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1. Introduction
A parser for natural language must often choose between two
or more equally grammatical parses for the same sentence.
Often the correct parse can be determined from the lexical
properties of certain key words or from the context in which
the sentence occurs. For example in the sentence,

In July, the Environmental Protection Agency imposed a grad-
ual ban on virtually all uses of asbestos.

the prepositional phrase on virtually all uses of asbestos can
attach to either the noun phrase a gradual ban , yielding

[V P imposed [NP a gradual ban [PP on virtually all uses of
asbestos ] ] ],

or the verb phrase imposed, yielding

[V P imposed [NP a gradual ban ] [PP on virtually all uses of
asbestos ] ].

For this example, a human annotator’s attachment decision,
which for our purposes is the “correct” attachment, is to the
noun phrase. We present in this paper methods for con-
structing statistical models for computing the probability of
attachment decisions. These models could be then integrated
into scoring the probability of an overall parse. We present
our methods in the context of prepositional phrase (PP) at-
tachment.

Earlier work [11] on PP-attachment for verb phrases (whether
the PP attaches to the preceding noun phrase or to the verb
phrase) used statistics on co-occurences of two bigrams: the
main verb (V ) and preposition (P ) bigram and the main noun
in the object noun phrase (N�) and preposition bigram. In
this paper, we explore the use of more features to help in
modeling the distribution of the binary PP-attachment deci-
sion. We also describe a search procedure for selecting a
“good” subset of features from a much larger pool of features
for PP-attachment. Obviously, the feature search cannot be
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guaranteed to be optimal but appears experimentally to yield
a good subset of features as judged by the accuracy rate in
making the PP-attachment decisons. These search strategies
can be applied to other attachment decisions.

We use data from two treebanks: the IBM-Lancaster Treebank
of Computer Manuals and the University of Pennsylvania
WSJ treebank. We extract the verb phrases which include PP
phrases either attached to the verb or to an object noun phrase.
Then our model assigns a probability to either of the possible
attachments. We consider models of the exponential family
that are derived using the Maximum Entropy Principle [1].
We begin by an overview of ME models, then we describe
our feature selection method and a method for constructing
a larger pool of features from an exisiting set, and then give
some of our results and conclusions.

2. Maximum Entropy Modeling

The Maximum Entropy model [1] produces a probability dis-
tribution for the PP-attachment decision using only informa-
tion from the verb phrase in which the attachment occurs.
We denote the partially parsed verb phrase, i.e., the verb
phrase without the attachment decision, as a history h, and
the conditional probability of an attachment as p�djh�, where
d � f�� �g and corresponds to a noun or verb attachment
(respectively). The probability model depends on certain
features of the whole event �h� d� denoted by fi�h� d�. An
example of a binary-valued feature function is the indicator
function that a particular �V� P � bigram occured along with
the attachment decision being V , i.e. fprint�on�h� d� is one
if and only if the main verb of h is “print”, the preposition
is “on”, and d is “V”. As discussed in [6], the ME principle
leads to a model for p�djh�which maximizes the training data
log-likelihood,

X
h�d

�p�h� d� log p�djh��

where �p�h�w� is the empirical distribution of the training set,
and where p�djh� itself is an exponential model:
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At the maximum of the training data log-likelihood, the model
has the property that its k parameters, namely the �i’s, satisfy
k constraints on the expected values of feature functions,
where the ith constraint is,

Emfi � �Efi

The model expected value is,

Emfi �
X
h�d

�p�h�p�djh�fi�h� d�

and the training data expected value, also called the desired
value, is

�Efi �
X
h�d

�p�h� d�fi�h� d�

The values of these k parameters can be obtained by one of
many iterative algorithms. For example, one can use the Gen-
eralized Iterative Scaling algorithm of Darroch and Ratcliff
[3]. As one increases the number of features, the achievable
maximum of the training data likelihood increases. We de-
scribe in Section 3 a method for determining a reliable set of
features.

