Unix™ for Poets

Kenneth Ward Church
AT&T Bell Laboratories
kwc@research.att.com

e Text is available like never before
e Dictionaries, corpora, etc.

o Data Collection Efforts:
ACL/DCI, BNC, CLR, ECI, EDR, ICAME, LDC

 Information Super Highway Roadkill:
email, bboards, faxes

e Billions and billions of words

e \What can we do with it all?

e [t is better to do something simple,
than nothing at all.

e You can do the simple things yourself
(D1Y is more satisfying than begging for ““help’” from a
computer officer.)

Exercisesto be addressed

1. Count words in a text

2. Sort a list of words in various ways
e ascii order
e dictionary order

e “‘rhyming’’ order

3. Extract useful info from a dictionary

4, Compute ngram statistics

5. Make a Concordance

Tools

e Qrep: search for a pattern (regular expression)
e sort

e uniqg —c (count duplicates)

e tr (translate characters)

e wc (word count)

e sed (edit string)

e awk (simple programming language)

e cut

e paste

e COMM

join

Exercise 1: Count wordsin atext

e Input: text file (genesis)

o Output: list of words in the file with freq counts

e Algorithm
1. Tokenize (tr)
2. Sort (sort)
3. Count duplicates (unig —c)

Solution to Exercise 1

tr -sc 'A-Za-z' ’'\012’

sort

uniqg -c

H R P 0N R

134
59

Glue

A

Abel
Abelmizraim
Abidah
Abide
Abimael
Abimelech
Abraham
Abram

read from input file <
write to output file >

pipe

< genesgis

Step by Step

sed 50 < genesis
#Genesis

1:
1:2 And the earth was without form, and void; and
1:

1:4 And God saw the light, that [it was] good: and

1 In the beginning God created the heaven and th

3 And God said, Let there be light: and there wa

tr -sc 'A-Za-z' '\012’ < genesis | sed 5qg

Genesis

In

the
beginning

tr -sc 'A-Za-z’ '\012’ < genesis
sort | sed 5q

A
A
Abel
Abel

tr -sc 'A-Za-z’ '\012’ < genesis
sort | uniqg -c | sed 5g

1

2 A

8 Abel
1 Abelmizraim
1 Abidah

More Counting Exercises

e Merge the counts for upper and lower case.

tr 'a-z’' 'A-Z’' < genesis |
tr -sc 'A-Z’ '\012’ |

sort |

uniqgq -c

e Count sequences of vowels

tr 'a-z’ 'A-Z’' < genesis |
tr -sc 'AEIOU’ '\012’ |
sort |

uniqg -c

e Count sequences of consonants

tr 'a-z’' 'A-Z’ < genesis |
tr -sc ’‘BCDFGHJKLMNPQRSTVWXYZ’ ’\012'
sort |

uniq -c

sort lines of text

Example | Explanation

sort —d dictionary order

sort —f fold case

sort —n numeric order

sort —nr reverse numeric order

sort +1 start with field 1 (starting from 0)
sort +0.50 | start with 50th character

sort +1.5 start with 5th character of field 1

See man page
man sort

-10 -

Sort Exercises
e Sort the words in Genesis by freq

tr -sc 'A-Za-z’ ’'\012’' < genesis
sort |

uniqg -c |

sort -nr > genesis.hist

e Sort them by dictionary order

e Sort them by rhyming order (hint: rev)
1 freely
1 sorely
5 Surely
15 surely

1 falsely
1 fly

echo hello world | rev
dlrow olleh

echo hello world | rev | rev
hello world

-11 -

| mportant Points Thus Far

Tools: tr, sort, uniq, sed, rev

Glue: |, <, >

Example: count words in a text

Variations
e tokenize by vowel, merge upper and lower case

e sort by freq, dictionary order, rnyming order

Pipes — flexibility: simple yet powerful

-12 -

Bigrams

Algorithm
1. tokenize by word
2. print word; and word; 41 on the same line
3. count

tr -sc 'A-Za-z' '\012’ < genesis > genesis.words
tail +2 genesis.words > genesis.nextwords

