in X=\mathbb{R}^{n}$
Polynomial kernels of degree d :

$$
K(\mathrm{x}, \mathrm{z})=(\mathrm{x} \cdot \mathrm{z}+1)^{d}
$$

Gaussian kernels:

$$
K(\mathbf{x}, \mathbf{z})=\exp \left(-\frac{\|\mathbf{x}-\mathbf{z}\|^{2}}{2 \sigma}\right)
$$

Such kernels are used to efficiently learn a linear classifier in a high-dimensional space using computations in only the original, lower-dimensional space. The Gaussian kernel corresponds to a dot product in an infinite dimensional space.

Kernels over Structured Data

Kernels can also be defined for non-vectorial data, i.e.

$$
K: X \times X \rightarrow \mathbb{R}
$$

where X is a space other than \mathbb{R}^{n}.
A kernel $K(\mathbf{x}, \mathbf{z})$ over \mathbb{R}^{n} that computes dot products in some space can be viewed as computing some sort of similarity measure between data elements $\mathbf{x}, \mathbf{z} \in \mathbb{R}^{n}$. Therefore an appropriate similarity measure between elements in any space X can be used to define a kernel over X.

Such kernels have been defined, for example, for data represented as trees or strings; SVMs can therefore be used to learn classifiers for such types of data.

Summary

- The SVM algorithm learns a linear classifier that maximizes the margin of the training data.
- Training an SVM consists of solving a quadratic programming problem in m variables, where m is the size of the training set.
- An SVM can learn a non-linear classifier in the original space through the use of a kernel function, which simulates dot products in a (high-dimensional) feature space.

Current Research

- Much work on efficient methods for finding approximate solutions to the quadratic programming problem, especially for large datasets.
- Multitude of new kernels for different types of structured data.
- Work on trying to optimize the margin distribution over all training points, rather than optimizing the margin of only the points closest to the separating hyperplane.