3. Features
Feature functions allow us to use informative characteristics
of the training set in estimating p�djh�. A feature is defined
as follows:

fi�h� d�
def
�

�
�� iff d � � and �q � Qi� q�h� � �
�� otherwise.

where Qi is a set of binary-valued questions about h. We
restrict the questions in any Qi ask only about the following
four head words:

1. Head Verb (V )

2. Head Noun (N�)

3. Head Preposition (P )

4. Head Noun of the Object of the Preposition (N�)

For example, questions on the history “imposed a gradual
ban on virtually all uses of asbestos”, can only ask about the
following four words:

imposed ban on uses

The notion of a “head” word here corresponds loosely to the
notion of a lexical head. We use a small set of rules, called
a Tree Head Table, to obtain the head word of a constituent
[12].

We allow two types of binary-valued questions:

1. Questions about the presence of any n-gram (n � �)
of the four head words, e.g., a bigram maybe fV ==
‘‘is’’, P == ‘‘of’’g. Features comprised solely
of questions on words are denoted as “word” features.

2. Questions that involve the class membership of a head
word. we use a binary hierarchy of classes derived by
mutual information clustering which we describe below.
Given a binary class hierarchy, we can associate a bit
string with every word in the vocabulary. Then, by
querying the value of certain bit positions we can con-
struct binary questions. For example, we can ask whether
about a bit position for any of the four head words, e.g.,
Bit 5 of Preposition == 1. We discuss be-
low a richer set of these questions. Features comprised
solely of questions about class bits are denoted as “class”
features, and features containing questions about both
class bits and words are denoted as “mixed” features�.

Before discussing, feature selection and construction, we
give a brief overview of the mutual information clustering
of words.

Mutual Information Bits Mutual informationclustering, as
described in [10], creates a a class “tree” for a given vocab-
ulary. Initially, we take the C most frequent words (usually
1000) and assign each one to its own class. We then take the
�C � ��st word, assign it to its own class, and merge the pair
of classes that minimize the loss of average mutual informa-
tion. This repeats until all the words in the vocabulary have
been exhausted. We then take ourC classes, and use the same
algorithm to merge classes that minimize the loss of mutual
information, until one class remains. If we trace the order in
which words and classes are merged, we can form a binary
tree whose leaves consists of words and whose root is the
class which spans the entire vocabulary. Consequently, we
uniquely identify each word by its path from the root, which
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can be represented by a string of binary digits. If a path length
of a word is less than the maximum depth, we pad the bottom
of the path with �’s (dummy left branches), so that all words
are represented by an equally long bitstring. “Class” features
query the value of bits, and hence examine the path of the
word in the mutual information tree.

Special Features In addition to the types of features de-
scribed above, we employ two special features in the ME
model, the Complement and the Null feature. The Comple-
ment, defined as

fcomp�h� d�
def
�

�
�� iff fi�h� d� � �, �fi �M
�� otherwise.

will fire on a pair �h� d� when no other fi in the model applies.
The Initial feature is simply

fnull�h� d�
def
�

�
�� iff d � �
�� otherwise

and causes the ME model to match thea priori probability
of seeing an N-attachment.

3.1. Feature Search

The search problem here is to find an optimal set of features
M for use in the ME model. We begin with a search space P
of putative features, and use a feature ranking criterion which
incrementally selects the features in M, and also incremen-
tally expands the search space P.

Initially P consists of all �� �� 	 and �-gram word features of
the four headwords that occur in the training histories �, and

all possible unigram class features�. We obtain
�P

k��

��
k

�
� �


word features from each training history, and, assuming each
word is assigned m bits, a total of �m � � unigram class
features, e.g., there are �m features per word: Bit 1 of
Verb == 0, Bit 1 of Verb == 1, ... ,
Bit m of Verb == 0, Bit m of Verb ==1

The feature search then proceeds as follows:

1. Initialize P as described above, initialize M to contain
complement and null feature

2. Select the best feature from P using Delta-Likelihood
rank

3. Add it to M

�With a certain frequency cut-off, usually 3 to 5
�Also with a certain frequency cut-off
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Figure 1: Performance of Maximum Entropy Model on Wall
St. Journal Data

4. Train Maximum Entropy Model, using features in M

5. Grow P based on last feature selected

6. repeat from (2)

If we measure the training entropy and test entropy after the
addition of each feature, the training entropy will monotoni-
cally decrease while the test entropy will eventually reach a
minimum (due to overtraining). Test set performance usually
peaks at the test entropy minimum ( see Fig. 1 & 2 ).