paste genesis.words genesis.nextwords

And God
God said
said Let

Let there

-13 -

paste genesis.words genesis.nextwords |

sort | unig -c > genesis.bigrams
sort -nr < genesis.bigrams | sed 5g
372 of the

287 in the

192 And he
185 And the
178 said unto

Exercise: count trigrams

- 14 -

grep & egrep: An Example of a Filter

Count ““~ing’” words

tr -sc 'A-Za-z' ’'\012’ < genesis
grep 'ing$’ |

sort | unig -c

Example [Explanation

grep gh find lines containing “‘gh”’

grep “con’ [find lines beginning with “‘con’’
grep ’ing$’ [find lines ending with *“ing’’

grep —v gh delete lines containing “‘gh’’
grep —v "“con’ [delete lines beginning with “‘con
grep -V ’ing$’ [delete lines ending with “*ing”’

-15 -

Example Explanation

grep '[A-Z]’ lines with an uppercase char

grep [A-Z]’ lines starting with an uppercase char
grep ’[A-Z]$’ lines ending with an uppercase char

grep [A-Z]*$’

grep ’[aeiouAEIOUY’
grep “"[aeiouAEIOU]’
grep '[aeiouAEIOU]$’

grep —i ’[aeiou]’
grep —i “[aeiou]’
grep —i ’[aeiou]$’

grep —i "["aeiou]’
grep —i ’["aeiou]$’

grep —I ’[aeiou].*[aeiou]’
grep —i ""["aeiou]*[aeiou][aeiou]*$’

lines with all uppercase chars
lines with a vowel

lines starting with a vowel
lines ending with a vowel

ditto

lines starting with a non-vowel
lines ending with a non-vowel

lines with two or more vowels
lines with exactly one vowel

- 16 -

Regular Expressions

Example Explanation

a match the letter “‘a’’

[a—Z] match any lowercase letter
[A-Z] match any uppercase letter
[0-9] match any digit
[0123456789] match any digit

[aeioUAEIUQ]
["aeiouUAEIOU]

~

$
X*

X+
x|y
(X)

match any vowel

match any letter but a vowel
match any character
beginning of line

end of line

any number of x

one or more of x (egrep only)

x ory (egrep only)
override precedence rules (egrep only)

- 17 -

Grep Exercises

1.

How many uppercase words are there in Genesis?
Lowercase? Hint: we -1or grep -c

How many 4-letter words?

Are there any words with no vowels?

Find “*1-syllable’” words
(words with exactly one vowel)

Find ““2-syllable’” words
(words with exactly two vowels)

Some words with two orthographic vowels have only
one phonological vowel. Delete words ending with a
silent ‘¢’ from the 2-syllable list. Delete
diphthongs.

Find verses in Genesis with the word “‘light.”” How
many have two or more instances of “‘light’’? Three
or more? Exactly two?

sed (string editor)

- 18 -

e print the first 5 lines (quit after the 5th line)

sed 50 < genesis

e print up to the first instance of a regular expression

sed ’'/light/g’ genesis

¢ Substitution

Example

Explanation

sed *s/light/dark/g’
sed ’s/ly$/-ly/g’
sed ’s/[\011].*//g’

simple morph prog
select first field

-19 -

sed exer cises

1. Count morphs in genesis
Hint: use spell -v toextract morphs,
select first field and count

echo darkness | spell -v
+ness darkness

2. Count word initial consonant sequences: tokenize by
word, delete the vowel and the rest of the word, and
count

3. Count word final consonant sequences

- 20 -

awk

o Etymology
e Alfred Aho
e Peter Weinberger

e Brian Kernighan

e Itis ageneral purpose programming language,

e though generally intended for shorter programs
(1 or 2 lines)

e Especially good for manipulating lines and fields
in simple ways

e WARNING: awk, nawk, gawk

-21 -

Selecting Fields by Position

print the first field
awk ‘{print $1}°’
cut -f1l

print the second field
awk ’{print $2}’
cut -f2

print the last field
awk ’{print S$NF}’
rev | cut -f1 | rev

print the penultimate field
awk ’'{print $(NF-1)}’
rev | cut -f2 | rev

print the number of fields
awk ‘' {print $NF}’

