
'

&

$

%

Introduction to

Support Vector Machines

Shivani Agarwal

'

&

$

%

Support Vector Machines (SVMs)

• Algorithm for learning linear classifiers

• Motivated by idea of maximizing margin

• Efficient extension to non-linear SVMs
through use of kernels

2

'

&

$

%

Problem Setting

Instances: x ∈ X

Class labels: y ∈ Y = {+1,−1}
Target function: g : X → Y

Unknown distribution: D (on X)

Training data: S = {(x1, y1), . . . , (xm, ym)}, yi = g(xi)

Objective: Given new x, predict y so that probability of error is minimal

3

'

&

$

%

Problem Setting (continued)

Hypothesis space: H = {h : X → Y }

Error of h on training set S: errS(h) =
1

m

m∑
i=1

I{h(xi) 6=yi}

Probability of error on new x: err(h) = ED[Ih(x) 6=g(x)]

More precise objective: Find h ∈ H such that err(h) is minimal

4

'

&

$

%

Linear Classifiers

Instance space: X = Rn

Set of class labels: Y = {+1,−1}
Training data: S = {(x1, y1), . . . , (xm, ym)}

Hypothesis space: Hlin(n) = {h : Rn → Y | h(x) = sign(w · x + b),
w ∈ Rn, b ∈ R}

sign(w · x + b) =

{
+1 if (w · x + b) > 0
−1 otherwise

Thus the goal of a learning algorithm that learns a linear classifier is to
find a hypothesis h ∈ Hlin(n) with minimal err(h).

5

'

&

$

%

Example 1

X = R2

Y = {+1(•),−1(x)}

Which classifier would you expect to generalize better?

Remember: want to minimize probability of error on future instances!

6

'

&

$

%

Intuitive Justification

• We expect the error on the training set, errS(h), to give some
indication of the probability of error on a new instance, err(h).

• We expect “simple” hypotheses to generalize better than more
“complex” hypotheses.

Can we quantify the above ideas?

7

'

&

$

%

Complexity of a Hypothesis Space

A hypothesis space H over instances in X is said to shatter a set A ⊆ X

if all possible dichotomies of A (all +/- labelings of elements of A) can be
represented by some hypothesis in H.

X = R2, H = Hlin(2).

A is shattered by H, but B is not.

8

'

&

$

%

Complexity of a Hypothesis Space (continued)

The VC dimension of a hypothesis space H, denoted by VC(H), is
defined as the size of the largest subset of X that can be shattered by H.

We saw that there exists a set of 3 points in R2 that can be shattered by Hlin(2).
No set of 4 points in R2 can be shattered by Hlin(2):

Thus, VC(Hlin(2)) = 3. In general, VC(Hlin(n)) = n + 1.

The VC dimension of H is a measure of the complexity of H.

9

'

&

$

%

Generalization Bound from Learning Theory

Let 0 < δ < 1.
Given a training set S of size m and a classifier h ∈ H, with probability
1− δ (over the choice of S) the following holds:

err(h) ≤ errS(h) +

√√√√VC(H)
(
log(2m

VC(H)) + 1
)
+ log(4/δ)

m

10

'

&

$

%

Example 2

X = R2

Y = {+1(•),−1(x)}

Which of these classifiers would be likely to generalize better?

11

'

&

$

%

Example 2 (continued)

Recall the VC-based generalization bound:

err(h) ≤ errS(h) +

√√√√VC(H)
(
log(2m

VC(H)) + 1
)
+ log(4/δ)

m

In this case, we get the same bound for both classifiers:

errS(h1) = errS(h2) = 0

h1, h2 ∈ Hlin(2), VC(Hlin(2)) = 3

How, then, can we explain our intuition that h2 should give better
generalization than h1?

12

'

&

$

%

Example 2 (continued)

Although both classifiers separate the data, the distance with which the
separation is achieved is different:

13

'

&

$

%

Concept of Margin

The margin γi of a point xi ∈ Rn with respect to a linear classifier
h(x) = sign(w · x + b) is defined as the distance of xi from the
hyperplane w · x + b = 0:

γi =

∣∣∣∣∣w · xi + b

‖w‖

∣∣∣∣∣
The margin of a set of points {x1, . . . ,xm} is defined as the margin of the
point closest to the hyperplane:

γ = min
1≤i≤m

γi = min
1≤i≤m

∣∣∣∣∣w · xi + b

‖w‖

∣∣∣∣∣

14

'

&

$

%

Margin-Based Generalization Bound

If H is the space of all linear classifiers in Rn that separate the training
data with margin at least γ, then

VC(H) ≤ min

(⌈
R2

γ2

⌉
, n

)
+ 1,

where R is the radius of the smallest sphere (in Rn) that contains the data.