Delta-Likelihood At step (2) in the search, we rank all fea-
tures in P by estimating their potential contribution to the
log-likelihood of the training set. Let q be the conditional
probability distribution of the model with the features cur-
rently inM. Then for each fi � P, we compute, by estimat-
ing only �i, the probability distribution p that results when f i
is added to the ME model:

p�djh� �
q�djh�e�ifi�h�d�

�P
w��

q�wjh�e�ifi�h�w�

We then compute the increase in (log) likelihood with the new
model:

�Li �
X
h�w

�p�h�w� lnp�wjh��
X
h�w

�p�h�w� ln q�wjh�

and choose the feature with the highest �L. Features redun-
dant or correlated to those features already inMwill produce
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Figure 2: Entropy of Maximum Entropy Model on Wall St.
Journal Data

a zero or negligible �L, and will therefore be outranked by
genuinely informative features. The chosen feature is added
to M and used in the ME Model.

3.2. Growth of Putative Feature Set

At step (5) in the search we expand the space P of putative
features based on the feature last selected from P for addition
to M. Given an n-gram feature fi (i.e., of type “word”,
“class” or “mixed”) that was last added toM, we create �m��
new n��-gram features which ask questions about class bits
in addition to the questions asked in f i. E.g., let fi�h� d�
constrain d � � and constrain h with the questions V ==
‘‘imposed’’, P == ‘‘on’’. Then, given fi�h� d�,
the �m new features generated for just the Head Noun are the
following:

V == ‘‘imposed’’, P == ‘‘on’’,
Bit 1 for Noun == 0

V == ‘‘imposed’’, P == ‘‘on’’,
Bit 1 for Noun == 1

...

V == ‘‘imposed’’, P == ‘‘on’’,
Bit m for Noun == 0

V == ‘‘imposed’’, P == ‘‘on’’,
Bit m for Noun == 1

We construct the remaining �m features similarly from the
remaining 3 head words. We skip the construction of features

Computer Manuals Wall St. Journal
Training Events 8264 20801
Test Events 943 3097

Table 1: Size of Data

containing questions that are inconsistent or redundant with
those word or class questions in fi.

The newly created features are then added to P, and compete
for selection in the next Delta-Likelihood ranking process.
This method allows the introduction of complex features on
word classes while keeping the search space manageable; P
grows linearly withM.

4. Results
We applied the Maximum Entropy model to sentences from
two corpora, the I.B.M. Computer Manuals Data, annotated by
Univ. of Lancaster, and the Wall St. Journal Data, annotated
by Univ. of Penn. The size of the training sets, test sets, and
the results are shown in Tables 1 & 2.

The experiments in Table 2 differ in the following manner:

“Words Only” The search space P begins with all possible
n-gram word features with n being �� �� 	�or �;
this feature set does not grow during the feature
search.

“Classes Only” The search space P begins with only un-
igram class features, and grows by dynamically
contructing class n-gram questions as described
earlier.

“Word and Classes” The search space P begins with all
possiblen-gram word features and unigram class
features, and grows by adding class questions (as
described earlier).

The results in Table 2 are achieved in the neighborhood of
about 200 features. As can be seen in Figure 1, performance
improves quickly as features are added and improves rather
very slowly after the 60-th feature. The performance is fairly
close for the various feature sets when a sufficient number of
features are added. We also compared these results to a deci-
sion tree grown on the same 4 head-word events. The same

Experiment Computer Manuals Wall St. Journal
Words Only 82.2% 77.7%
Classes Only 84.5% 79.1%
Words and Classes 84.1% 81.6%

Table 2: Performance of ME Model on Test Events



Domain Performance
Computer Manuals 79.5%
Wall St. Journal 77.7%

Table 3: Decision Tree Performance

mutual information bits were used for growing the decision
trees. Table 3 gives the results on the same training and test
data. The ME models are slightly better than the decision tree
models.