Exercise: sort the words in Genesis by the number of
syllables (sequences of vowels)

-22 -

Filtering by Numerical Comparison

get lines with large frequencies

awk '$1 > 100 {print $0}’ genesis.hist
awk '$1 > 100 {print}’ genesis.hist
awk '$1 > 100’ genesis.hist

Recall genesis.hist contains the words in genesis and
their frequencies

sed 5q genesis.hist
17052

2427 and
2407 the
1359 of

1251 And

predicates:
>, <, >=, <=, , 1=, &&, ||

Exercises:
1. find vowel sequences that appear at least 10 times

2. find bigrams that appear exactly twice

- 923 -

Filtering by String Comparison

sort -u genesis.words > genesis.types

Find palindromes
rev < genesis.types |

paste - genesis.types |
awk 'Sl == $2'
A A

T T

O O

a a

deed deed
did did

ewe ewe
noon noon

S S

== works on strings

paste

w N

_ 24 -

Find words that can also be spelled backwards
rev < genesis.types | cat - genesis.types |
sort | unig -c | awk ’$1 >= 2 {print $2}°’

saw
ward
was

Exercise: compare the bible and wsj. Find words that are in
one and not in the other. Do it with awk and then do a
man on comm, and do it again.

_ 95 -

Filtering by Regular Expression Matching

lookup words ending in “‘ed”’
awk '$2 7 /ed$/’ genesis.hist
grep ’'ed$’ genesis.hist

count “‘ed’” words (by token)
awk ’$2 7 /ed$/ {x = x + $1}
END {print x}’ genesis.hist

tr -sc 'A-Za-z' '\012’ < genesis |
grep ’‘ed$’ | wc -1

count “‘ed’” words (by type)
awk '$2 ~ /eds/ {x = x + 1}
END {print x}’ genesis.hist

tr -sc 'A-Za-z’ ’'\012’ < genesis |
grep ’‘ed$’ | sort | unig -c¢ | wec -1

- 26 -

count “‘ed’” words both ways
awk ’/ed$/ {token = token + $1;

type = type + 1}
END {print token, type}’ genesis.hist

awk ’'/ed$/ {token += $1; type++}
END {print token, type}’ genesis.hist

Awk Exercises

1. Find frequent morphemes in Genesis

2. Itis said that English avoids sequences of -ing words.
Find bigrams where both words end in -ing. Do
these count as counter-examples to the -ing -ing rule?

3. For comparison’s sake, find bigrams where both
words end in -ed. Should there also be a prohibition
against -ed -ed? Are there any examples of -ed -ed in
Genesis? If so, how many? Which verse(s)?

_ 927 -

Memory acrosslines

Exercise: write a unig -c program in awk. Hint: the
following “‘almost’” works

awk '$0 == prev { c++ }
$0 != prev { print c, prev
c=1
prev=30 }’

Fix it so it doesn’t drop the last record.

echo aabbcc | tr " "\012’ | unig -c
2 a
2 b
2 cC
echoaabbcc | tr ' "\012" |
awk '$0 == prev { c++ }
$0 != prev { print c, prev

c=1; prev=3$0 }’

NN
o

- 28 -

uniql

sort morphs by freq, and list 3 examples:

tr -sc 'A-Za-z’ ’'\012’ < genesis |
spell -v | sort | unigl |

awk ’{print NF-1, $1, $2, $3, $4}' |
sort -nr

192 +s Cherubims Egyptians Gentiles

129 +ed Blessed Feed Galeed

77 +d Cursed abated acknowledged
49 +ing Binding according ascending

32 +1ly Surely abundantly boldly

We have to write unigl

- 929

unigl merges lines with the same first field

input:
+S goods
+s deeds

+ed failed

+ed attacked
+ing playing
+ing singing

output:
+S goods deeds

+ed failed attacked
+ing playing singing

- 30 -

awk '$1 == prev {list = list " " $2}
$1 != prev {if(list) print list
list = SO
prev = $1}
END {print list}’
awk ’'$1 == prev {printf "\t%s", $2}
$1 != prev {prev = $1
printf "\n%s\t%s", $1, $2}
END {printf "\n"}