Thus for such classifiers, we get a bound of the form

err(h) ≤ errS(h) +

√√√√√O
(

R2

γ2

)
+ log(4/δ)

m

15

'

&

$

%

The SVM Algorithm (Linearly Separable Case)

Given training data S = {(xi, yi)}m
i=1, where xi ∈ Rn, the SVM algorithm

finds a linear classifier that separates the data with maximal margin.

Without loss of generality, we can represent any linear classifier in Rn by
some w ∈ Rn, b ∈ R such that

min
1≤i≤m

|w · xi + b| = 1. (1)

The margin of the data with respect to the classifier is then given by

γ = min
1≤i≤m

∣∣∣∣∣w · xi + b

‖w‖

∣∣∣∣∣ = 1

‖w‖
.

Maximizing the margin is therefore equivalent to minimizing the norm ‖w‖
of the classifier, subject to the constraint in Eq. (1) above.

16

'

&

$

%

Optimization Problem

Minimize f(w, b) ≡ 1
2‖w‖

2

subject to yi(w · xi + b) ≥ 1, i = 1, . . . , m

This is an optimization problem in (n + 1) variables, with m linear
inequality constraints.

Introducing Lagrange multipliers αi, i = 1, . . . , m for the inequality
constraints above gives the primal Lagrangian:

Minimize LP (w, b,α) ≡ 1
2‖w‖

2 −
m∑

i=1

αi[yi(w · xi + b)− 1]

subject to αi ≥ 0, i = 1, . . . , m

17

'

&

$

%

Optimization Problem (continued)

Setting the gradients of LP with respect to w, b equal to zero gives:

∂LP

∂w
= 0 ⇒ w =

m∑
i=1

αiyixi,
∂LP

∂b
= 0 ⇒

m∑
i=1

αiyi = 0

Substituting the above in the primal gives the following dual problem:

Maximize LD(α) ≡
m∑

i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj(xi · xj)

subject to
m∑

i=1

αiyi = 0; αi ≥ 0, i = 1, . . . , m

This is a convex quadratic programming problem in α.

18

'

&

$

%

Solution

The parameters w, b of the maximal margin classifier are determined by
the solution α to the dual problem:

w =
m∑

i=1

αiyixi

b = −
1

2

(
min

yi=+1
(w · xi) + max

yi=−1
(w · xi)

)

19

'

&

$

%

Support Vectors

Due to certain properties of the solution (known as the
Karush-Kuhn-Tucker conditions), the solution α must satisfy

αi[yi(w · xi + b)− 1] = 0, i = 1, . . . , m.

Thus, αi > 0 only for those points xi that are closest to the classifying
hyperplane. These points are called the support vectors .

20

'

&

$

%

Non-Separable Case

Want to relax the constraints

yi(w · xi + b) ≥ 1.

Can introduce slack variables ξi:

yi(w · xi + b) ≥ 1− ξi,

where ξi ≥ 0 ∀i. An error occurs when ξi > 1.

Thus we can assign an extra cost for errors as follows:

Minimize f(w, b, ξ) ≡ 1
2‖w‖

2 + C
m∑

i=1

ξi

subject to yi(w · xi + b) ≥ 1− ξi; ξi ≥ 0, i = 1, . . . , m

21

'

&

$

%

Non-Separable Case (continued)

Dual problem:

Maximize LD(α) ≡
m∑

i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj(xi · xj)

subject to
m∑

i=1

αiyi = 0; 0 ≤ αi ≤ C, i = 1, . . . , m

Solution:

The solution for w is again given by

w =
m∑

i=1

αiyixi.

The solution for b is similar to that in the linear case.
22

'

&

$

%

Visualizing the Solution in the Non-Separable Case

1. Margin support vectors ξi = 0 Correct
2. Non-margin support vectors ξi < 1 Correct (in margin)
3. Non-margin support vectors ξi > 1 Error

23

'

&

$

%

Non-Linear SVMs

Basic idea:

Map the given data to some (high-dimensional) feature space RD, using a
non-linear mapping ψ:

ψ : Rn → RD.