For comparison, we obtained the PP-attachment performances
of 3 treebanking experts on a set of 300 randomly selected test
events from the WSJ corpus. In the first trial, they were given
only the four head words to make the attachment decision,
and in the next, they were given the headwords along with the
sentence in which they occurred. Figure 3 shows an example
of the head words test�. The results of the treebankers and
the performance of the ME model on that same set are shown
in Table 5. We also identified the set of 274 events on which
treebankers, given the sentence, unanimously agreed. We
defined this to be the truth set. We show in Table 6 the
agreement on PP-attachment of the original WSJ treebank
parses with this consensus set, the average performance of the
3 human experts with head words only, and the ME model.
The WSJ treebank indicates the accuracy rate of our training
data, the human performance indicates how much information
is in the headwords, and the ME model is still a good 12

� the key is N,V,N,N,V, N,N,N,N,V,V,N,V,N,N,N,V,N,V

report milllion in charges
report milllion for quarter
reflecting settlement of contracts
carried all but one
were injuries among workers
had damage to building
be damage to some
uses variation of design
cited example of district
leads Pepsi in share
trails Pepsi in sales
risk conflict with U.S.
risk conflict over plan
oppose seating as delegate
save some of plants
introduced versions of cars
lowered bids in anticipation
oversees trading on Nasdaq
gained 1 to 19

Figure 3: Sample of 4 head words for PP-attachment

percentage points behind.

Selection Order Feature
(1) Preposition == “of”
(2) Bit 2 of Head Noun == 0
(3) Preposition is “to”
(4) Bit 12 of Head Noun == 1
...

...
(9) Head Noun == “million”, Preposition == “in”
...

...
(30) Preposition == “to”, Bit 8 of Object == 1
...

...
(47) Preposition == “in”, Object == “months”

Table 4: Examples of Features Chosen for Wall St. Journal
Data

Average Human(head words only) 88.2%
Average Human(with whole sentence) 93.2%
ME Model 78.0%

Table 5: Average Performance of Human & ME Model on
300 Events of WSJ Data

# Events % WSJ TB Human ME Model
in Consensus Performance Performance Performance

274 95.7% 92.5% 80.7%

Table 6: Human and ME model performance on consensus
set for WSJ

We also obtained the performances of 3 non-experts on a
set of 200 randomly selected test events from the Computer
Manuals corpus. In this trial, the participants made attachment
decisions given only the four head words. The results are
shown in Table 7.

5. Conclusion
The Maximum Entropy model predicts prepositional phrase
attachment 10 percentage points less accurately than a tree-
banker, but it performs comparably to a non-expert, assuming
that only only the head words of the history are available in
both cases. The biggest improvements to the ME model will
come from better utilization of classes, and a larger history.

Currently, the use of the mutual information class bits gives
us a few percentage points in performance, but the ME model
should gain more from other word classing schemes which
are better tuned to the PP-attachment problem. A scheme in
which the word classes are built from the observed attach-
ment preferences of words ought to outperform the mutual
information clustering method, which uses only word bigram
distributions[10].



Average Human 77.3%
ME Model 83.5%

Table 7: Average Performance of Human & ME Model on
200 Events of Computer Manuals Data

Secondly, the ME model does not use information contained
in the rest of the sentence, although it is apparently useful
in predicting the attachment, as evidenced by a 5% average
gain in the treebankers’ accuracy. Any implementation of this
model using the rest of the sentence would require features
on other words, and perhaps features on the sentence’s parse
tree structure, coupled with an efficient incremental search.

Such improvements should boost the performance of the
model to that of treebankers. Already, the ME model out-
performs a decision tree confronted with the same task. We
hope to use Maximum Entropy to predict other linguistic phe-
nomena that hinder the performance of most natural language
parsers.
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