New function: printf

Exercise: extract a table of words and parts of speech from

w7 .frag.

abacus
abaft
abalone
abandon
abandoned

n
av pp
n
vt n

aj

-31 -

Arrays

Two programs for counting word frequencies:

tr -sc 'A-Za-z’ '\012’' < genesis
sort |
uniq -c
tr -sc 'A-Za-z’ ’'\012’' < genesis
awk ’

{ freql[$0]l++ };
END { for(w in freq)
print freqglw]l, w }’

Arrays are really hashtables
e They grow as needed.

e They take strings (and numbers) as keys.

-32-

Mutual Info: An Example of Arrays

o Pr (x,y)
'xY) = 1092 5y ey
106Y) = 1082 5 1)

paste genesis.words genesis.nextwords |
sort | unig -c > genesis.bigrams

cat genesis.hist genesis.bigrams |

awk 'NF == 2 { f£[$2]=381}
NF == 3 {

print log(N*$1/(£[$2]1*£[$3]))/log(2), s$2, $3}
’ "N=‘wc -1 genesis.words'"

-33 -

Array Exercises

1.

Mutual information is unstable for small bigram
counts. Modify the previous prog so that it doesn’t
produce any output when the bigram count is less
than 5.

Compute t, using the approximation:

fxy)-— F) ()

Vi(x.y)

Find the 10 bigrams in Genesis with the largest t.

Print the words that appear in both Genesis and
wsj.frag, followed by their fregs in the two samples.
Doa manon join anddo it again.

Repeat the previous exercise, but don’t distinguish
uppercase words from lowercase words.

KWIC

Input:

All’s well that
Nature abhors a
Every man has a

Output:

Every man has
Nature abhors
Nature

All’'s well that
Every man

Every

Every man has a
All’s well
Nature abhors a
All’'s

well that ends

-34 -

ends well.
vacuum.
price.

a price.

a vacuum.
abhors a wvacuum
ends well.

has a price.
man has a price
price.

that ends well.
vacuum.

well that ends
well.

-35-

KWIC Solution
awk '/
{for(i=1; i<length($0); i++)
if (substr($0, i, 1) == " n)

printf ("$15s%s\n",
substr(s0, 1-15, i<=15 ? 1i-1
substr ($0, i, 15))}’

substr
length
printf
for(i=1; i<n; i++) { ... }

pred ? true : false

15),

- 36 -

Concordance: An Example of the match function

Exercise: Make a concordance instead of a KWIC index.
That is, show only those lines that match the input word.

awk ’{i:O;
while (m=match (substr (30, i+1), "well")){
1+=m
printf ("%$15s%s\n",
substr(s0, i-15, i<=15 ? i-1 : 15),
substr ($0, i, 15))}’

All’s well that ends
well that ends well.

_37 -

Passing ar gs from the command-line

awk ’{i:O;
while (m=match (substr($0, i+1), re)) {
i4+=m
printf ("%$15s%s\n",
substr (s0, i-15, i<=15 ? i-1 : 15),
substr ($0, i, 15))}
' re=" [TaeiouAEIOU]"

All’s well that ends
All’s well that ends well
well that ends well.
Nature abhors a wvacuum.
Every man has a pric
Every man has a price.
Every man has a price.

e match takes regular expressions

o while (expression) { action }

- 38 -

KWICInC: AFirst Try

#include <stdio.h>

#define MAXFILE 1000

#define MIN(a,b) ((a)<(b)?(a): (b))
char text [MAXFILE] ;

output (char *text, int start, int end)

{

for(; start<0; start++) putchar(’ ’);
for(; start<end; start++) {

char ¢ = text[start];

if(c == "\012') c =" ';

putchar (c) ;
}

putchar ('\n’) ;