Learn a linear classifier in the new space.

24

'

&

$

%

Dot Products and Kernels

Training phase:

Maximize LD(α) ≡
m∑

i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj(ψ(xi) ·ψ(xj))

subject to
m∑

i=1

αiyi = 0; 0 ≤ αi ≤ C, i = 1, . . . , m

Test phase:

h(x) = sign(w ·ψ(x) + b), w ∈ RD, b ∈ R.

25

'

&

$

%

Dot Products and Kernels (continued)

Recall the form of the solution:

w =
∑

i∈SV
αiyiψ(xi).

Therefore, the test phase can be written as

h(x) = sign(w ·ψ(x) + b)

= sign

 ∑
i∈SV

αiyi(ψ(xi) ·ψ(x)) + b

 .

Thus both training and test phases use only dot products between images
ψ(x) of points x in Rn.

26

'

&

$

%

Dot Products and Kernels (continued)

A kernel function is a symmetric function K : Rn × Rn → R.

A Mercer kernel , in addition, computes a dot product in some
(high-dimensional) space:

K(x, z) = ψ(x) ·ψ(z),

for some ψ, D such that ψ : Rn → RD.

Thus if we can find a Mercer kernel that computes a dot product in the
feature space we are interested in, we can use the kernel to replace the
dot products in the SVM.

27

'

&

$

%

SVMs with Kernels

Training phase:

Maximize LD(α) ≡
m∑

i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjK(xi,xj)

subject to
m∑

i=1

αiyi = 0; 0 ≤ αi ≤ C, i = 1, . . . , m

Test phase:

h(x) = sign

 ∑
i∈SV

αiyiK(xi,x) + b

 .

28

'

&

$

%

Example: Quadratic Kernel

Let X = R2, and consider learning a quadratic classifier in this space:

h(x) = sign(w1x2
1 + w2x2

2 + w3x1x2 + w4x1 + w5x2 + b)

This is equivalent to learning a linear classifier in the feature space
ψ(R2), where

ψ : R2 → R5, ψ

([
x1
x2

])
=

x2
1

x2
2

x1x2
x1
x2

 .

Without the use of a kernel, learning such a classifier using an SVM
would require computing dot products in R5.

29

'

&

$

%

Example: Quadratic Kernel (continued)

Consider the kernel

K : R2 × R2 → R, K(x, z) = (x · z + 1)2

It can be verified that

K(x, z) = ψ′(x) ·ψ′(z),
where

ψ′ : R2 → R6, ψ′
([

x1
x2

])
=

x2
1

x2
2√

2x1x2√
2x1√
2x2
1

Thus, an SVM with the above kernel can be used to learn a quadratic
classifier in R2 using only dot products in R2.

30

'

&

$

%

Some Commonly Used Kernels

x, z ∈ X = Rn

Polynomial kernels of degree d:

K(x, z) = (x · z + 1)d

Gaussian kernels:

K(x, z) = exp(−
‖x− z‖2

2σ
)

Such kernels are used to efficiently learn a linear classifier in a
high-dimensional space using computations in only the original,
lower-dimensional space. The Gaussian kernel corresponds to a dot
product in an infinite dimensional space.

31

'

&

$

%

Kernels over Structured Data

Kernels can also be defined for non-vectorial data, i.e.

K : X ×X → R

where X is a space other than Rn.

A kernel K(x, z) over Rn that computes dot products in some space can
be viewed as computing some sort of similarity measure between data
elements x, z ∈ Rn. Therefore an appropriate similarity measure between
elements in any space X can be used to define a kernel over X.

Such kernels have been defined, for example, for data represented as
trees or strings; SVMs can therefore be used to learn classifiers for such
types of data.

32

'

&

$

%

Summary

• The SVM algorithm learns a linear classifier that maximizes the
margin of the training data.

• Training an SVM consists of solving a quadratic programming
problem in m variables, where m is the size of the training set.

• An SVM can learn a non-linear classifier in the original space through
the use of a kernel function, which simulates dot products in a
(high-dimensional) feature space.

33

'

&

$

%

Current Research

• Much work on efficient methods for finding approximate solutions to
the quadratic programming problem, especially for large datasets.

• Multitude of new kernels for different types of structured data.

• Work on trying to optimize the margin distribution over all training
points, rather than optimizing the margin of only the points closest to
the separating hyperplane.

34