}

main ()
{
int 1, n;
n = fread(text, sizeof (char), MAXFILE, stdin);
for(i=0;i<n;i++)
if (text[i] == ')
output (text, i-15, MIN(i+1l5, n));

-39 -

Problemswith First Try

MAXFILE: a hardwired limit

Worse, no error checking on MAXFILE

Large files are truncated (silently)

— incorrect output

_40 -

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <malloc.h>

void fatal (char *msg)
fprintf (stderr, "%$s\n", msg) ;
exit (2) ;)

int file length(FILE *£fd) (
struct stat stat buf;
if (fstat (fileno(fd), &stat buf) != -1)
return(stat buf.st size);
return(-1) ; }

main (int ac, char **av) {
if (ac != 2) fatal ("wrong number of args");
else {
FILE *fd = fopen(av[1l], "r");
int i1, n=file length(£fd);
char *text=malloc (n);
if(ltext) fatal ("input is too large") ;
fread (text, sizeof (char), n, £4d);
for (i=0;1i<n;i++)
if (text[i] == " ")
output (text, i-15, MIN(i+15, n));}}

- 4] -

Commentson Second Try

e Works on larger files

e Doesn’t accept input from a pipe.

o Still doesn’t work on really large files,
but now there’s an error msg.

_42 -

Memory Mapping: Works Quickly on Really Large Files

#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>

void *mmapfile(char *filename, int *n)
{

FILE *fd = fopen(filename, "xr");

1f (!fd) return (fd) ;

*n = file length(£fd);

return (mmap (NULL, *n, PROT READ,

MAP PRIVATE, fileno(fd), 0));

}

main (int ac, char **av)
{
if (ac != 2) fatal ("wrong number of args") ;
else {
int i, n;
char *text=mmapfile(av[l], &n);
if (!text) fatal("can’t open input file");
for(i=0;1i<n;i++)
if (text[1] == " ')
output (text, i-15, MIN(i+15, n));

_43 -

A Set of Corpus Tools Designed for Mmap

e Two data structures (in separate files):
1. wordlist: seq of the V types in vocab

2. corpus. seq of the N tokens in the text

e The wordlist is stored as a sequence of V strings,
separated by nulls (octal 0) rather than newlines (octal
12). There is also a wordlist.idx, a sequence of V ints,
indicating the starting position of each word in the
wordlist. This way, the wordlist object can be
mmapped into memory without having to parse the
strings.

e The corpus is stored as a sequence of N ints, one for
each of the N tokens in the text. Each int is an offset
into the wordlist.

- 44 -

Print & Intern

e By analogy with LISP,
o wordlist ~ a symbol table of pnames (print names),

e corpus " an array of pointers into the symbol table.

e We can count word freqs and ngrams by manipulating
the pointers without having to follow the pointers into
the symbol table.

o Fixed-sized pointers are convenient for random access.

LISP-like operations:
e intern: text — corpus

e print: corpus — text

- 45 -

Intern: text — corpus
poor man’s intern
awk ’'{if($1 in tab) {print tab[$1]}
else {print $1 > "wordlist"
print tab[$1] = code++ }}’ |
atoil

print: corpus — text
poor man’s print
itoa |
awk 'BEGIN {while (getline < "wordlist")
tab[code++]=$1}
{print tab[$1]}’

atoi: ascii — int
itoa: int — ascii

Wordlist is really delimited with nulls, not newlines

46 -

hist_cor pus

tr -sc 'A-Za-z' '\012’ |
sort |
uniqg -c

tr -sc 'A-Za-z' '\012' |
intern -v wordlist > corpus

hist corpus < corpus > hist

hist = (int *)malloc (sizeof (int) * V) ;

memset (hist, 0, sizeof(int) * V) ;

while ((w=getw(stdin)) != EOF)
hist [w] ++;

fwrite (hist, sizeof (int), V, stdout) ;

e Counts word fregs without consulting into the wordlist
(symbol table).

e No string operations

_47 -

counting ngrams

tr -sc 'A-Za-z' '\012’ > wO
tail +2 > wl
paste w0 wl | sort | unig -c > bigrams

independently motivated (no additional cost)
tr -sc 'A-Za-z' '\012' |
intern -v wordlist > corpus

generate bigrams < corpus |
count by hashing |
count by sorting |
print bigrams > bigrams

struct bigram {
float wvalue;
int elts[2];

}i

e count_by_hashing reads bigrams into a large hash table.
Increments values when possible. If collision, one of
the bigrams is written out on stdout.

e count_by_sorting works like sort | uniq -c,
but operates on the pointers, and does not follow them
into the wordlist.

_48 -

/* generate bigrams */
struct bigram b;
b.value = 1;
b.elts[l] = getw(stdin) ;
for(;;) {
b.elts[0] = b.elts[1];
b.elts[l] = getw(stdin) ;
if (b.elts[1l] == EOF) break;
fwrite (&b, sizeof (struct bigram), 1, stdout) ;

}

/* print bigrams */
char *wordlist = mmapfile("wordlist", &nwl);
int *idx = (int *)mmapfile("wordlist.idx", &V);
V /= sizeof (int) ;
#define PNAME (w) (wordlist + idx([w])
struct bigram b;
while (fread (&b, sizeof (struct bigram), 1, stdin))
printf ("$£f\t%s\t%s\n",
b.value,
PNAME (b.elts[0]),
PNAME (b.elts[1])) ;

_ 49 -

Mutual Info

generate bigrams < corpus |
count by hashing |
count by sorting |
mutual info |
print bigrams > bigrams

int *hist = (int *)mmapfile("hist", &V);

V /= sizeof (int) ;

int N = file length("corpus") /sizeof (int) ;

struct bigram b;

int *e = b.elts;

while (fread (&b, sizeof (struct bigram),l,stdin)){
b.value=1og2 (N*b.value/

(hist[e[0]]*hist[e[1]]));

fwrite (&b, sizeof (struct bigram), 1, stdout);

}

-850 -

t-score

generate bigrams < corpus |
count by hashing |
count by sorting |
tscore |
print bigrams > bigrams

int *hist = (int *)mmapfile("hist", &V);

V /= sizeof (int) ;

double N = file length("corpus") /sizeof (int) ;

struct bigram b;

int *e = b.elts;

while (fread (&b, sizeof (struct bigram),l,stdin)){
b.value=(b.value-hist[e[0]] *hist[e[1]]/N)/

sgrt (b.value) ;

fwrite (&b, sizeof (struct bigram), 1, stdout);

}

-51 -

Concordancing

refs <pattern> | pconc

refs uses an inverted file (conc) to find the locations of
<pattern> in corpus

pconc then prints these locations

/* pconc */

while ((ref=getw(stdin)) != EOF) {
int *c = corpus + ref;
pline (c-context, c+context);}

pline (int *s, int *e) {
while(s < e)
printf ("%s ", PNAME (*s++)) ;
putchar (‘\n’) ;}

_52-

/* refs */

int *conc = (int *)mmapfile("conc", &N);

int *cidx = (int *)mmapfile("conc.idx", &V) ;
int *hist = (int *)mmapfile("hist", &V);

N /= sizeof (int) ;

V /= sizeof (int) ;

int pattern = atoi(av([l]);

fwrite(conc + cidx[pattern], sizeof (int),
hist [pattern], stdout) ;

The conc file is a seq of N ints;
it is the same size as the corpus file.

itoa < corpus |

awk ’{print $1, NR-1}' |
sort +n |

awk ’'{ print $2 }’ |
atoi > conc

The conc.idx file is the cumulative sum of the hist file.

itoa < hist |
awk ' { x += $1; print x }’' |
atoi > conc.idx

_53-

Exercises
1. intern
2. print_corpus
3. generate_bigrams
4. print_bigrams
5. count_by_hashing
6. count_by_sorting
7. mutual_info
8. tscore
9. itoa

10. atoi

11. refs

12. pconc

